当前位置:文档之家› 热能与动力锅炉复习重点解读

热能与动力锅炉复习重点解读

热能与动力锅炉复习重点解读
热能与动力锅炉复习重点解读

一、名次解释

1、锅炉容量:一般指锅炉在额定蒸汽参数、额定给水温度和使用设计燃料时每小时的最大连续蒸发量

2、煤的可磨性指数:在风干状态下,将等量的标准煤和被测试煤由相同的出事粒度磨成同一规格的细煤粉时所消耗的能量之比。

3、过量空气系数:实际供给空气量与理论空气量之比。

4、煤粉细度:表示煤粉的粗细程度,是煤粉的重要特性。

5、直吹式系统: 煤粉经磨煤机磨成煤粉后直接吹入炉膛燃烧;因此每台锅炉所有运行磨煤机制粉量总和,在任何时候均等于锅炉煤耗量,即制粉量随锅炉负荷的变化而变化

6、中间储仓式制粉系统: 是将磨好的煤粉先储存在煤粉仓中,然后再根据锅炉运行负荷的需要,从煤粉仓经给粉机送人炉膛燃烧。

7、汽温特性:过热器和再热器出口气温随锅炉负荷变化的关系特性

8、热偏差:受热面中每根管子的结构、热负荷和工质流量的大小不完全一致,工质焓增也就不同,这种现象叫热偏差

9、酸露点:烟气中的硫酸蒸汽开始凝结的温度

10、水露点:开始从气相中分离出第一批水液滴的温度。

11、运动压头:自然循环回路中的循环推动力

12、有效压头:运动压头扣除上升管系统的阻力,汽水分离装置的阻力之后的剩余部分

13、质量流速:单位时间流经单位流通截面的工质质量

14、循环流速:循环回路中水在饱和温度下按上升管入口截面计算的水流速度

15、容积含汽率:流经管子某一截面的蒸汽容积流量与汽水混合物总容积流量之比

16、循环倍率K:循环回路中进入上升管的循环水量G与上升管出口的蒸汽量D之比

17、质量含汽率:中在汽水混合物中流过蒸汽的质量流量D与流过工质总的质量流量G之比

18、自补偿能力:在上升管含汽率小于界限含汽率范围内,自然循环回路上升管受热增强时,循环水量与循环流速也随之增大,这种特性

19、循环停滞:当循环流速低到进入管中循环水量G等于该管的产气量D时。

20、循环倒流:引入汽包水空间的上升管或具有上下联箱的水冷壁管组由于受热较弱以至其重位压差大于回路工作压差,此时上升管内工质是自上向下流动,成为受热的下降管。

21、机械性携带:蒸汽通过携带含盐水滴而污染

22、选择性携带:蒸汽通过直接溶盐而污染

23、连续排污:连续不断地从锅炉含盐浓度最大的接近汽包蒸发表面处排出一部分锅水,并补充较清洁给水,使锅炉含盐浓度不至过高,并维持锅水有一定碱度

24、定期排污:间断地将沉积在锅炉蒸发系统较低处的不溶性沉渣和铁锈等杂质排出

25、低循环倍率锅炉:循环倍率K=1.5左右的控制循环锅炉

26、容积热强度:指锅炉输入热量占炉膛容积的比值

27、截面热强度:指锅炉输入热量占炉膛截面积的比值

1,Fw——2020t/h亚临界压力自然循环锅炉的过热器和再热器系统蒸汽流程

答:过热器系统:饱和蒸汽由汽包引出,送到炉顶管和包覆过热器,由包覆过热器引出至低温过热器入口联箱2,经低温对流过热器6至出口联箱7,由两根导管引入前屏10,再由前屏出口联箱引出送入末级高温对流过热器9,。前屏过热器布置在燃烧器中心线以上下62m

处,以确保火焰不会冲刷屏式过热器,还使炉膛出口烟气温度控制在110度以下。

再热器系统:再热器为单级布置分水平和竖直两部分,且没有中间联箱。吸收烟气的对流传热,低温段5为卧室,与低温级过热器并列布置在尾部烟道的两个烟道内,低温段再热器布置在旁路烟道的前侧,高温段过热器布置在水平烟道高温过热器的后部。

过热蒸汽温度是靠喷水减温来调节的,再热蒸汽温度是靠烟气调节挡板来调整。

2,HG--1021t/h亚临界自然循环锅炉的过热器再热器系统

答:过热器系统:饱和蒸汽由汽包引出,送到炉顶管和包覆过热器,由包覆过热器引出至低温过热器13,经低温对流过热器出口联箱引入前屏3,再由前屏出口联箱引至后屏过热器5,最后由后屏过热器出口联箱引出至末级高温对流过热器9,完成过热蒸汽加热过程。

过热蒸汽温度主要靠喷水减温来进行调节,由于过热器是采用辐射,半辐射和对流串级布置,汽温特性比较平稳,故仅设一级喷水减温器,喷水减温器布置在低温过热器出口至前屏过热器入口的两根导管上。

再热器系统:再热器也采用辐射,半辐射和串级布置。汽轮机高压缸的排气引到壁式再热器入口联箱,再由壁式再热器1引至屏式再热器6和高温对流再热器7.

