当前位置:文档之家› 化工原理答案(夏清主编,包括绪论)

化工原理答案(夏清主编,包括绪论)

化工原理答案(夏清主编,包括绪论)
化工原理答案(夏清主编,包括绪论)

化工原理课后习题解答(夏清、陈常贵主编.化工原理.天津大学出版社,2005.)

第一章流体流动

1.某设备上真空表的读数为 13.3×103 Pa,试计算设备内的绝对压强与表压强。已知该地区大气压强为 98.7×103 Pa。

解:由绝对压强 = 大气压强–真空度得到:

设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa

=8.54×103 Pa

设备内的表压强 P表 = -真空度 = - 13.3×103 Pa

2.在本题附图所示的储油罐中盛有密度为 960 ㎏/?的油品,油面高于罐底 6.9 m,油面上方为常压。在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用14mm的钢制螺钉紧固。若螺钉材料的工作应力取为39.23×106 Pa ,

问至少需要几个螺钉?

分析:罐底产生的压力不能超过螺钉的工作应力即

P油≤σ螺

解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762

150.307×103 N

σ螺 = 39.03×103×3.14×0.0142×n

P油≤σ螺得 n ≥ 6.23

取 n min= 7

至少需要7个螺钉

3.某流化床反应器上装有两个U 型管压差计,如本题附

图所示。测得R1 = 400 mm , R2 = 50 mm,指示液为水

银。为防止水银蒸汽向空气中扩散,于右侧的U 型管与大气

连通的玻璃管内灌入一段水,其高度R3= 50 mm。试求A﹑B

两处的表压强。

分析:根据静力学基本原则,对于右边的U管压差计,a–

a′为等压面,对于左边的压差计,b–b′为另一等压面,分

别列出两个等压面处的静力学基本方程求解。

解:设空气的密度为ρg,其他数据如图所示

a–a′处 P A + ρg gh1 = ρ水gR3 + ρ水银ɡR2

由于空气的密度相对于水和水银来说很小可以忽略不记

即:P A = 1.0 ×103×9.81×0.05 + 13.6×103×9.81×0.05

= 7.16×103 Pa

b-b′处 P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1

P B = 13.6×103×9.81×0.4 + 7.16×103

=6.05×103Pa

4. 本题附图为远距离测量控制装置,用以测

定分相槽内煤油和水的两相界面位置。已知两

吹气管出口的距离H = 1m,U管压差计的指示

液为水银,煤油的密度为820Kg/?。试求当

压差计读数R=68mm时,相界面与油层的吹气

管出口距离h。

分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1′和4-4′为等压面,2-2′和3-3′为等压面,且1-1′和2-2′的压强相等。根据静力学基本方程列出一个方程组求解

解:设插入油层气管的管口距油面高Δh

在1-1′与2-2′截面之间

P1 = P2 + ρ水银gR

∵P1 = P4,P2 = P3

且P3 = ρ煤油gΔh , P4 = ρ水g(H-h)+ ρ煤油g(Δh + h)

联立这几个方程得到

ρ水银gR = ρ水g(H-h)+ ρ煤油g(Δh + h)-ρ煤油gΔh 即

ρ水银gR =ρ水gH + ρ煤油gh -ρ水gh 带入数据

1.03×103×1 - 13.6×103×0.068 = h(1.0×103-0.82×103)

h= 0.418m

5.用本题附图中串联U管压差计测量蒸汽锅炉水面上方的蒸气压,U管压差计的指示液为水银,两U管间的连接管内充满水。以知水银面与基准面的垂直距离分别为:h1﹦2.3m,h2=1.2m, h3=2.5m,h4=1.4m。锅中水面与基准面之间的垂直距离h5=3m。大气压强pa= 99.3×103pa。

试求锅炉上方水蒸气的压强P。

分析:首先选取合适的截面用以连接两个U管,本题应

选取如图所示的1-1截面,再选取等压面,最后根据

静力学基本原理列出方程,求解

解:设1-1截面处的压强为P1

对左边的U管取a-a等压面,由静力学基本方程

P0 + ρ水g(h5-h4) = P1 + ρ水银g(h3-h4) 代入数据P0 + 1.0×103×9.81×(3-1.4)

= P1 + 13.6×103×9.81×(2.5-1.4)

对右边的U管取b-b等压面,由静力学基本方程P1+ ρ水g(h3-h2) = ρ水银g(h1-h2) + p

a代入数据

P1 + 1.0×103×9.81×﹙2.5-1.2﹚= 13.6×103×9.81×﹙2.3-1.2﹚ + 99.3×103

解着两个方程得

P0 = 3.64×105Pa

6. 根据本题附图所示的微差压差计的读数,计算管路中气体的表压强p。压差计中以油和水为指示液,其密度分别为920㎏/m3,998㎏/m3,U管中油﹑水交接面高度差R = 300 m

m,两扩大室的内径D 均为60 mm,U管内径d为6 mm。

当管路内气体压强等于大气压时,两扩大室液面平齐。

分析:此题的关键是找准等压面,根据扩大室一端与大气相

通,另一端与管路相通,可以列出两个方程,联立求解

解:由静力学基本原则,选取1-1‘为等压面,

对于U管左边p表 + ρ油g(h1+R) = P1

对于U管右边P2 = ρ水gR + ρ油gh2 p表 =ρ水gR + ρ油gh2 -ρ油g(h1+R)

=ρ水gR - ρ油gR +ρ油g(h2-h1)

当p表= 0时,扩大室液面平齐即π(D/2)2(h2-h1)= π(d/2)2R

h2-h1 = 3 mm

p表= 2.57×102Pa

7.列管换热气的管束由121根φ×2.5mm的钢管组成。空气以9m/s速度在列管内流动。空气在管内的平均温度为50℃﹑压强为196×103Pa(表压),当地大气压为98.7×103Pa

试求:⑴空气的质量流量;⑵操作条件下,空气的体积流量;⑶将⑵的计算结果换算成标准状况下空气的体积流量。

解:空气的体积流量VS = uA = 9×π/4 ×0.02 2×121 = 0.342 m3/s

质量流量 w s =VSρ=VS×(MP)/(RT)

= 0.342×[29×(98.7+196)]/[8.315×323]=1.09㎏/s 换算成标准状况 V1P1/V2P2 =T1/T2

VS2 = P1T2/P2T1×VS1 = (294.7×273)/(101×323) × 0.342

= 0.843 m3/s

8 .高位槽内的水面高于地面8m,水从φ108×4mm的管

道中流出,管路出口高于地面2m。在本题特定条件下,

水流经系统的能量损失可按∑hf = 6.5 u2计算,其中u

为水在管道的流速。试计算:

⑴ A—A'截面处水的流速;

⑵水的流量,以m3/h计。

分析:此题涉及的是流体动力学,有关流体动力学主要是能量恒算问题,一般运用的是柏努力方程式。运用柏努力方程式解题的关键是找准截面和基准面,对于本题来说,合适的截面是高位槽1—1,和出管口 2—2,,如图所示,选取地面为基准面。

解:设水在水管中的流速为u ,在如图所示的1—1,,2—2,处列柏努力方程Z1g + 0 + P1/ρ= Z2g+ u2/2 + P2/ρ + ∑hf

(Z1 - Z2)g = u2/2 + 6.5u2代入数据

(8-2)×9.81 = 7u2 , u = 2.9m/s

换算成体积流量

V S = uA= 2.9 ×π/4 × 0.12× 3600

= 82 m3/h

9. 20℃水以2.5m/s的流速流经φ38×2.5mm的水平管,此管以锥形管和另一φ53×3m的水平管相连。如本题附图所示,在锥形管两侧A 、B处各插入一垂直玻璃管以观察两截面的压强。若水流经A ﹑B两截面的能量损失为1.5J/㎏,求两玻璃管的水面差(以mm计),并在本题附图中画出两玻璃管中水面的相对位置。

分析:根据水流过A、B两截面的体积流量相同和此两截面处的伯努利方程列等式求解

解:设水流经A﹑B两截面处的流速分别为u A、 u B

u A A A = u B A B

∴ u B = (A A/A B)u A = (33/47)2×2.5 = 1.23m/s

在A﹑B两截面处列柏努力方程

Z1g + u12/2 + P1/ρ = Z2g+ u22/2 + P2/ρ + ∑hf

∵ Z1 = Z2

∴(P1-P2)/ρ = ∑hf +(u12-u22)/2

g(h1-h 2)= 1.5 + (1.232-2.52) /2

h1-h 2 = 0.0882 m = 88.2 mm

即两玻璃管的水面差为88.2mm

10.用离心泵把20℃的水从贮槽送至水洗塔顶部,槽内水位维持恒定,各部分相对位置如本

题附图所示。管路的直径均为Ф76×2.5mm,在操作条件下,泵入口处真空表的读数为24.66

×103Pa,水流经吸入管与排处管(不包括喷

头)的能量损失可分别按∑hf,1=2u2,∑

h f,2=10u2计算,由于管径不变,故式中u为

吸入或排出管的流速m/s。排水管与喷头连

接处的压强为98.07×103Pa(表压)。试求

泵的有效功率。

分析:此题考察的是运用柏努力方程求算管路系统

所要求的有效功率把整个系统分成两部分来处理,从槽面到真空表段的吸入管和从真空表到排出口段的排出管,在两段分别列柏努力方程。

解:总能量损失∑hf=∑hf+,1∑hf,2

u1=u2=u=2u2+10u2=12u2

在截面与真空表处取截面作方程: z0g+u02/2+P0/ρ=z1g+u2/2+P1/ρ+∑hf,1

( P0-P1)/ρ= z1g+u2/2 +∑hf,1 ∴u=2m/s

∴ w s=uAρ=7.9kg/s

在真空表与排水管-喷头连接处取截面 z1g+u2/2+P1/ρ+W e=z2g+u2/2+P2/ρ+∑hf,2

∴W e= z2g+u2/2+P2/ρ+∑hf,2—( z1g+u2/2+P1/ρ)