再热蒸汽温度是依靠燃烧器摆角来调节的,再热器布置在烟气高温区。

3、超临界压力锅炉的特点及在我国的发展。

特点:(1)机组容量大,蒸汽参数提高,可使电厂建设速度加快,机组热效率提高,热耗下降(2)压力提高,蒸汽比体积减小,蒸汽管道的直径减小(3)提高蒸汽压力后,对同样功率的机组,可以减小蒸汽用量(4)在超临界压力范围内,水在加热过程中呈单相流变化,比体积逐渐增大而成为过热蒸汽(5)在一定条件下,超临界压力直流锅炉水冷壁管内工质流动也存在水动力不稳定性

在我国发展:火力发电机组向高参数大容量方向发展,是各国一致的趋势,这可加快发电厂建设的速度和提高电厂的经济性。超临界机组优势是能够大幅度提高循环热效率,降低发电煤耗,但相应地提高对金属材料的要求和金属部件焊接工艺水平。目前,世界上超临界参数机组的蒸汽压力已经提高到25~31MPa。蒸汽温度控制在540~600℃。

中国从20世纪90年代以来开始引进超临界压力机组,如上海石洞口第二电厂引进的600MW超临界压力机组,南京热电厂、天津盘山电厂内蒙古伊敏电厂和辽宁绥中电厂引进的300、500MW和800MW的超临界压力机组相继投入运行。标志着中国电力行业开始跨入世界先进技术水平的行列,并为实现超临界压力机组的国产化提供了实践条件。

4、锅炉的各项热损失。

(1)机械不完全燃烧热损失:影响因素:燃烧方式、燃料性质、煤粉细度、过量空气系数、炉膛结构以及运行工况(2)化学不完全燃烧热损失:影响因素:炉内过量空气系数、燃料挥发分量、炉膛温度以及炉内空气动力工况等(3)排烟热损失:影响排烟热损失的主要因素是排烟焓的大小,而排烟焓又取决与排烟容积和排烟温度。(4)散热损失:影响因素:锅炉容量、锅炉负荷、锅炉外表面积、水冷壁和炉墙结构、周围空气温度等。(5)灰渣物理热损失。影响因素:燃料中灰含量的多少、炉渣中纯灰量占总灰量的份额以及炉渣温度的高低。

5、影响水动力多值性的主要因素?

1、工作压力的影响:锅炉蒸发受热面的工作压力高时,蒸汽与水的密度或比体积的差减小,则在流量G增加时工质平均比体积V的减少要少,水动力特性便趋向单值。锅炉压力越高,水动力特性越稳定。

2、入口焓值的影响:管圈进口工质的状态越接近饱和水,即过焓越小,或管圈进口工质的温度越接近于对压管圈进口压力下的饱和温度,则水动力特性越趋向稳

定,管圈进口工质焓值越高,水动力特性越趋向稳定。3、管圈热负荷和锅炉负荷的影响:当管圈热负荷Q增加时,水动力特性趋向于稳定,在额力和低负荷运行时,若高压加热器未投入运行给水焓较大,则将对水动力特性带来不利影响。

6、消除或减少水动力不稳定的措施:1、提高工作压力;引起强制流动水动力不稳定的根本原因是蒸汽与水的比体积有差别,随着压力提高,蒸汽与水的比体积差将减小,水动力特性趋于稳定2、适当减小蒸发区段进口税与欠焓;当管圈进口水的欠焓为零时,管圈中就没有加压区段,在一定热负荷下管圈的蒸汽产量不随工质流量而变化,而流动阻力总是随工质流量增加而增加,所以欠焓越小,水动力特性月趋向稳定,但进口水的欠焓过小也不合适3、增加加热区段阻力;方法是在管圈进口处加装节流圈4、加装呼吸联箱。各管部的压力区域均匀,减小流动不稳定性。

7、防止脉动产生的措施:

1、提高质量流苏;2增大加热段与蒸发段的阻力比;3、提高工作压力;

4、锅炉启停和运行方面的措施;直流锅炉在运行时应注意保持燃烧工况的稳定性和炉内温度场的尽可能均匀,以减小各并列管的受热不均

5、锅炉炉设计方面的措施。在蒸发受热面结构上应使并列管圈的长度,直径等几何尺寸尽量相同、保证管圈进口有足够的质量流速;加热区段采用较小直径的管子,以提高该区段流动阻力,蒸发区段装中间联箱及呼吸联箱,管圈进口装节流圈。

8、影响锅炉布置的主要因素:1、蒸汽参数;低参数锅炉的过热器,省煤器受热面积小,蒸发受热面积大,随着蒸汽参数提高,过热器和省煤器受热面积增大,蒸发受热面积减小2、锅炉容量;容量增大,炉膛容积和炉膛内表面积也随之增大3、燃料性质;燃料水分,灰分,燃料挥发分4热空气温度对省煤器和空气预热器布置的影响。低于300~350,度时,空气预热器和省煤器可以采用单级布置方式高于此温度时采用两级布置方式。

9、高灰分水分对燃料特性的影响

灰分多:(1)理论燃烧温度降低,而且煤粒表面往往形成灰分外壳,妨碍煤中可燃质和氧气接触,使煤不宜燃尽,增加机械不完全燃烧热损失。

(2)使炉膛温度下降,燃烧不稳定,也增加不完全燃烧热损失。

(3)灰粒随烟气流过受热面时,如果烟速高,会磨损受热面,如果烟速低,会形成受热面积灰,降低传热效果,并使排烟温度升高,增加排烟热损失,降低锅炉效率。

(4)会产生炉内结渣,同时会腐蚀金属。

(5)增加煤粉制备的能量消耗。

水分多:①增加着火热,使着火推迟

②降低炉内温度,使着火困难,燃烧也不完全,机械和化学不完全燃烧热损失会增加,煤中水分会吸热变成水蒸气并随同烟气排出炉外,增加烟气量而使排烟热损失加大降低锅炉效率同时使引风机电耗增大,也为低温受热面的积分腐蚀创造了条件。

③原煤粉水分过多,会给煤粉制备增加困难,也会造成原煤仓,给煤机及落煤管中的黏结堵塞以及给煤机出力下降等不良后果。

10、蒸发设备的构成:

锅炉中吸收火焰和烟气的热量使水能转化为饱和蒸汽的受热面称为蒸发受热面。自然循环锅炉的蒸发设备过汽包、下降管、水冷壁、联箱、及连接管道组成。

11、汽包的作用?

1、与受热面管道连接:汽包是汽包锅炉内工质加热、蒸发、过热一个过程的连接中心,也是一个过程的分界点;

2、增加锅炉水位平衡和蓄热能力:汽包中存有一定小量,因而有一

定蓄热能力和水位平衡能力。在锅炉符合变化时起到了蓄热器和储水器作用,可以延缓起亚和汽包水位的变化速度;3、汽水分离和改善蒸汽品质:由水冷壁进入汽包的工质是汽水混合物,利用汽包的内部的蒸汽空间和汽水分离元件对其进行汽水分离,使离开汽包的整个蒸汽中水分减少到最低值;4、装有安全附件,保证了锅炉安全。汽包上装有许多温度测点,压力表,水位计安全门等附近,保证了锅炉安全工作。

12、蒸汽温度的调节方法:(1)、烟气侧调温方法?

我国大型锅炉主要采用以下三种方法:1、烟气挡板;2、摆动燃烧器;3、

烟气再循环。主要方法有改变前期流量和改变烟气温度两种,两种方法常用作粗调节,多用于调节在热蒸汽温度。

(2)、蒸汽侧调温方法?

1、面式减温器

2、喷水减温器

3、汽-汽热交换器。前两种方法主要用于调节过热蒸汽温度,后一种方法用于调节再热汽温。

13、煤的燃烧过程:

三个阶段:着火前的准备阶段,燃烧阶段,燃尽阶段

炭粒的燃烧:一次反应:碳粒表面,周围环境氧想碳粒表面扩散生成CO和CO2

二次反应:CO向外扩散生成CO2;CO2向炭粒扩散时高温下生成CO

14、不同温度条件下,由于化学反应条件与气体扩散条件的影响不同,燃烧过程三种区域:1、动力燃烧区:燃烧速度主要决定于化学反应动力因素,与氧的扩散速度关系不大,提高温度是强化动力燃烧工况的有效措施。2、扩散燃烧区:改善扩散混合条件,加大气流与炭粒的相对速度,减小炭粒直径。3、过度燃烧区:提高炉膛温度和氧的扩散速度,强化扩散。

15、结渣的危害:1、传热热阻增加,传热减弱,工质吸热量减少,锅炉排烟温度升高,排烟热损失增加,锅炉效率下降,结渣使锅炉运行的经济性明显降低。2、结渣时,为了保持锅炉的出力,必须增大风量。3、炉膛受热面结渣后,炉膛出口烟温升高,导致过热气温升高,加之结渣造成的热偏差,易引起过热器超温损坏。4、燃烧器喷口结渣,改变了燃烧器出口气流结构,从而使炉内空气动力工况受到破坏,影响燃烧过程的进行。

5、水冷壁结渣,会使其各部分受热不均,对自然循环锅炉的水循环安全性和控制流动锅炉水冷壁的热偏差带来不利影响,可能导致水冷壁管破坏。

6、炉膛上部积累的焦块掉落时可能会砸坏冷灰斗的水冷壁管。

7、冷灰斗处结渣严重时,会使冷灰斗出口逐渐堵塞,无法排渣,锅炉无法继续运行。

16、省煤器的类型:省煤器按出口水温可分为沸腾式省煤器和非沸腾式省煤器,沸腾式省煤器是指出口水温达到饱和温度,并且还有部分水蒸发气化的省煤器。非沸腾式省煤器的出口水温低于该压力下的沸点即未达到饱和状态。中压锅炉多采用沸腾式省煤器,这是由于中压锅炉水的压力低,气化潜热大,加热水的热量小,蒸发所需热量大,故需把一部分水的蒸发放到省煤气中进行,以防止炉膛温度过低引起燃烧不稳定和炉膛出口烟温过低,并造成过热器等受热面金属耗量增加,此外也有助于发挥省煤器的作用。高压以上的锅炉多采用非沸腾式省煤器,因为随着压力提高,水的气化热相应减小,加热水的热量相应增大,蒸发所需热量减少,故需把水的部分加热过程转移到炉内水冷壁管中进行,以防止炉膛温度和炉膛出口烟温过高,引起炉内及炉膛出口受热面结焦。17、影响煤粉气流着火的主要因素:1、燃料性质:燃料性质中对着火过程影响最大的是挥发分含量,挥发分降低时,煤粉气流的着火温度显著提高着火热也随之增大,原煤水分增大时,着火热也随之增大,煤粉越细着火越容易。2、一次风温:提高一次风温可以减少着火热,从而加快着火。3、一次风量:一次风量越大,着火热增加的越多,将使着火推迟。4、一次风速:过高时通过单位截面管道堵塞等故障,5、炉内散热条件:

减少颅内散热,有利于着火。6、燃烧器结构特性:7、锅炉负荷降低对燃烧气流着火不利。

18、为什么q A随着锅炉容量增加而增加,q v随着锅炉容量增加而减小?

q k变化快。

19、煤粉燃烧器的形式有几种,分别说明。

根据燃烧器出口气流特征分为:直流、旋流燃烧器两大类。

直流燃烧器:出口气流为直流、射流或直流射流组的燃烧器。

旋流燃烧器:出口气流包含有旋转射流的燃烧器,此时燃烧器的出口气流可以使几个同轴旋转射流的组合,也可以是旋转射流和直流射流的组合。

20、燃烧完全的条件

要组织良好的燃烧过程,其标志就是尽量接近完全燃烧,也就是锅炉内不接扎的情况下,燃烧速度快而且燃烧完全,达到最高的燃烧效率。1、供应充足且有合适的空气量:2、适当提高炉膛温度;3、空气和煤粉的良好扰动和混合;4、保证足够的停留时间。

21、煤中V、M、A、C对燃烧的影响;

1、挥发分V :

V含量越多(C含量越少),V中含O量亦多,其中的可燃成分相应减少,这时,V的热值低

V含量越多,煤的着火温度低,易着火燃烧

V 多,V挥发使煤的孔隙多,反应表面积大,反应速度加快

V 多,煤中难燃的固定碳含量便少,煤易于燃尽

V 多,V着火燃烧造成高温,有利于碳的着火、燃烧

2、水分M、灰分A:

M、A 高,煤中可燃成分相对减少,煤的热值低

M、A 高,M 蒸发、A熔融均要吸热,炉膛温度降低

M、A 高,增加着火热或包裹碳粒,使煤着火、燃烧与燃尽困难;