=12.5×9.81+(98.07+24.66)/998.2×103+10×22

=285.97J/kg

N e= W e w s=285.97×7.9=2.26kw

11.本题附图所示的贮槽内径D为2m,槽底与内径

d0为33mm的钢管相连,槽内无液体补充,其液面高

度h0为2m(以管子中心线为基准)。液体在本题管内

流动时的全部能量损失可按∑h f=20u2公式来计算,

式中u为液体在管内的流速m/s。试求当槽内液面

下降1m所需的时间。

分析:此题看似一个普通的解柏努力方程的题,分析题中槽内无液体补充,则管内流速并不

是一个定值而是一个关于液面高度的函数,抓住槽内和管内的体积流量相等列出一个微分方

程,积分求解。

解:在槽面处和出口管处取截面1-1,2-2列柏努力方程

h1g=u2/2+∑h f =u2/2+20u2

∴u=(0.48h)1/2=0.7h1/2

槽面下降dh,管内流出uA2dt的液体

∴Adh=uA2dt=0.7h1/2A2dt

∴dt=A1dh/(A20.7h1/2)

对上式积分:t=1.⒏h

12.本题附图所示为冷冻盐水循环系统,盐水的密度为

1100kg/m3,循环量为36m3。管路的直径相同,盐水由A

流经两个换热器而至B的能量损失为98.1J/kg,由B流

至A的能量损失为49J/kg,试求:(1)若泵的效率为70%

时,泵的抽功率为若干kw?(2)若A处的压强表读数为245.2×103Pa时,B处的压强表读数为若干Pa?

分析:本题是一个循环系统,盐水由A经两个换热器被冷却后又回到A继续被冷却,很明显可以在A-换热器-B和B-A两段列柏努利方程求解。

解:(1)由A到B截面处作柏努利方程

0+u A2/2+P A/ρ1=Z B g+u B2/2+P B/ρ+9.81

管径相同得u A=u B∴(P A-P B)/ρ=Z B g+9.81

由B到A段,在截面处作柏努力方程B Z B g+u B2/2+P B/ρ+W e=0+u A2+P A/ρ+49 ∴W e=(P A-P B)/ρ- Z B g+49=98.1+49=147.1J/kg

∴W S=V Sρ=36/3600×1100=11kg/s

N e= W e×W S=147.1×11=1618.1w

泵的抽功率N= N e /76%=2311.57W=2.31kw

(2)由第一个方程得(P A-P B)/ρ=Z B g+9.81得

P B=P A-ρ(Z B g+9.81)

=245.2×103-1100×(7×9.81+98.1)

=6.2×104Pa

13. 用压缩空气将密度为1100kg/m 3

的腐蚀性液体自低位槽送到高位槽,两槽的液位恒定。管路直径均为ф60×3.5mm ,其他尺寸见本题附图。各管段的能量损失为∑hf ,

AB

=∑hf ,CD =u 2,∑hf ,BC =1.18u 2

。两压差计中的指示液均

为水银。试求当R 1=45mm ,h=200mm 时:(1)压缩空气的

压强P 1为若干?(2)U 管差压计读数R 2为多少? 解:对上下两槽取截面列柏努力方程

0+0+P 1/ρ=Zg+0+P 2/ρ+∑hf ∴P 1= Zg ρ+0+P 2 +ρ∑hf

=10×9.81×1100+1100(2u 2

+1.18u 2

) =107.91×103+3498u 2

在压强管的B ,C 处去取截面,由流体静力学方程得 P B +ρg (x+R 1)=P c +ρg (h BC +x )+ρ

水银

R 1g

P B

+1100×9.81×(0.045+x )=P c +1100×9.81×(5+x )+13.6×103×9.81×0.045 P B -P C =5.95×104

Pa

在B ,C 处取截面列柏努力方程

0+u B 2/2+P B /ρ=Zg+u c 2

/2+P C /ρ+∑hf ,BC ∵管径不变,∴u b =u c

P B -P C =ρ(Zg+∑hf ,BC )=1100×(1.18u 2

+5×9.81)=5.95×104

Pa u=4.27m/s

压缩槽内表压P 1=1.23×105

Pa (2)在B ,D 处取截面作柏努力方程

0+u 2

/2+P B /ρ= Zg+0+0+∑hf ,BC +∑hf ,CD

P B =(7×9.81+1.18u 2

+u 2

-0.5u 2

)×1100=8.35×104

Pa P B -ρgh=ρ

水银

R 2g

8.35×104-1100×9.81×0.2=13.6×103×9.81×R 2 R 2=609.7mm

14. 在实验室中,用玻璃管输送20℃的70%醋酸.管内径为1.5cm,流量为10kg/min,用SI 和物理单位各算一次雷诺准数,并指出流型。

解:查20℃,70%的醋酸的密度ρ= 1049Kg/m3,粘度μ = 2.6mPa·s

用SI单位计算:

d=1.5×10-2m,u=W S/(ρA)=0.9m/s

∴Re=duρ/μ=(1.5×10-2×0.9×1049)/(2.6×103)

=5.45×103

用物理单位计算:

ρ=1.049g/cm3, u=W S/(ρA)=90cm/s,d=1.5cm

μ=2.6×10-3Pa?S=2.6×10-3kg/(s?m)=2.6×10-2g/s?cm-1

∴Re=duρ/μ=(1.5×90×1.049)/(2.6×10-2)

=5.45×103

∵5.45×103 > 4000

∴此流体属于湍流型

15.在本题附图所示的实验装置中,于异径水平管段两截面间连

一倒置U管压差计,以测量两截面的压强差。当水的流量为

10800kg/h时,U管压差计读数R为100mm,粗细管的直径分别

为Ф60×3.5mm与Ф45×3.5mm。计算:(1)1kg水流经两截面

间的能量损失。(2)与该能量损失相当的压强降为若干Pa?解:(1)先计算A,B两处的流速:

u A=w s/ρs A=295m/s,u B= w s/ρs B

在A,B截面处作柏努力方程:

z A g+u A2/2+P A/ρ=z B g+u B2/2+P B/ρ+∑hf

∴1kg水流经A,B的能量损失:

∑hf= (u A2-u B2)/2+(P A- P B)/ρ=(u A2-u B2)/2+ρgR/ρ=4.41J/kg

(2).压强降与能量损失之间满足:

∑hf=ΔP/ρ∴ΔP=ρ∑hf=4.41×103

16. 密度为850kg/m3,粘度为8×10-3Pa·s的液体在内径为14mm 的钢管内流动,溶液的流速为1m/s。试计算:(1)泪诺准数,并指出属于何种流型?(2)局部速度等于平均速度处与管轴的距离;(3)该管路为水平管,若上游压强为147×103Pa,液体流经多长的管子其压强才下降到127.5×103Pa?

解:(1)Re =duρ/μ

=(14×10-3×1×850)/(8×10-3)

=1.49×103 > 2000

∴此流体属于滞流型

(2)由于滞流行流体流速沿管径按抛物线分布,令管径和流速满足

y2 = -2p(u-u m)

当u=0时 ,y2 = r2 = 2pu m∴ p = r2/2 = d2/8

当u=u平均=0.5umax= 0.5m/s时,

y2= - 2p(0.5-1)= d2/8

=0.125 d2

∴即与管轴的距离 r=4.95×10-3m

(3)在147×103和127.5×103两压强面处列伯努利方程

u 12/2 + P A/ρ + Z1g = u 22/2 + P B/ρ+ Z2g + ∑hf

∵ u 1 = u 2 , Z1 = Z2

∴ P A/ρ= P B/ρ+ ∑hf

损失能量hf=(P A-P B)/ρ=(147×103-127.5×103)/850

=22.94

∵流体属于滞流型

∴摩擦系数与雷若准数之间满足λ=64/ Re

又∵hf=λ×(ι/d)×0.5 u 2

∴ι=14.95m

∵输送管为水平管,∴管长即为管子的当量长度

即:管长为14.95m

17 . 流体通过圆管湍流动时,管截面的速度分布可按下面经验公式来表示:u r=u max(y/R)1/7 ,式中y为某点与壁面的距离,及y=R—r。试求起平均速度u与最大速度u

max的比值。分析:平均速度u为总流量与截面积的商,而总流量又可以看作是速度是u r的流体流过

2πrdr的面积的叠加即:V=∫0R u r×2πrdr

解:平均速度u = V/A =∫0R u r×2πrdr/(πR2)

=∫0R u max(y/R)1/7×2πrdr/(πR2)

= 2u max/R15/7∫0R(R – r)1/7rdr

= 0.82u max

u/ u max=0.82

18. 一定量的液体在圆形直管内做滞流流动。若管长及液体物性不变,而管径减至原有的1/2,问因流动阻力而产生的能量损失为原来的若干倍?

解:∵管径减少后流量不变

∴u1A1=u2A2而r1=r2

∴A1=4A2∴u2=4u

由能量损失计算公式∑hf=λ?(ι/d)×(1/2u2)得

∑hf,1=λ?(ι/d)×(1/2u12)

∑hf,2=λ?(ι/d)×(1/2u22)=λ?(ι/d)× 8(u1)2

=16∑hf,1

∴h f2 = 16 h f1

19. 内截面为1000mm×1200mm的矩形烟囱的高度为30 A1m。平均分子量为30kg/kmol,平均温度为400℃的烟道气自下而上流动。烟囱下端维持49Pa的真空度。在烟囱高度范围内大气的密度可视为定值,大气温度为20℃,地面处的大气压强为101.33×103Pa。流体经烟囱时的摩擦系数可取为0.05,试求烟道气的流量为若干kg/h?

解:烟囱的水力半径 rН= A/п= (1×1.2)/2(1+1.2)=0.273m

当量直径 d e= 4rН=1.109m

流体流经烟囱损失的能量

∑hf=λ?(ι/ d e)·u2/2

=0.05×(30/1.109)×u2/2

=0.687 u2

空气的密度ρ空气= PM/RT = 1.21Kg/m3

烟囱的上表面压强 (表压) P上=-ρ空气gh = 1.21×9.81×30

=-355.02 Pa

烟囱的下表面压强 (表压) P下=-49 Pa

烟囱内的平均压强 P= (P上+ P下)/2 + P0 = 101128 Pa

由ρ= PM/RT 可以得到烟囱气体的密度

ρ= (30×10-3×101128)/(8.314×673)

= 0.5422 Kg/m3

在烟囱上下表面列伯努利方程

P上/ρ= P下/ρ+ Zg+∑hf

∴∑hf= (P上- P下)/ρ– Zg

=(-49+355.02)/0.5422 – 30×9.81

= 268.25 = 0.687 u2

流体流速 u = 19.76 m/s

质量流量ωs= uAρ= 19.76×1×1.2×0.5422

= 4.63×104 Kg/h

20. 每小时将2×103kg的溶液用泵从反应器输送到高位槽。

反应器液面上方保持26.7×103Pa的真空读,高位槽液面上方

为大气压强。管道为的钢管,总长为50m,管线上有两个全开

的闸阀,一个孔板流量计(局部阻力系数为4),5个标准弯头。

反应器内液面与管路出口的距离为15m 。若泵效率为0.7,求

泵的轴功率。

解:流体的质量流速ωs = 2×104/3600 = 5.56 kg/s

流速 u =ωs/(Aρ)=1.43m/s

雷偌准数Re=duρ/μ= 165199 > 4000

查本书附图1-29得 5个标准弯头的当量长度: 5×2.1=10.5m

2个全开阀的当量长度: 2×0.45 = 0.9m

∴局部阻力当量长度∑ιe=10.5 + 0.9 = 11.4m

假定 1/λ1/2=2 lg(d /ε) +1.14 = 2 lg(68/0.3) + 1.14

∴λ= 0.029

检验 d/(ε×Re×λ1/2) = 0.008 > 0.005

∴符合假定即λ=0.029

∴全流程阻力损失∑h=λ×(ι+ ∑ιe)/d × u2/2 + ζ×u2/2

= [0.029×(50+11.4)/(68×103) + 4]×1.432/2

= 30.863 J/Kg

在反应槽和高位槽液面列伯努利方程得

P1/ρ+ We = Zg + P2/ρ+ ∑h

We = Zg + (P1- P2)/ρ+∑h

= 15×9.81 + 26.7×103/1073 + 30.863

= 202.9 J/Kg

有效功率 Ne = We×ωs = 202.9×5.56 = 1.128×103

轴功率 N = Ne/η=1.128×103/0.7 = 1.61×103W

= 1.61KW

21. 从设备送出的废气中有少量可溶物质,在放空

之前令其通过一个洗涤器,以回收这些物质进

行综合利用,并避免环境污染。气体流量为3600m

3/h,其物理性质与50℃的空气基本相同。如本题

附图所示,气体进入鼓风机前的管路上安装有指示

液为水的U管压差计,起读数为30mm。输气管与放

空管的内径均为250mm,管长与管件,阀门的当量长度之和为50m,放空机与鼓风机进口的垂直距离为20m,已估计气体通过塔内填料层的压强降为1.96×103Pa。管壁的绝对粗糙度可取0.15mm,大气压强为101.33×103。求鼓风机的有效功率。

解:查表得该气体的有关物性常数ρ=1.093 , μ=1.96×10-5Pa·s

气体流速 u = 3600/(3600×4/π×0.252) = 20.38 m/s

质量流量ωs = uAs = 20.38×4/π×0.252×1.093

=1.093 Kg/s

流体流动的雷偌准数 Re = duρ/μ= 2.84×105为湍流型

所有当量长度之和ι总=ι+Σι e

=50m

ε取0.15时ε/d = 0.15/250= 0.0006 查表得λ=0.0189

所有能量损失包括出口,入口和管道能量损失

即: ∑h= 0.5×u2/2 + 1×u2/2 + (0.0189×50/0.25)· u2/2

=1100.66

在1-1﹑2-2两截面处列伯努利方程

u2/2 + P1/ρ+ We = Zg + u2/2 + P2/ρ + ∑h

We = Zg + (P2- P1)/ρ+∑h

而1-1﹑2-2两截面处的压强差 P2- P1 = P2-ρ水gh = 1.96×103 - 103×9.81×31×103

= 1665.7 Pa

∴We = 2820.83 W/Kg

泵的有效功率 Ne = We×ωs= 3083.2W =

3.08 KW

22. 如本题附图所示,,贮水槽水位维持不变。

槽底与内径为100mm 的钢质放水管相连,管

路上装有一个闸阀,距管路入口端15m 处安

有以水银为指示液的U管差压计,其一臂与管道相连,另一臂通大气。压差计连接管内充满了水,测压点与管路出口端之间的长度为20m。(1).当闸阀关闭时,测得R=600mm,h=1500mm;当闸阀部分开启时,测的R=400mm,h=1400mm。摩擦系数可取0.025,管路入口处的局部阻力系数为0.5。问每小时从管中水流出若干立方米。

(2).当闸阀全开时,U管压差计测压处的静压强为若干(Pa,表压)。闸阀全开时l e/d ≈15,摩擦系数仍取0.025。

解: ⑴根据流体静力学基本方程, 设槽面到管道的高度为x

ρ水g(h+x)= ρ水银gR

103×(1.5+x) = 13.6×103×0.6

x = 6.6m

部分开启时截面处的压强 P1 =ρ水银gR -ρ水gh = 39.63×103Pa

在槽面处和1-1截面处列伯努利方程

Zg + 0 + 0 = 0 + u2/2 + P1/ρ + ∑h

而∑h= [λ(ι+Σιe)/d +ζ]· u2/2

= 2.125 u2

∴6.6×9.81 = u2/2 + 39.63 + 2.125 u2

u = 3.09/s

体积流量ωs= uAρ= 3.09×π/4×(0.1)2×3600 = 87.41m3/h

⑵闸阀全开时取2-2,3-3截面列伯努利方程

Zg = u2/2 + 0.5u2/2 + 0.025×(15 +ι/d)u2/2

u = 3.47m/s

取1-1﹑3-3截面列伯努利方程

P1'/ρ = u2/2 + 0.025×(15+ι'/d)u2/2

∴P1' = 3.7×104Pa

23. 10℃的水以500L/min 的流量流过一根长为300m 的水平管,管壁的绝对粗糙度为0.05。有6m 的压头可供克服流动阻力,试求管径的最小尺寸。

解:查表得10℃时的水的密度ρ= 999.7Kg/m3μ = 130.77×10-5 Pa·s

u = V s/A = 10.85×10-3/d2

∵∑hf = 6×9.81 = 58.86J/Kg

∑hf=(λ·ι/d) u2/2 =λ·150 u2/d

假设为滞流λ= 64/Re = 64μ/duρ

∵H f g≥∑hf

∴d≤1.5×10-3

检验得Re = 7051.22 > 2000

∴不符合假设∴为湍流

假设Re = 9.7×104即 duρ/μ= 9.7×104

∴d =8.34×10-2m

则ε/d = 0.0006 查表得λ= 0.021

要使∑hf≤H f g 成立则

λ·150 u2/d≤58.86

d≥1.82×10-2m

24. 某油品的密度为800kg/m3,粘度为41cP,

由附图所示的A槽送至B槽,A 槽的液面比B槽的液面高出1.5m。输送管径为ф89×3.5mm (包括阀门当量长度),进出口损失可忽略。试求:(1)油的流量(m3/h);(2)若调节阀门的开度,使油的流量减少20%,此时阀门的当量长度为若干m?