M、A 高,q2、q3、q4、q6 增加,效率下降

M、A 高,过热器易超温

M、A 高,受热面腐蚀、堵灰、结渣及磨损加重

M、A 高,煤粉制备困难或增加能耗

3、含碳量C :

C 高,热值高;但不易着火、燃烧

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

浅谈电厂热能动力锅炉燃料

浅谈电厂热能动力锅炉燃料 发表时间:2019-04-01T15:04:58.737Z 来源:《电力设备》2018年第30期作者:焦建宇 [导读] 摘要:热能动力锅炉是电厂的重要设备,其关系到电厂的运行,但一般的锅炉会排放大量污染物,消耗过多的,能源,而且存在一些缺陷和问题。 (山西漳电大唐塔山发电有限公司山西大同 037003) 摘要:热能动力锅炉是电厂的重要设备,其关系到电厂的运行,但一般的锅炉会排放大量污染物,消耗过多的,能源,而且存在一些缺陷和问题。对热能动力锅炉进行合理使用,则能起到节约资源、保护环境的作用。这非常符合如今大力提倡的节能减排理念,同时也促进了可持续发展。为此,笔者针对电厂热能动力锅炉燃料进行了分析,希望能为广大的相关工作者提供一些参考依据。 关键词:电厂;热能动力锅炉;燃料;分析 如今,工业锅炉在国内得到了大量的使用,同时其也是电力行业运行过程中的重要基础,但其属于城市环境的主要污染源。通过对电力热能动力锅炉进行使用,能提高工作的效率和效果,减少污染。在展开相关工作时,需要针对工业锅炉的燃烧原理进行研究,这样才能解决其中存在的问题,并且发挥出更好的作用。 一、电厂热能动力锅炉的情况 (一)热能动力锅炉 热能动力锅炉在运行时,通过燃料的燃烧释放出热能。这些热能拥有相当大的规模,然后热能会传递给另外的物质,比如水。水进入了锅炉之后,锅炉会通过自身的受热面,促使吸收到的热量传递给水[1]。水的温度越来越高,甚至和压力达到同样的水平,这个时候便可引入水蒸气。在燃烧设备的影响下,热能动力锅炉的燃料能进行完全的燃烧,同时持续不断的释放热量,产生高温烟气。因为热传播的原因,这些高温烟气促使热量传递得以实现。然后烟气温度逐渐降低,通过烟囱排出去。 (二)燃料 燃料主要分为两种,一种是固体类燃料,一种是气体类燃料。在电厂生产的过程中,锅炉的燃料会充分燃烧,将产生的化学能热能传递给水。这样一来,温度会逐渐升高,并形成蒸汽,促使蒸汽和压力达到同样的水平。在该阶段,燃料的化学能转变为蒸汽的热能,同时在汽轮机中将热能变成机械能,机械能变成热能,不断循环。电站锅炉其实也属于一种换热器装置,其获得的能量来自于各个方面,其中包括了燃油、燃煤等。然而锅炉燃料和其他燃料不同,其主要将煤作为燃料,煤也属于固体类燃料。在热能动力锅炉中,通过燃料的燃烧来释放热量,从而达到热媒水加热的要求。一旦水达到一定的温度,压力就会上升到一定程度。在这个时候,电厂热能动力锅炉会处于良好的运行状态。不仅如此,还有燃油、燃气锅炉两种,第一种燃油锅炉的燃料非常多,其包括了柴油燃料、重油燃料等。分析燃气锅炉的情况,发现其燃料主要包括了液化石油气体、页岩气、天然气等。如今,国内大多数火力发电厂在发展的过程中,都会受到各种不同因素的影响。电厂热能动力锅炉的燃料,则大多数都是煤炭。煤炭中含有很多的氧、氢、碳、硫元素,其中最多是碳元素,大概占了48%左右。剩下的氧、碳、硫均能达到燃烧的要求,从而促进燃烧的进行[2]。 在电厂热能动力锅炉中,需要保持良好的通风状态,同时为燃料提供足够多的氧气。只有这样,才能促进燃料的充分燃烧。分析电厂热能动力锅炉的燃烧原理,发现其中所释放的碳元素能为燃烧提供条件。 二、燃料燃烧的特点 因为燃料的性质不一样,所以燃烧的过程也完全不同。如果燃料属于煤炭,那么着火温度比本来温度的更高,从而可进入稳定的燃烧状态。其中,气体燃料对燃烧方式有着非常高的要求。分析长焰燃烧,发现其必须依靠锅炉烧嘴的气体进行扩散,使得空气产生混合效应,从而更好的进行燃烧。但短焰燃烧则完全不同,其在燃烧初期会和空气进行混合,喷出后再继续燃烧。在这个过程中,一些气体会和二次气体结合。不仅如此,还有一种无焰燃烧。这种燃烧方式在燃料进入锅炉烧嘴之前便和空气进行混合,从而形成一定的反应。在这样的情况下,煤灰会形成燃料反应,所以完全看不到火焰。固体燃烧在锅炉中燃烧的方法有很多种,其中包括了蒸发燃烧、分解燃烧、完全燃烧等。而且这些燃烧方法拥有不同的特点,可根据自身的需求来进行选择和使用。 三、电力热能动力锅炉燃料的燃烧 分析热能动力锅炉的燃料,发现其中存在三种重要元素:碳、氢、硫。运行过程中煤灰没有得到一定的燃烧,不但会产生有害气体,而且还会损失不完全燃烧热,浪费资源。若是电厂热能动力锅炉燃料持续不断的燃烧,那么则能提高燃料的利用率,发挥出锅炉的作用[3]。为了促使燃料得到一定的燃烧,可以对以下这几个阶段进行控制: (一)预热阶段 第一个阶段是预热阶段,该阶段需对燃料进行一定的处理。等到完全发挥后,再完成预热工作,促使燃料更好的燃烧。在这个过程中,燃料会进行加热,温度逐渐升高。而且燃料中的水分也会逐渐蒸发,变得更加干燥。随着温度逐渐上升,燃料水分也会蒸发。但其中的热量并没有得到释放,甚至被吸收。在温度达到300℃的情况下,电厂热能动力锅炉中的固体燃料会得到更好的燃烧,甚至形成分解作用。燃料最佳预热温度不能少于300℃,不能高于400℃。所以在进行预热时,能促使电厂热能动力锅炉达到一定的温度。促使水分快速的蒸发,燃料也变成焦炭。 此外在预热过程中,锅炉炉膛里不需要添加氧气[4]。但需要注意燃料中的水分,如果其中的水分太多,那么便会提高排风量。最后还要保持稳定的温度,如果温度变化太大,那么便会影响预热的质量。所以在锅炉燃烧时,还要对预热进行调整。 (二)燃烧阶段 在燃烧阶段,加热会持续不断进行,温度也会升高。同时会产生挥发分的现象,形成热分解反应。温度升高到一定程度时,氧气分解的速度会越来越高。在最开始时,燃料表层逐渐覆盖了挥发分。避免了氧气和燃料的接触,所燃烧的是燃料分解出的物质。挥发分在消耗的过程中,燃料会和氧气产生接触,促进燃烧的进行。燃烧完毕之后,一些焦炭还处于燃烧的状态[5]。为了促使燃烧继续进行,要引入氧气。因为氧气和燃料之间进行接触,能够提高燃烧的程度,释放热量。要保证燃烧的整体质量,必须控制氧气的量、锅炉的温度。若是控制不合理,便会导致燃料的燃烧不充分,降低整个锅炉的工作效率。 (三)燃尽阶段 燃烧到一定程度后,体积会逐渐变小。而且燃料中没有参与燃烧的部分,也会进入燃烧反应,这是个持续不断的过程。在燃烧的过程

电锅炉经济性分析案例讲课讲稿

电锅炉推广经济性分析案例 1经济分析方法 拟定集中式电锅炉不同技术方案,编制典型案例,考虑初投资和年运行成本,以年费用为综合指标,与天燃气锅炉进行经济性比较,年费用低者经济性更优。 年费用计算式为: AC=I×i×(1+i)N/〔(1+i)N-1〕+C 其中,AC——年费用; I——初投资; i——折现率; C——年运行成本。 年供热运行成本计算式如下: C=D×H/(V×η)×P 其中:C——年供热运行成本; D——运行天数; H——日均供热量; V——燃料热值; η——锅炉效率; P——燃料价格。 鉴于人力成本和维修成本具有较强的地域性,故在案例计算中,不考虑人力成本和维修成本;电力增容及配网改造和燃气管道敷设产生费用与具体工程建设条件密切相关,因

此在典型案例计算中不考虑。 2典型分析范例 常见清洁能源锅炉系统包括电锅炉直供系统、电锅炉蓄热供热系统和燃气锅炉供热系统。鉴于这三种系统可适用于不同的供热规模,故宜建立典型供热范例,针对不同技术类型分别拟定技术方案,与燃气锅炉系统进行经济性比较。为确保典型案例分析的覆盖性,选择天然气价格较高的上海和较低的新疆分别进行计算。 典型范例主要边界条件如下: ●设计热负荷:1400kW ●项目性质为办公楼,正常供热时间设定为08:00~ 18:00,共10小时 ●采暖期的最大单日供热需求量:9100kWh ●采暖期平均单日供热需求量:5915kWh 在满足上述供热需求的情况下,拟定热产品为热水和蒸汽两类共5种类型锅炉系统的技术方案如下: (1)电锅炉蓄热供热系统 最大单日供热需求量在谷电8小时内全部蓄热完毕。国内组装常压电热水锅炉的热效率取98%,则小时装机功率为1160kW,故配置2台储热功率为520kW的电热水锅炉,并配置有效蓄热容积为174m3(供回水温差取45℃)的常压蓄热水箱。系统寿命周期为25年。 (2)电锅炉直供热水系统

锅炉热经济性分析

锅炉经济性简化快速定量分析 摘要:本文论述锅炉运行中排烟温度、排烟氧量、飞灰可燃物含量、主汽流量、 各级减温水量对锅炉经济性的影响,同时通过计算定量其影响程度,以便对锅炉运行的经济性快速做出评价,指导锅炉经济运行。 关键词:锅炉煤耗 我公司1 #机组330MW锅炉为武汉锅炉股份有限公司生产的WGZ1 1 1 2/1 7.5-3型亚临界参数汽包炉。锅炉采用自然循环,单炉膛,双通道低NO X 轴向旋流式燃烧器,前后墙对冲布置,一次中间再热,尾部双烟道布置,烟气挡板调温,三分仓容克式空气预热器,刮板式出渣装置,钢构架,全悬吊,平衡通风,全封闭岛式布置。 电厂锅炉的经济运行是一个急需得到重视的问题,这不仅牵扯企业的经济效益,而且在能源日益短缺的将来对节约能源,实现持续协调发展更具重大意义。我国煤炭60%以上消费用在发电方面,节能降耗对电站锅炉更是迫在眉睫。 众所周知,在煤粉锅炉的热损失当中,排烟损失Q2是最大的一项,一一般占到7?8%左右,第二是机械不完全燃烧损失Q4占到1?2%左右,而化学不完全燃烧损失Q3、散热损失Q5、灰渣物理显热损失Q6只占很少份额。所以在研究锅炉经济性时我们应重点控制Q2和Q4的损失量,而影响Q2的主要是排烟量(用排烟氧量来标志大小)和排烟温度,影响Q4的主要是飞灰可燃物含量,这三个指标是我们研究锅炉效率最应注意的。另外,主蒸汽流量和各级减温水量虽然不直接影响锅炉效率,但对循环效率有很大影响,因为主汽流量的增加使进入凝汽器的蒸汽量增加,从而使冷源损 失增大。而减温水量的增加使其在锅炉内加热到额定参数需要的热量增加,从 而使机组的热耗增大。所以这两项也是我们在锅炉运行时应特别关注的指标。至于主汽压力、主汽温度对经济性的影响是通过主汽流量来体现,因为主汽压力、主汽温度达不到要求时,只有通过增加主汽流量来保证电负荷,所以对主汽量的分析实际已涵盖了这些因素的影响。 1. 影响锅炉效率的三个重要因素:排烟温度、排烟氧量和飞灰可燃物含量 我们分析这一问题的方法是先设定一个基准工况,然后单独变化一个影响因素,