解:⑴在两槽面处取截面列伯努利方程 u2/2 + Zg + P1/ρ= u2/2 + P2/ρ+ ∑hf

∵P1= P2

Zg = ∑hf= λ·(ι/d)· u2/2

1.5×9.81= λ?(50/82×10-3)·u2/2 ①

假设流体流动为滞流,则摩擦阻力系数

λ=64/Re=64μ/duρ②

联立①②两式得到u =1.2m/s 核算Re = duρ/μ=1920 < 2000 假设成立

油的体积流量ωs=uA=1.2×π/4(82×103)2×3600

=22.8m3/h

⑵调节阀门后的体积流量ωs'= 22.8×(1-20%)=18.24 m3/h

调节阀门后的速度 u=0.96m/s

同理由上述两式 1.5×9.81= λ?(ι/82×10-3)·0.962/2

λ=64/Re=64μ/duρ可以得到ι= 62.8m

∴阀门的当量长度ιe=ι-50 =12.8m

25. 在两座尺寸相同的吸收塔内,各填充不同的填料,并以相同的

管路并联组合。每条支管上均装有闸阀,两支路的管长均为5m(均

包括除了闸阀以外的管件局部阻力的当量长度),管内径为200mm。

通过田料层的能量损失可分别折算为5u12与4u22,式中u 为气体

在管内的流速m/s ,气体在支管内流动的摩擦系数为0.02。管路

的气体总流量为0.3m3/s。试求:(1)两阀全开时,两塔的通气量;(2)附图中AB的能量损失。

分析:并联两管路的能量损失相等,且各等于管路总的能量损失,各个管路的能量损失由两部分组成,一是气体在支管内流动产生的,而另一部分是气体通过填料层所产生的,即∑h

f=λ·(ι+∑ιe/d)· u 2/2 +h

f填而且并联管路气体总流量为个支路之和, 即 V s= V s1 +

V s2

解:⑴两阀全开时,两塔的通气量

由本书附图1-29查得d=200mm时阀线的当量长度ιe=150m

∑hf1=λ·(ι1+∑ιe1/d)· u12/2 + 5 u12

=0.02×(50+150)/0.2· u12/2 + 5 u12

∑hf2=λ·(ι2+∑ιe2/d)· u22/2 + 4 u12

= 0.02×(50+150)/0.2· u22/2 + 4 u12

∵∑hf1=∑hf2

∴u12/ u22=11.75/12.75 即 u1 = 0.96u2

又∵V s= V s1 + V s2

= u1A1+ u2A2 , A1 = A2 =(0.2)2π/4=0.01π

= (0.96u2+ u2)? 0.01π

= 0.3

∴ u2=4.875m/s u1A=4.68 m/s

即两塔的通气量分别为V s1 =0.147 m3/s, V s12=0.153 m3/s

⑵总的能量损失∑hf=∑hf1=∑hf2

=0.02×155/0.2· u12/2 + 5 u12

= 12.5 u12 = 279.25 J/Kg

26. 用离心泵将20℃水经总管分别

送至A,B容器内,总管流量为89m/h

3,总管直径为

ф127×5mm。原出口压强为1.93×

105Pa,容器B内水面上方表压为

1kgf/cm2,总管的流动阻力可忽略,各设备间的相对位置如本题附图所示。试求:(1)离心泵的有效压头H e;(2)两支管的压头损失H f,o-A ,H f,o-B,。

解:(1)离心泵的有效压头

总管流速u = V s/A

而A = 3600×π/4×(117)2×10-6

u = 2.3m/s

在原水槽处与压强计管口处去截面列伯努利方程

Z0g + We = u2/2 + P0/ρ+∑hf∵总管流动阻力不计∑hf=0

We = u2/2 + P0/ρ-Z0g

=2.32/2 +1.93×105/998.2 -2×9.81

=176.38J/Kg

∴有效压头He = We/g = 17.98m

⑵两支管的压头损失

在贮水槽和Α﹑Β表面分别列伯努利方程

Z0g + We = Z1g + P1/ρ+ ∑hf1

Z0g + We = Z2g + P2/ρ+ ∑hf2得到两支管的能量损失分别为

∑hf1= Z0g + We –(Z1g + P1/ρ)

= 2×9.81 + 176.38 –(16×9.81 + 0)

=39.04J/Kg

∑hf2=Z0g + We - (Z2g + P2/ρ)

=2×9.81 + 176.38 –(8×9.81 + 101.33×103/998.2)

=16.0 J/Kg

∴压头损失 H f1 = ∑hf1/g = 3.98 m

H f2 = ∑hf2/g = 1.63m

27. 用效率为80%的齿轮泵将粘稠的液体从

敞口槽送至密闭容器中,两者液面均维持恒

定,容器顶部压强表读数为30×103Pa。用旁

路调节流量,起流程如本题附图所示,主管

流量为14m3/h,管径为φ66×3mm,管长为

80m(包括所有局部阻力的当量长度)。旁路的流量为5m3/h,管径为Φ32×2.5mm,管长为20m(包括除阀门外的管件局部阻力的当量长度)两管路的流型相同,忽略贮槽液面至分支点o之间的能量损失。被输送液体的粘度为50mPa·s,密度为1100kg/m3,试计算:(1)泵的轴功率(2)旁路阀门的阻力系数。

解:⑴泵的轴功率

分别把主管和旁管的体积流量换算成流速

主管流速 u = V/A = 14/[3600×(π/4)×(60)2×10-6]

= 1.38 m/s

旁管流速 u1 = V1/A = 5/[3600×(π/4)×(27)2×10-6]

= 2.43 m/s

先计算主管流体的雷偌准数

Re = duρ/μ= 1821.6 < 2000 属于滞流

摩擦阻力系数可以按下式计算

λ= 64/ Re = 0.03513

在槽面和容器液面处列伯努利方程

We = Z2g + P2/ρ+ ∑hf

= 5×9.81 + 30×103/1100 + 0.03513×1.382×80/(60×10-3)

=120.93 J/Kg

主管质量流量ωs= uAρ= 1.38×(π/4)×(60)2×1100

= 5.81Kg/s

泵的轴功率 Ne/η= We×ωs/η = 877.58 W

=0.877KW

⑵旁路阀门的阻力系数

旁管也为滞流其摩擦阻力系数λ1 = 64/ Re1 = 0.04434

有效功We = 0+ u12/2 + 0 + ∑hf

= u12/2 + λ·u12/2 ·20/d1 + ε?u12/2

∴旁路阀门的阻力系数ε= (We -u12/2 -λ·u12/2·20/d1)- 2/u12= 7.11

28.本题附图所示为一输水系统,高位槽的水面维持

恒定,水分别从BC与BD两支管排出,高位槽液面与

两支管出口间的距离为11m,AB段内径为38mm,长

为58m;BC支管内径为32mm,长为12.5m;BD支管

的内径为26mm,长为14m,各段管长均包括管件及阀

门全开时的当量长度。AB与BC 管的摩擦系数为

0.03。试计算:

(1)当BD 支管的阀门关闭时,BC支管的最大排水量为若干m3/h?

(2)当所有的阀门全开时,两支管的排水量各为若干m3/h?BD支管的管壁绝对粗糙度为

0.15mm,水的密度为1000kg/m3,粘度为0.001Pa·s。

分析:当BD 支管的阀门关闭时,BC管的流量就是AB总管的流量;当所有的阀门全开时,AB总管的流量应为BC,BD两管流量之和。而在高位槽内,水流速度可以认为忽略不计。解:(1)BD 支管的阀门关闭

V S,AB = V S,BC即

u0A0 = u1A1 u0π382/4 = u1π322/4

∴ u0 = 0.71u1

分别在槽面与C-C,B-B截面处列出伯努利方程

0 + 0 + Z0g = u12/2 + 0 + 0 + ∑hf,AC

0 + 0 + Z1g = u02/2 + 0 + 0 + ∑hf,AB

而∑hf,AC = λ?(ιAB/d0 )·u02/2 + λ?(ιBC/d1)·u12/2

= O.03×(58000/38) ×u02/2 + 0.03·(12500/32)×u12/2 = 22.89 u02 + 5.86 u12

∑hf,AB = λ?(ιAB/d0)·u02/2

= O.03×(58000/38)×u02/2

= 22.89 u02

∴u1 = 2.46m/s

BC支管的排水量 V S,BC = u1A1 = 7.1m3/s

⑵所有的阀门全开

V S,AB = V S,BC + V S,BD

u0A0 = u1A1 + u2A2 u0π382/4 = u1π322/4 + u2π262/4

u0382 = u1322 + u2262 ①

假设在BD段满足1/λ1/2=2 lg(d /ε) +1.14

∴λ D = 0.0317

同理在槽面与C-C,D-D截面处列出伯努利方程

Z0g = u12/2 + ∑hf,AC

= u12/2 +λ?(ιAB/d0 )·u02/2 + λ?(ιBC/d1)·u12/2 ② Z0g = u22/2 + ∑hf,AD

= u22/2 +λ?(ιAB/d0 )·u02/2 +λD?(ιBD/d2)·u22/2 ③联立①②③求解得到 u1 = 1.776 m/s, u2= 1.49 m/s