能源与动力工程测试技术复习资料

1、热电偶测温的原理、基本定律及应用、热电偶测温冷端温度补偿方法 (温差电动势可以忽略不计,在热电偶回路中起主要作用的是接触电动势) 热电偶回路的热电动势只与组成热电偶的材料及两端接点的温度有关;与热电偶的长度、粗细、形状无关。导体材料确定后,热电动势的大小只与热电偶两端的温度有关,而且是T的单值函数,这就是利用热电偶测温的基本原理。 (1) 均质导体定律 如果热电偶回路中的两个热电极材料相同,无论两接点的温度如何,热电动势均为零;反之,如果有热电动势产生,两个热电极的材料则一定是不同的。根据这一定律,可以检验两个热电极材料的成分是否相同(称为同名极检验法),也可以检查热电极材料的均匀性。 (2) 中间导体定律 在热电偶回路中接入第三种导体C,只要第三种导体的两接点温度相同,则回路中总的热电动势不变。 (3) 标准电极定律

如果两种导体分别与第三种导体组成的热电偶所产生的热电动势已知,则由这两种导体组成的热电偶所产生的热电动势也就可知。为分度表的制作提供理论基础 (4) 中间温度定律 热电偶在两接点温度分别为T、T0时的热电动势等于该热电偶在接点温度分别为T、Tn和接点温度分别为Tn、T0时的相应热电动势的代数和。为分度表的应用提供理论基础 由于热电偶产生的电势与两端温度有关,只有将冷端温度保持恒定才能使热电势正确反映热端的被测温度。由于有时很难保证冷端温度在恒定0℃,故常采取一些冷端补偿措施。 1.冷端恒温法 (1) 冰点槽法 (2) 其它恒温器 2.补偿导线法:将冷端延伸到温度恒定的场所 3.计算修正法 4.电桥补偿法

5.显示仪表零位调整法 6.软件处理法 2、霍耳传感器的工作原理、特点 原理:半导体薄片置于磁感应强度为B 的磁场中,磁场方向垂直于薄片,当有电流I 流过薄片时,在垂直 于电流和磁场的方向上将产生电动势EH,这种现象称为霍尔效应。作用在半导体薄片上的磁场强度B越 强,霍尔电势也就越高。霍尔电势用下式表示: 特点: 1、为提高灵敏度, 霍尔元件常制成薄片形状。 2、要求霍尔片材料有较大的电阻率和载流子迁移率。 3、只有半导体材料适于制造霍尔片。 4、霍尔集成电路可分为线性型和开关型两大类。 5、霍尔传感器广泛用于电磁测量、压力、加速度、振动等方面的测量。

课程设计退火炉温度控制系统资料讲解

课程设计退火炉温度 控制系统

课程设计设计题目:退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案 (5) 2.1概述 (5) 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计 (9) 3.2程序清单与电路图 (11) 3.3温度控制电路 (17) 第4章控制算法 (18) 4.1程序框图 (18) 4.2算法设计 (19) 第5章课程设计总结................................................ - 22 -

电厂热能动力锅炉燃料及燃烧探析

电厂热能动力锅炉燃料及燃烧探析 摘要随着科技和经济的持续进步,电厂发展已经逐渐变成目前我们国家十分重视的对象之一。热能动力工程涉及多方面内容,基本上与之相关的知识都需要进行利用。目前来看,我们国家的火力发电厂有着极佳的发展前景,为了能够让其满足我国社会的实际需求,必须对于燃烧的效率进行提升。本篇文章将一某工程案例作为基础进行阐述,探讨现阶段锅炉存在的问题和处理方法,分析热能动力锅炉燃烧的特点,并对于未来的发展方面提出一些合理的见解。 关键词电厂;热能动力锅炉;燃料及燃烧 前言 从现阶段发展而言,热能动力在整个社会中的应用率变得越来越广,其涉及的内容种类也越来越多。发电厂的锅炉基本上完全基于基础热能理论,对其展开全面关注,一方面可以使得技术能力得到提升,另一方面还能促进社会进步。 1 工程的基本概述 热能工程主要是将热能转化成电能,从而将其进行利用,以此降低能源的损耗。火力发电是我们国家十分传统的发电模式,其应用率非常广泛,尽管对于行业发展能够带来诸多益处,但随之带来的影响便是大量的能源浪费,不利于可持续性发展政策的有效贯彻。而热能动力工程便可以有效处理这一问题,以此将能力予以加热,促使其在经过一段时间受热之后转变成蒸汽,最终演变成电能。如此一来,电厂的发电效率便会进一步提升,燃煤损耗也会大幅度减少,因此对于电厂的发展有着非常大的意义。 2 当前锅炉存在的问题和处理措施 目前而言,我们国家的锅炉中还要许多缺陷存在。这其中,最为严重的便是风机问题,企业是锅炉内部的核心部件,其作用便是提升锅炉内部的气压,以此完成动力输送。 2.1 吹灰技术 在确保受热面具有足够安全性且没有任何结渣问题存在的前提下,将系统内部的受热等级进行降低,促使其表面烟体的温度持续上升。由于偏差发生了改变,因此如果出口位置气体的温度过高,则需要对其进行喷水处理。如此一来,超温的问题便能够得到一定程度的缓解,进而实现气温降低的目标。 2.2 燃烧技术 目前而言,燃烧技术仍然具有一定的发展空间,其最大的问题便是左右两边

四种锅炉经济性对比

一、燃气锅炉与煤锅炉、燃油锅炉、电锅炉的经济技术分析比较 锅炉可以燃用各种能源,包括天然气、煤、柴油、电,为了有利于应用,现将对四种规格(1吨、2吨、3吨、4吨)的小型锅炉在燃用天然气、煤、柴油、电的各个方面作出比较,以供参考。 、四种类型锅炉初始固定投入比较