化工原理下册答案

第五章 蒸馏 一、选择与填空 1、精馏操作的依据是 混合液中各组分挥发度的差异 。实现精馏操作的必要条件是 塔顶液相回流 和 塔底上升蒸汽 。 2、汽液两相呈平衡状态时,汽液两相温度_相同_,但液相组成_小于_汽相组成。 3、用相对挥发度α表达的汽液平衡方程可写为1(1)x y x αα= +-。根据α的大小,可用 来 判定用蒸馏方法分离的难易程度 ,若α=1则表示 不能用普通的蒸馏方法分离该混合液 。 4、在精馏操作中,若降低操作压强,则溶液的相对挥发度 增加 ,塔顶温度 降低 ,塔釜温度 降低 ,从平衡角度分析对该分离过程 有利 。 5、某二元物系,相对挥发度α=3,在全回流条件下进行精馏操作,对第n 、n+1两层理论板,已知 y n =0.4,则 y n+1=_0.182_。全回流通常适用于 开工阶段 或 实验研究 。 6、精馏和蒸馏的区别在于 精馏必须引入回流;平衡蒸馏和简单蒸馏的主要区别在于前者为连续的稳态过程而后者是间歇的非稳态过程 。 7、精馏塔的塔顶温度总是低于塔底温度,其原因是 塔底压强高 和 塔底难挥发组分含量高 。

8、在总压为101.33kPa 、温度为85℃下,苯和甲苯的饱和蒸汽压分别为p A 0 =116.9kPa,p B 0 =46 kPa ,则相对挥发度α= 2.54,平衡时液相组成x A = 0.78 ,气相组成y A = 0.90 。 9、某精馏塔的精馏段操作线方程为y=0.72x+0.275,则该精馏塔的操作回流比为_2.371_,馏出液组成为_0.982_。 10、最小回流比的定义是 在特定分离任务下理论板数为无限多时的回流比 ,适宜回流比通常取 1.1~2.0 R min 11、精馏塔进料可能有 5 种不同的热状况,当进料为气液混合物且气液摩尔比为2:3时,则进料热状况q 值为 0.6 。 注:23() 550.6V V L V F V L V L I I I I I q I I I I -+-===-- 12、在塔的精馏段测得 x D =0.96、x 2=0.45、x 3=0.40(均为摩尔分率),已知R=3 ,α=2.5,则第三层塔板的气相默弗里效率 E MV _44.1%_。 注:1 * 1 n n MV n n y y E y y ++-= - 13、在精馏塔设计中,若F 、x F 、q 、D 保持不变,若增加回流比R ,则x D 增加, x W 减小 ,V 增加,L/V 增加 。 14、在精馏塔设计中,若F 、x F 、x D 、x W 及R 一定,进料由原来的饱和蒸气改为饱和液体,则所需理论板数N T 减小 。精馏段上升蒸气量V 不变 、下降液体量L 不变 ;

(完整版)化工原理第二版(下册)夏清贾绍义课后习题解答带图

化工原理第二版夏清,贾绍义 课后习题解答 (夏清、贾绍义主编.化工原理第二版(下册).天津大学出版) 社,2011.8.) 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯 和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B *,P A *,由于总压 P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一组绘平衡t-x 图数据。

以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa下该 溶液的平衡数据。 温度 C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C 5H 12 (A)和C 6 H 14 (B)的饱和蒸汽压 以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A *= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A *(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B *(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时 x = (P-P B *)/(P A *-P B *) =(13.3-2.826)/(13.3-2.826)= 1 平衡气相组成以260.6℃为例 当t= 260.6℃时 y = P A *x/P = 13.3×1/13.3 = 1 同理得出其他温度下平衡气液相组成列表如下 t(℃) 260.6 275.1 276.9 279 289 x 1 0.3835 0.3308 0.0285 0

化工原理答案下册

化工原理第二版夏清,贾绍义课后习题解答(夏清、贾绍义主编.化工原理第二版(下册).天津 大学出版)社,2011.8.) 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B *,P A *,由 于总压 P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一 组绘平衡t-x图数据。 以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa下该溶液的平衡数据。 温度C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9

饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C 5H 12 (A)和C 6 H 14 (B)的饱和蒸汽压 以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A *= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A *(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B *(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时 x = (P-P B *)/(P A *-P B *) =(13.3-2.826)/(13.3-2.826)= 1 平衡气相组成以260.6℃为例 当t= 260.6℃时 y = P A *x/P = 13.3×1/13.3 = 1 同理得出其他温度下平衡气液相组成列表如下 t(℃) 260.6 275.1 276.9 279 289 x 1 0.3835 0.3308 0.0285 0 y 1 0.767 0.733 0.524 0 根据平衡数据绘出t-x-y曲线 3.利用习题2的数据,计算:⑴相对挥发度;⑵在平均相对挥发度下的x-y数据,并与习题2 的结果相比较。

化工原理(第二版)上册课后习题答案完整版柴诚敬主编

化工原理(第二版)上册课后习题答案完整版柴诚敬主编

大学课后习题解答之 化工原理(上)-天津大学化工学院-柴诚敬主编 绪 论 1. 从基本单位换算入手,将下列物理量的单位换算为SI 单位。 (1)水的黏度μ=0.00856 g/(cm·s) (2)密度ρ=138.6 kgf ?s 2/m 4 (3)某物质的比热容C P =0.24 BTU/(lb·℉) (4)传质系数K G =34.2 kmol/(m 2 ?h ?atm) (5)表面张力σ=74 dyn/cm (6)导热系数λ=1 kcal/(m ?h ?℃) 解:本题为物理量的单位换算。 (1)水的黏度 基本物理量的换算关系为 1 kg=1000 g ,1 m=100 cm 则 )s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044??=??=? ? ? ????????????? ???=--μ (2)密度 基本物理量的换算关系为 1 kgf=9.81 N ,1 N=1 kg ?m/s 2 则 3 24 2m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=?? ??????????????????=ρ (3)从附录二查出有关基本物理量的换算关系为

1 BTU=1.055 kJ ,l b=0.4536 kg o o 51F C 9= 则 ()C kg kJ 005.1C 95F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0??=?? ????????????? ????????????=p c (4)传质系数 基本物理量的换算关系为 1 h=3600 s ,1 atm=101.33 kPa 则 ()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.34252G ???=? ? ? ?????????????????=-K (5)表面张力 基本物理量的换算关系为 1 dyn=1×10–5 N 1 m=100 cm 则 m N 104.71m 100cm 1dyn N 101cm dyn 7425 --?=? ? ? ????????????????=σ (6)导热系数 基本物理量的换算关系为 1 kcal=4.1868×103 J ,1 h=3600 s 则 ))C m W 163.1C s m J 163.13600s 1h 1kcal J 104.1868C h m kcall 13 2??=???=?? ????????????????????=λ 2. 乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即

化工原理下册答案

化工原理(天津大学第二版)下册部分答案 第8章 2. 在温度为25 ℃及总压为 kPa 的条件下,使含二氧化碳为%(体积分数)的混合空气与含二氧化碳为350 g/m 3的水溶液接触。试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。已知操作条件下,亨 利系数51066.1?=E kPa ,水溶液的密度为 kg/m 3。 解:水溶液中CO 2的浓度为 对于稀水溶液,总浓度为 3t 997.8kmol/m 55.4318 c ==kmol/m 3 水溶液中CO 2的摩尔分数为 由 54* 1.6610 1.44310kPa 23.954p Ex -==???=kPa 气相中CO 2的分压为 t 101.30.03kPa 3.039p p y ==?=kPa < *p 故CO 2必由液相传递到气相,进行解吸。 以CO 2的分压表示的总传质推动力为 *(23.954 3.039)kPa 20.915p p p ?=-=-=kPa 3. 在总压为 kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。测得在塔的某一截面上,氨的气、液相组成分别为0.032y =、3 1.06koml/m c =。气膜吸收系数k G =×10-6 kmol/(m 2skPa),液膜吸收系数k L =×10-4 m/s 。假设操作条件下平衡关系服从亨利定律,溶解度系数H = kmol/(m 3kPa)。 (1)试计算以p ?、c ?表示的总推动力和相应的总吸收系数; (2)试分析该过程的控制因素。 解:(1) 以气相分压差表示的总推动力为 t 1.06*(110.50.032)kPa 2.0740.725 c p p p p y H ?=-=- =?-=kPa 其对应的总吸收系数为 6G 1097.4-?=K kmol/(m 2skPa) 以液相组成差表示的总推动力为 其对应的总吸收系数为 (2)吸收过程的控制因素 气膜阻力占总阻力的百分数为 气膜阻力占总阻力的绝大部分,故该吸收过程为气膜控制。 4. 在某填料塔中用清水逆流吸收混于空气中的甲醇蒸汽。操作压力为 kPa ,操作温度为25 ℃。在操作条件下平衡关系符合亨利定律,甲醇在水中的溶解度系数为 kmol/(m 3kPa)。测得塔内某截面处甲醇的气相分压为 kPa ,液相组成为 kmol/m 3,液膜吸收系数k L =×10-5 m/s ,气相总吸收系数K G =×10-5 kmol/(m 2skPa)。求该截面处(1)膜吸收系数k G 、k x 及k y ;(2)总吸收系数K L 、K X 及K Y ;(3)吸收速率。 解:(1) 以纯水的密度代替稀甲醇水溶液的密度,25 ℃时水的密度为 0.997=ρkg/m 3 溶液的总浓度为

化工原理课后习题答案上下册

下册第一章蒸馏 1. 苯酚(C 6H 5OH)(A )和对甲酚(C 6H 4(CH 3)OH)(B )的饱和蒸气压数据为 解: 总压 P=75mmHg=10kp 。 由拉乌尔定律得出 0 A p x A +0 B p x B =P 所以 x A = 000B A B p p p p --;y A =p p A 00B A B p p p p --。 因此所求得的t-x-y 数据如下: t, ℃ x y 1 1 0 0. 2. 承接第一题,利用各组数据计算 (1)在x=0至x=1范围内各点的相对挥发度i α,取各i α的算术平均值为α,算出α对i α的最大相对误差。 (2)以平均α作为常数代入平衡方程式算出各点的“y-x ”关系,算出由此法得出的各组y i 值的最大相对误差。 解: (1)对理想物系,有 α=00B A p p 。所以可得出

t, ℃ i α 算术平均值α= 9 ∑i α=。α对i α的最大相对误差= %6.0%100)(max =?-α ααi 。 (2)由x x x x y 318.01318.1)1(1+=-+= αα得出如下数据: t, ℃ x 1 0 y 1 0 各组y i 值的最大相对误差= =?i y y max )(%。 3.已知乙苯(A )与苯乙烯(B )的饱和蒸气压与温度的关系可按下式计算: 95.5947 .32790195.16ln 0 -- =T p A 72 .6357.33280195.16ln 0 --=T p B 式中 0 p 的单位是mmHg,T 的单位是K 。 问:总压为60mmHg(绝压)时,A 与B 的沸点各为多少在上述总压和65℃时,该物系可视为理想物系。此物系的平衡气、液相浓度各为多少摩尔分率 解: 由题意知 T A ==-- 0195.1660ln 47 .327995.59=℃ T B ==--0195 .1660ln 57 .332872.63=℃ 65℃时,算得0 A p =;0 B p = mmHg 。由0 A p x A +0 B p (1-x A )=60得 x A =, x B =; y A =0A p x A /60=; y B ==。 4 无

化工原理下册计算答案

j06a10013 用不含溶质的吸收剂吸收某气体混合物中的可溶组分A,在操作条件下,相平衡关系为Y=mX。试证明:(L/V)min =mη,式中η为溶质A的吸收率。 j06a10103 一逆流操作的常压填料吸收塔,用清水吸收混合气中的溶质A,入塔气体中含A 1%(摩尔比),经吸收后溶质A 被回收了80%,此时水的用量为最小用量的1.5倍,平衡线的斜率为1,气相总传质单元高度为1m,试求填料层所需高度。 j06a10104 在常压逆流操作的填料吸收塔中用清水吸收空气中某溶质A,进塔气体中溶质A的含量为8%(体积%),吸收率为98%,操作条件下的平衡关系为y=2.5x,取吸收剂用量为最小用量的1.2倍,试求: ①水溶液的出塔浓度; ②若气相总传质单元高度为0.6 m,现有一填料层高为6m的塔,问该塔是否合用? 注:计算中可用摩尔分率代替摩尔比,用混合气体量代替惰性气体量,用溶液量代替溶剂量。 j06a10105 在20℃和760 mmHg,用清水逆流吸收空气混合气中的氨。混合气中氨的分压为10mmHg,经吸收后氨的分压下降到0.051 mmHg。混合气体的处理量为1020kg/h,其平均分子量为28.8,操作条件下的平衡关系为y=0.755x。 若吸收剂用量是最小用量的5 倍,求吸收剂的用量和气相总传质单元数。 j06a10106 在常压逆流操作的填料塔内,用纯溶剂S 吸收混合气体中的可溶组分A。入塔气体中A的摩尔分率为0.03,要求吸收率为95%。已知操作条件下的解吸因数为0.8,物系服从亨利定律,与入塔气体成平衡的液相浓度为0.03(摩尔分率)。试计算: ①操作液气比为最小液气比的倍数; ②出塔液体的浓度; ③完成上述分离任务所需的气相总传质单元数N OG。 j06a10107 某厂有一填料层高为3m 的吸收塔,用水洗去尾气中的公害组分A。测 得浓度数据如图,相平衡关系为y=1.15x。 试求:该操作条件下,气相总传质单元高度H OG为多少m ? 参见附图:j06a107.t j06a10108 总压100kN/m2,30℃时用水吸收氨,已知k G=3.84?10-6kmol/[m2·s(kN/m2)], k L=1.83?10-4kmol/[m2·s(kmol/m3)],且知x=0.05时与之平衡的p*=6.7kN/m2。 求:k y、K x、K y。(液相总浓度C 按纯水计为55.6 kmol/m3) j06a10109 有一逆流填料吸收塔,塔径为0.5m,用纯溶剂吸收混合气中的溶质。入塔(惰性/混合??)气体量为100kmol/h,,溶质浓度为0.01(摩尔分率),回收率要求达到90% ,液气比为1.5,平衡关系y=x。试求: ①液体出塔浓度; ②测得气相总体积传质系数K y a=0.10kmol/(m3·s),问该塔填料层高度为多少? (提示:N OG=1/(1-S)ln[(1-S)(y1-m x1)/(y2-m x2)+S]) j06b10011 当系统服从亨利定律时,对同一温度和液相浓度,如果总压增大一倍则与之平衡的气相浓度(或分压)(A) y 增大一倍;(B) p增大一倍;(C) y减小一倍;(D) p减小一倍。 j06b10019 按图示流程画出平衡线与操作线示意图: 1. ⑴低浓度气体吸收 2. ⑴低浓度气体吸收 ⑵部分吸收剂循环⑵气相串联

化工原理考研试题夏清版(可编辑修改word版)

1 4..d 22 简答题 1、一定量的流体在圆形直管内作层流流动,若将其管径增加一倍,问能量损失变为原来 的多少倍?h1=1.l d1 u1 2 . 2g 。d 2= 2d1,u 2= V =1u 1 , 4 2=64 /d 2.u 2 .= 2 1。h2 =2. l d 2 u 2 2 . 2g = 1 h1 。 16 2、何谓气缚现象?如何防止?离心泵只能空转而不能输送液体的现象。离心泵启动前应灌 满液体。 3、何谓沉降?沉降可分为哪几类?何谓重力沉降速度?沉降是指依靠外力的作用,利用分散物质与分散介质的密度差异,使之发生相对运动而分离的过程。沉降可分为重力沉降和离心沉降。颗粒以加速运动的末速度这一不变的速度作匀速沉降运动,这一速度称为重力沉降速度。 4、在列管式换热器中,用饱和蒸汽加热空气,问: (1)传热管的壁温接近于哪一种流体的温度? (2)传热糸数 K 接近于哪一种流体的对流传热膜糸数? (3)那一种流体走管程?那一种流体走管外?为什么? 传热管的壁温接近于蒸汽的温度;传热糸数K 接近于空气的对流传热膜糸数;空气走管内,饱和蒸汽走管外。(蒸汽散热快)。 5、换热器的设计中为何常常采用逆流操作? 因为逆流操作:推动力大,所需的传热面积小;减少载热体的用量。 6、单效减压蒸发操作有何优点? 可以降低溶液的沸点,可以利用低压蒸汽或废气作为加热剂,可以浓缩不耐高温的溶液,可以减少蒸发器的热损失。 1、流体的流动形态有哪几种?如何判断?

流体的流动形态有两种:层流和湍流;用雷诺准数来判断,当R e 2000 ,为层流,

当 R e 4000 为湍流。 2、 何谓层流内层?其厚度受哪些因素影响? 在湍流主体内靠近管壁处始终存在着一层作层流流动 的流体薄层,此薄层称为层流内层。受管径、流速、粘度和密度。 3、 采用多级压缩的优点有哪些? 避免压缩后气体温度过高,提高气缸容积糸数,减小功率,使压缩机结构更为合理。 4、 列管式换热器为何要进行热补偿? 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有区别。若两流体的温度差较大( 500 C 以上)时,由于热应力会引起设备的变形,甚至弯曲和破裂。因此我们要考虑热补偿 5、单层圆筒壁的内、外半径分别为r 1 和 r 2 ,壁表面温度分别为T ' 试写出圆筒任意半径 r 处的温度表达式? 和t ' ,若t ' 〈T ' , ' ' ( ' ) .(T '-t ' ) .ln r 2.L ..(T -t ) ln r 2 r 1 2.L .. T -t ln r r 1 t =T '- r 1 ln r 2 r 1 二:判断题(18 分) 1、在并联管路中,它们的阻力相等,同理在串联管路中,它们的流速也是相等 的。(稳定流动)。 2、 转子流量计可以读出任何流体的流量。 3、用雷诺准数来判断流体的流动形态时,在 SI 制中属层流范围,在 cgs 制中属 湍流范围。 4、粘度是流体的物理性质之一,则雷诺准数也是流体的物理性质之一。离心泵铭牌上的性能参数是指泵扬程最高点下的性能参数。 5、往复式压缩机的工作循环是由吸气、排气、膨胀、压缩四个阶段组成。 Q = =