从上表中所给数据可以看出: 1、在1T、2T、3T的锅炉中,燃气锅炉、燃油锅炉的初始固定投资是最少的;在4T的锅炉中,燃煤锅炉的初始固定投入是最少的; 2、在锅炉的使用寿命中,燃气锅炉一般为20年,是各种类型锅炉中寿命最长的; 3、在锅炉的折旧率中,1T、2T、3T、4T的燃气锅炉均远远低于同等规格的其它类型的锅炉,无形之中减少了固定资产的流失。 因此,在各种类型锅炉固定资产的投资方面,投资于燃气锅炉无疑是一种更好的选择。

四种类型锅炉年度运行费用比较(以每日制55℃热水10吨,升温40℃为例)

2、燃煤锅炉的日常维护成本远远高于燃气锅炉,如果把日常维护费用计算在内,燃气锅炉的年运行费 用将远低于燃煤锅炉,为四种类型锅炉中运行成本最低的; 3、燃煤锅炉的人工费用要视生产情况而定, 如果昼夜生产,则必须实行倒班制度,两个人是最少选择, 这将会大大增加燃煤锅炉的年运行费用。 因此,在各种类型锅炉的年运行费用上,燃气锅炉是最有潜在优势的一种选择。 、四种类型锅炉其它因素比较

在影响锅炉选择的其它因素比较中,我们可以发现: 1、从环保的角度来看,燃气锅炉、用电锅炉对环境是无污染的,是首选; 2、从配套设施的要求来看,燃气锅炉、用电锅炉节省了大量人力、物力和场地,是首选; 3、从政府政策方面来看,近些年来,政府对天然气的推广使用是大力提倡和支持,却因为节能减排、粉尘污染、矿渣处理等问题限制燃煤锅炉的应用;因为碳的高排放、二氧化硫等酸性气体排放,不提倡燃油锅炉的推广;出于节能减排的考虑,会适当的拉闸限电,限制了用电锅炉的发展,所以燃气锅炉无疑是首选。 因此在影响锅炉选择的其它因素比较中发现,燃气锅炉是首选。 、四种类型锅炉的经济技术分析比较

固体蓄热锅炉的发展前景及社会经济效益分析

固体蓄热锅炉的发展前景 及社会经济效益分析 Final revision by standardization team on December 10, 2020.

固体蓄热产品的发展前景及社会经济效益分析 一、固体蓄热产品的推广有利于电力工业的经济运行 随着我国经济快速发展,作为国民经济的基础产业, 电力工业也得到长足发展。电力装机容量以年平均%的速度高速增长, 发电量更以年平均8%的速度增长。无论电力装机容量还是发电量都进入世界顶级行列。在满足了电力负荷高峰需求之后, 电网的峰谷差也同时拉大, 直接影响了电网的安全经济运行。2016年夏季我国多地出现持续晴热高温高湿天气,以空调为主的制冷负荷大量增加,推动全社会用电负荷快速攀升。在空调制冷需求的推动下,北京、山东、上海、江苏、浙江、安徽、福建、湖北、湖南、江西、蒙东、新疆、重庆、广东等地用电负荷创历史新高,其中多地今年首次创新高。这一负荷加大了电力系统峰谷差, 是导致城市电网负荷率下降的重要原因。而在采暖和制冷系统中推行储能技术, 则是进行电网移峰填谷, 缓解电网高峰供电压力的重要方面。 发展蓄热式电热器(如蓄热式电锅炉、蓄热式电暖器、蓄热式电热水器等),增加电网低谷用电量,使电网负荷趋向均衡,是提高发电机组的运行效率,减少能源浪费的重要途径。 国家电力公司安全运行与发展输电部自1999年就专门发文推广应用蓄热式电锅炉。目前我国多地区和企业用电实行峰谷电价政策,为固体蓄热电锅炉,蓄热电暖器的发展提供了有利条件。 二、改善环境污染、顺应发展趋势

随着经济的发展,燃料的使用量也在大量增加,城市环境污染问题的日益加重,雾霾天气的频繁出现,调整能源结构,高效节能环保使用能源已被提到议事日程上来。 2014年11月6日发改委、能源局、环保部等七部委发布《燃煤锅炉节能环保综合提升工程实施方案》,该《方案》指出工业锅炉容量小、技术落后、污染高、效率低,已经成为大气污染的重要源头,规划到2018年推广高效锅炉50万吨;淘汰落后燃煤锅炉40万吨,完成节能改造40万吨,提高燃煤工业锅炉运营效率6个百分点,节能4000万吨标煤。 我国锅炉以燃煤占比超过80%,截止2012年底,在用工业锅炉达到万台,总量178万蒸吨,年消耗原煤约7亿吨,占全国耗煤量的18%左右;平均容量小、设备落后、运行效率低、污染物排放强度大的现状下,燃煤工业锅炉污染物排放将超过电力行业,已经成为大气污染的重要源头,也是雾霾治理的最重要战场。 据测算燃煤工业锅炉改造市场高达4500亿元,对应运营市场超过3750亿元。重点以燃煤清洁化、替代化为主线。替代化路线中,主要包括生物质、天然气、电能等替代化方案。使用电能无疑是最高效、环保的清洁能源。新兴的固体蓄热式电锅炉是利用电网低谷电运行,节能高效利国利民,市场前景广阔。 三、应用储能技术具有较大的社会效益和明显的经济效益 1、平衡电网峰谷负荷, 缓解电厂和输配电设施的建设投资压力。 2、稳定发电机组负荷, 改善发电机组效率, 减少环境污染。

热能与动力工程基础复习题..