化工原理下册课后思考题答案

化工原理下册课后思考题答案 第六章传热 问题1.传热过程有哪三种基本方式? 答1.直接接触式、间壁式、蓄热式。 问题2.传热按机理分为哪几种? 答2?传导、对流、热辐射。 问题3.物体的导热系数与哪些主要因素有关 ? 答3.与物态、温度有关。 问题4.流动对传热的贡献主要表现在哪儿 ? 答4.流动流体的载热。 问题5.自然对流中的加热面与冷却面的位置应如何放才有利于充分传热? 答5.加热面在下,制冷面在上。 问题6.液体沸腾的必要条件有哪两个? 答6.过热度、汽化核心。 问题7.工业沸腾装置应在什么沸腾状态下操作?为什么? 答7?核状沸腾状态。以免设备烧毁。 问题8.沸腾给热的强化可以从哪两个方面着手 ? 答8 .改善加热表面,提供更多的汽化核心;沸腾液体加添加剂,降低表面张力问题9.蒸汽冷凝时为什么要定期排放不凝性气体 ? 答9.避免其积累,提高a。 问题10.为什么低温时热辐射往往可以忽略,而高温时热辐射则往往成为主要的传热方式 ? 答10.因Q与温度四次方成正比,它对温度很敏感。 问题11.影响辐射传热的主要因素有哪些? 答11 .温度、黑度、角系数(几何位置)、面积大小、中间介质。 问题12.为什么有相变时的对流给热系数大于无相变时的对流给热系数? 答12.①相变热远大于显热;②沸腾时汽泡搅动;蒸汽冷凝时液膜很薄。 问题13.有两把外形相同的茶壶,一把为陶瓷的,一把为银制的。将刚烧开的水同时充满两壶。实测发现,陶壶内的水温下降比银壶中的快,这是为什么? 答13.陶瓷壶的黑度大,辐射散热快;银壶的黑度小,辐射散热慢。 问题14.若串联传热过程中存在某个控制步骤,其含义是什么? 答14.该步骤阻力远大于其他各步骤的阻力之和,传热速率由该步骤所决定。 问题15.传热基本方程中,推导得出对数平均推动力的前提条件有哪些 ? 答15. K、qm1Cp1 qm2Cp胡程不变;管、壳程均为单程。 问题16. 一列管换热器,油走管程并达到充分湍流。用133C的饱和蒸汽可将油从40C加热至80C。若现欲增加50%勺油处理量, 有人建议采用并联或串联同样一台换热器的方法,以保持油的出口温度不低于80C,这个方案是否可行?

天津大学版化工原理上下册习题答案(2005夏清)

化工原理课后习题解答 (夏清、陈常贵主编.化工原理.天津大学出版社,2005.) 第一章流体流动 (3) 第二章流体输送机械 (23) 第三章机械分离和固体流态化 (32) 第四章传热 (42) 第五章蒸馏 (56) 第六章吸收 (65) 第七章干燥 (70)

第一章流体流动 1.某设备上真空表的读数为13.3×103 Pa,试计算设备内的绝对 压强与表压强。已知该地区大气压强为98.7×103 Pa。 解:由绝对压强= 大气压强–真空度得到: 设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa =8.54×103 Pa 设备内的表压强P表= -真空度= - 13.3×103 Pa 2.在本题附图所示的储油罐中盛有密度为960 ㎏/?的油品, 油面高于罐底 6.9 m,油面上方为常压。在罐侧壁的下部有一直 径为760 mm 的圆孔,其中心距罐底800 mm,孔盖用14mm 的钢制螺钉紧固。若螺钉材料的工作应力取为39.23×106 Pa , 问至少需要几个螺钉? 分析:罐底产生的压力不能超过螺钉的工作应力 即 P油≤ σ螺 解:P螺= ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762 150.307×103 N σ螺= 39.03×103×3.14×0.0142×n P油≤ σ螺得n ≥ 6.23 取n min= 7

至少需要7个螺钉 3.某流化床反应器上装有两个U 型管 压差计,如本题附图所示。测得R1 = 400 mm ,R2 = 50 mm,指示液为水银。 为防止水银蒸汽向空气中扩散,于右侧的 U 型管与大气连通的玻璃管内灌入一段 水,其高度R3 = 50 mm。试求A﹑B两处 的表压强。 分析:根据静力学基本原则,对于右边的U管压差计,a–a′为等压面,对于左边的压差计,b–b′为另一等压面,分别列出两个等压面处的静力学基本方程求解。 解:设空气的密度为ρg,其他数据如图所示 a–a′处P A+ ρg gh1= ρ水gR3+ ρ水银ɡR2 由于空气的密度相对于水和水银来说很小可以忽略不记 即:P A = 1.0 ×103×9.81×0.05 + 13.6×103×9.81×0.05 = 7.16×103 Pa b-b′处P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1 P B = 13.6×103×9.81×0.4 + 7.16×103 =6.05×103Pa

化工原理第二版贾绍义_夏清版课后习题答案天津大学

化工原理课后习题答案 (夏清、陈常贵主编.化工原理.天津大学出版 社,2005.) 第一章流体流动 2.在本题附图所示的储油罐中盛有密度为 960 ㎏/?的油品,油面高于罐底 6.9 m,油面上方为常压。在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底800 mm,孔盖用14mm的钢制螺钉紧固。若螺钉材料的工作应力取为39.23×106Pa , 问至少需要几个螺钉? 分析:罐底产生的压力不能超过螺钉的工作应力即 P油≤σ螺 解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762 150.307×103 N σ螺 = 39.03×103×3.14×0.0142×n P油≤σ螺得 n ≥ 6.23 取 n min= 7 至少需要7个螺钉 3.某流化床反应器上装有两个U 型管压差计,如本题附 4. 本题附图为远距离 测量控制装置,用以测 定分相槽内煤油和水的

两相界面位置。已知两吹气管出口的距离H = 1m,U管压差计的指示液为水银,煤 油的密度为820Kg/?。试求当压差计读数R=68mm时,相界面与油层的吹气管出口 距离h。 分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1′和4-4′为等压面,2-2′和3-3′为等压面,且1-1′和2-2′的压强相等。根据静力学基本方程列出一个方程组求解 解:设插入油层气管的管口距油面高Δh 在1-1′与2-2′截面之间 P1 = P2 + ρ水银gR ∵P1 = P4,P2 = P3 且P3= ρ煤油gΔh , P4 = ρ水g(H-h)+ ρ煤油g(Δh + h) 联立这几个方程得到 ρ水银gR = ρ水g(H-h)+ ρ煤油g(Δh + h)-ρ煤油gΔh 即 ρ水银gR =ρ水gH + ρ煤油gh -ρ水gh 带入数据 1.03×103×1 - 13.6×103×0.068 = h(1.0×103-0.82×103) h= 0.418m 5.用本题附图中串联U管压差计测量蒸汽锅炉水面上方的蒸气压,U管压差计的 指示液为水银,两U管间的连接管内充满水。以知水银面与基准面的垂直距离分 别为:h1﹦2.3m,h2=1.2m,h3=2.5m,h4=1.4m。锅中水面与基准面之间的垂直 距离h5=3m。大气压强pa= 99.3×103pa。 试求锅炉上方水蒸气的压强P。 分析:首先选取合适的截面用以连接两个U管,本题 应选取如图所示的1-1截面,再选取等压面,最后根 据静力学基本原理列出方程,求解 解:设1-1截面处的压强为P1 对左边的U管取a-a等压面,由静力学基本方程 P0 + ρ水g(h5-h4) = P1 + ρ水银g(h3-h4) 代入数据 P0 + 1.0×103×9.81×(3-1.4)

化工原理第二版(下册)夏清贾绍义课后习题解答带图复习课程

化工原理第二版(下册)夏清贾绍义课后习题 解答带图

化工原理第二版夏清,贾绍义课后习题解答 (夏清、贾绍义主编.化工原理第二版(下册).天津大学出版)社,2011.8.) 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B*,P A*,由于总压

P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一组绘平衡t-x 图数据。 以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa下 该溶液的平衡数据。 温度 C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C5H12(A)和C6H14(B)的饱和蒸汽压 以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A*= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A *(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B *(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250

化工原理答案下册.docx

化工原理第二版夏清,贾绍义课后习题解答 (夏清、贾绍义主编 . 化工原理第二版(下册). 天津 大学出版)社 ,. ) 第1 章蒸馏 1.已知含苯(摩尔分率)的苯 - 甲苯混合液,若外压为 99kPa,试求该溶液的饱 和温度。苯和甲苯的饱和蒸汽压数据见例1-1 附表。 t (℃)859095100105 x 解:利用拉乌尔定律计算气液平衡数据 查例 1-1 附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压**,由 P,P B A 于总压 P = 99kPa ,则由 x = (P-P *** 可得出液相组成,这样就可以得到一B )/(P A-P B ) 组绘平衡 t-x 图数据。 以 t = ℃为例x = (99-40 ) / () = 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当 x = 时,相应的温度为92℃ 2. 正戊烷( C5 H12)和正己烷( C6H14)的饱和蒸汽压数据列于本题附表,试求P =下该溶液的平衡数据。 温度 C 5H12 K C 6H14 饱和蒸汽压 (kPa) 解:根据附表数据得出相同温度下C5H12( A)和 C6H14(B)的饱和蒸汽压

* 以 t =℃时为例,当t =℃时P B= * 查得 P A = 得到其他温度下A?B 的饱和蒸汽压如下表t( ℃) 248 251279289 P A*(kPa) 利用拉乌尔定律计算平衡数据 平衡液相组成以℃时为例 当 t= ℃时 x = (P-P *** B )/(P A-P B ) =() / () = 1 平衡气相组成以℃为例 * 当 t= ℃时 y = P A x/P =× 1/ = 1 同理得出其他温度下平衡气液相组成列表如下 t( ℃ )279289 x10 y10 根据平衡数据绘出t-x-y曲线 3.利用习题 2 的数据,计算:⑴相对挥发度;⑵在平均相对挥发度下的 x-y 数据,并与习题 2 的结果相比较。 解:①计算平均相对挥发度 理想溶液相对挥发度α = P A*/P B*计算出各温度下的相对挥发度: t(℃) α-------- 取℃和279℃时的α值做平 均 α m=( +) /2 = ②按习题 2 的x 数据计算平衡气相组成y 的值 当x =时,

化工原理下册答案

化工原理下册答案 Prepared on 22 November 2020

第 五章 蒸馏 一、选择与填空 1、精馏操作的依据是 混合液中各组分挥发度的差异 。实现精馏操作的必要条件是 塔顶液相回流 和 塔底上升蒸汽 。 2、汽液两相呈平衡状态时,汽液两相温度_相同_,但液相组成_小于_汽相组成。 3、用相对挥发度α表达的汽液平衡方程可写为1(1)x y x αα= +-。根据α的大小,可用来 判定用蒸馏方法分离的难易程度 ,若α=1则表示 不能用普通的蒸馏方法分离该混合液 。 4、在精馏操作中,若降低操作压强,则溶液的相对挥发度 增加 ,塔顶温度 降低 ,塔釜温度 降低 ,从平衡角度分析对该分离过程 有利 。 5、某二元物系,相对挥发度α=3,在全回流条件下进行精馏操作,对第n 、n+1两层理论板,已知 y n =,则 y n+1=。全回流通常适用于 开工阶段 或 实验研究 。 6、精馏和蒸馏的区别在于 精馏必须引入回流;平衡蒸馏和简单蒸馏的主要区别在于前者为连续的稳态过程而后者是间歇的非稳态过程 。 7、精馏塔的塔顶温度总是低于塔底温度,其原因是 塔底压强高 和 塔底难挥发组分含量高 。 8、在总压为、温度为85℃下,苯和甲苯的饱和蒸汽压分别为p A 0=,p B 0=46 kPa ,则相对挥发度α= ,平衡时液相组成x A = ,气相组成y A = 。 9、某精馏塔的精馏段操作线方程为y=+,则该精馏塔的操作回流比为,馏出液组成为。 10、最小回流比的定义是 在特定分离任务下理论板数为无限多时的回流比 ,适宜回流比通常取 ~ R min

11、精馏塔进料可能有 5 种不同的热状况,当进料为气液混合物且气液摩尔比为2:3时,则进料热状况q 值为 。 注:23() 550.6V V L V F V L V L I I I I I q I I I I -+-===-- 12、在塔的精馏段测得 x D =、x 2=、x 3=(均为摩尔分率),已知R=3 ,α=,则第三层塔板的气相默弗里效率 %_。 注:1 * 1 n n MV n n y y E y y ++-= - 13、在精馏塔设计中,若F 、x F 、q 、D 保持不变,若增加回流比R ,则x D 增加, x W 减小 ,V 增加,L/V 增加 。 14、在精馏塔设计中,若F 、x F 、x D 、x W 及R 一定,进料由原来的饱和蒸气改为饱和液体,则所需理论板数N T 减小 。精馏段上升蒸气量V 不变 、下降液体量L 不变 ;提馏段上升蒸气量V ’ 增加 、下降液体量L ’ 增加 。 15、操作中的精馏塔,增大回流比,其他操作条件不变,则精馏段液气比L/V 增大 ,提馏段液气比L ’/V ’ 减小 ,x D 增加 , x W 减小 。 16、操作中的精馏塔,保持F 、x F 、q 、V 不变,增加W ,则x D 增加 , x W 增加,L/V_增加_。 17、在连续精馏塔中,若x F 、x D 、R 、q 、D/F 相同,塔釜由直接蒸汽加热改为间接蒸汽加热,则所需的理论板数N T 减小 ,x W 增加。 18、恒沸精馏与萃取精馏的共同点是 都需要加入某种添加剂 。两者的主要区别是 恒沸精馏时添加剂需与被分离组分形成恒沸物 和 恒沸精馏的添加剂气化后由塔顶排出,耗能大 。

版化工原理考研试题夏清版.doc

简答题 1、一定量的流体在圆形直管内作层流流动,若将其管径增加一倍,问能量损 失变为原来 的多少倍? h. l u 2 。 d 2d , u V 1 , . 1 . .d 2 2 u 1 1 d 1 2g 2 1 2 1 4 1 4 2 d 2.u 2 . 2 1 。 h l u 2 2 1 。 64 / 2 . . 2g h 2 d 2 16 1 2、 何谓气缚现象?如何防止? 离心泵只能空转而不能输送液体的现象。 离心泵启动前应灌 满液体。 3、何谓沉降?沉降可分为哪几类?何谓重力沉降速度? 沉降是指依靠外力的作用,利用分 散物质与分散介质的密度差异, 使之发生相对运动而分离的过程。 沉降可分为重力沉降和离 心沉降。 颗粒以加速运动的末速度这一不变的速度作匀速沉降运动, 这一速度称为重力沉降 速度。 4、 在列管式换热器中,用饱和蒸汽加热空气,问: ( 1) 传热管的壁温接近于哪一种流体的温度? ( 2) 传热糸数 K 接近于哪一种流体的对流传热膜糸数? ( 3) 那一种流体走管程?那一种流体走管外?为什么? 传热管的壁温接近于蒸汽的温度;传热糸数 K 接近于空气的对流传热膜糸数;空气走管内,饱和蒸汽走管外。 (蒸汽散热快) 。 5 、换热器的设计中为何常常采用逆流操作? 因为逆流操作:推动力大,所需的传热面积小;减少载热体的用量。 6 、单效减压蒸发操作有何优点? 可以降低溶液的沸点, 可以利用低压蒸汽或废气作为加热剂, 可以浓缩不耐高温的溶液,可以减少蒸发器的热损失。 1、 流体的流动形态有哪几种?如何判断? 流体的流动形态有两种:层流和湍流;用雷诺准数来判断,当 R e 2000 ,为层流, 当 R e 4000 为湍流。 2、 何谓层流内层?其厚度受哪些因素影响? 在湍流主体内靠近管壁处始终存在着一层作层流流动 的流体薄层,此薄层称为层流内层。受管径、流速、粘度和密度。 3、 采用多级压缩的优点有哪些? 避免压缩后气体温度过高,提高气缸容积糸数,减小功率,使压缩机结构更为合理。 4、 列管式换热器为何要进行热补偿? 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的 热膨胀程度也有区别。若两流体的温度差较大( 50 0 C 以上)时,由于热应力会引起设 备的变形,甚至弯曲和破裂。因此我们要考虑热补偿

最新化工原理第二版上册答案

绪 论 1. 从基本单位换算入手,将下列物理量的单位换算为SI 单位。 (1)水的黏度μ=0.00856 g/(cm·s) (2)密度ρ=138.6 kgf ?s 2/m 4 (3)某物质的比热容C P =0.24 BTU/(lb·℉) (4)传质系数K G =34.2 kmol/(m 2?h ?atm) (5)表面张力σ=74 dyn/cm (6)导热系数λ=1 kcal/(m ?h ?℃) 解:本题为物理量的单位换算。 (1)水的黏度 基本物理量的换算关系为 1 kg=1000 g ,1 m=100 cm 则 )s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.04 4??=??=??? ?? ??????????????=--μ (2)密度 基本物理量的换算关系为 1 kgf=9.81 N ,1 N=1 kg ?m/s 2 则 3 242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=?? ??????????????????=ρ (3)从附录二查出有关基本物理量的换算关系为 1 BTU=1.055 kJ ,l b=0.4536 kg o o 51F C 9 = 则 ()C kg kJ 005.1C 5F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0??=?? ? ????????????????????????=p c (4)传质系数 基本物理量的换算关系为 1 h=3600 s ,1 atm=101.33 kPa 则 ()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.342 52G ???=? ? ??????????????????=-K (5)表面张力 基本物理量的换算关系为 1 dyn=1×10–5 N 1 m=100 cm 则 m N 104.71m 100cm 1dyn N 101cm dyn 742 5 --?=????? ??????????????=σ (6)导热系数 基本物理量的换算关系为 1 kcal=4.1868×103 J ,1 h=3600 s 则

相关主题
文本预览
相关文档 最新文档