热能与动力机械基础 一、名词解释 第1章 1.热能动力装置:燃烧设备、热能动力机以及它们的辅助设备统称为热能动力装置。 2.原动机:将燃料的化学能、原子能和生物质能等所产生的热能转换为机械能的动力设备。如蒸汽机、蒸汽轮机、燃气轮机、 汽油机、柴油机等。 3.工作机:通过消耗机械能使流体获得能量或使系统形成真空的动力设备。 第2章 1.锅炉:是一种将燃料化学能转化为工质(水或蒸汽)热能的设备。 2.锅炉参数:锅炉的容量、出口蒸汽压力及温度和进口给水温度。 3.锅炉的容量:指在额定出口蒸汽参数和进口给水温度以及保证效率的条件下,连续运行时所必须保证的蒸发量(kg/s或T/h) , 也可用与汽轮机发电机组配套的功率表示为kW 或MW 。 4.锅炉出口蒸汽压力和温度:指锅炉主汽阀出口处(或过热器出口集箱)的过热蒸汽压力和温度。 5.锅炉进口给水温度:指省煤器进口集箱处的给水温度。 6.煤的元素分析:C、H、O、N、S。 7.锅炉各项热损失:有排烟热损失,化学不完全燃烧损失,机械不完全燃烧损失,灰渣物理热损失,及散热损失。 8.锅炉热平衡:指输入锅炉的热量与锅炉输出热量之间的平衡。 9.锅炉的输出热量:包括用于生产蒸汽或热水的有效利用热和生产过程中的各项热损失。 10.锅炉的热效率:锅炉的总有效利用热量占锅炉输入热量的百分比。在设计锅炉时,可以根据热平衡求出锅炉的热效率: 11.锅炉燃烧方式:层燃燃烧、悬浮燃烧及流化床燃烧三种方式。 12.层燃燃烧:原煤中特别大的煤块进行破碎后,从煤斗进入炉膛,煤层铺在炉排上进行燃烧。 13.悬浮燃烧:原煤首先被磨成煤粉,然后通过燃烧器随风吹入炉膛进行悬浮燃烧。这种燃烧方式同样用来燃烧气体和液体燃料。 14.流化:指炉床上的固体燃料颗粒在气流的作用下转变为类似流体状态的过程。 15.流化床燃烧:原煤经过专门设备破碎为0~8mm大小的煤粒,来自炉膛底部布风板的高速鼓风将煤粒托起,在炉膛中上下翻滚 地燃烧。 16.悬浮燃烧设备:炉膛、制粉系统和燃烧器共同组成煤粉炉的悬浮燃烧设备。 17.炉膛:是组织煤粉与空气连续混合、着火燃烧直到燃尽的空间。 18.制粉系统主要任务:连续、稳定、均匀地向锅炉提供合格、经济的煤粉。可分为直吹式和中间储仓式两种。 19.煤粉燃烧器分类:按空气动力特性可分为旋流燃烧器和直流燃烧器两种。 20.旋流燃烧器的气流结构特性:二次风强烈旋转,喷出喷口后形成中心回流区,卷吸炉内的高温烟气至燃烧器出口附近,加热 并点燃煤粉。二次风不断和一次风混合,使燃烧过程不断发展,直至燃尽。除中心回流区的高温烟气卷吸外,在燃烧器喷出 的气流的外圈也有高温烟气被卷吸。 21.旋流燃烧器的布置方式:旋流燃烧器一般作前墙或前后墙对冲(交错)布置。 22.直流式燃烧器的布置方式:直流式燃烧器从喷口喷出的气流不旋转,直流式燃烧器布置在炉膛四角,其出口气流几何轴线切 于炉膛中心的一个假想圆,造成气流在炉内强烈旋转。 23.锅炉受热面类型:水冷壁、省煤器、过热器、再热器、空气预热器;换热方式为对流、辐射及对流辐射混合式。 24.过量空气系数:燃料燃烧实际所用的空气量与燃料燃烧所需理论空气量之比。 第3章 1.反动度:气体作加速流动时损失较小,设计时常使得气流在动叶中也有一定的加速(膨胀)。气流在动叶气道内膨胀程度的 大小,常用级的焓降反动度?m来表示。?m等于气流在动叶气道内膨胀时的理想焓降△h b与整个级的滞止理想焓降△h t*之比。 2.喷嘴损失:蒸汽在喷嘴叶栅内流动时,汽流与流道壁面之间、汽流各部分之间存在碰撞和摩擦,产生的损失。 3.速比:级的圆周速度与喷嘴出口速度之比。 部分进汽度:有喷嘴的弧段长度与整个圆周长度的比值。 轮周效率:1kg工质所做的轮周功与该级所消耗的理想能量的比值。

箱式电阻炉课程设计

一、设计任务书 题目:设计一台中温箱式热处理电阻炉; 生产能力:160 kg/h ; 生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。 二、炉型的选择 根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度650℃,不通保护气氛。 三、确定炉体结构及尺寸 1.炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。已知生产率p 为160 kg/h ,按照教材表5-1选择箱式炉用于退火和回火时的单位面积生产率p 0为 100 kg/(m 2﹒h ),故可求得炉底有效面积: F 1=P P 0=160100 =1.6m 2 由于有效面积与炉底总面积存在关系式F 1F ?=0.60~0.85,取系数上限,得炉底实际面积: F = F 10.85=1.6 0.85 =1.88m 2 2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B ?=2,因此,可求得: L =√F 0.5?=√1.880.5?=1.94m B =L 2?=1.942?=0.97 m 根据标准砖尺寸,为便于砌砖,取L =1.970 m ,B =0.978 m ,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H 与宽度B 之比H B ?通常在0.5~0.9之间,根据炉子工作条件,取H B ?=0.654m 。 因此,确定炉膛尺寸如下: 长 L =(230+2)×8+(230×1 2+2)=1970 m 宽 B =(120+2)×4+(65+2)×2+(40+2)×3+(113+2)×2=978mm 高 H =(65+2)×9+37=640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L 效=1700 mm B 效=700 mm H 效=500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN ?0.8轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+113mm B 级硅藻土砖。 炉顶采用113 mmQN ?1.0轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+115 mm 膨胀珍珠岩 。 炉底采用三层QN ?1.0轻质粘土砖(67×3)mm ,+50 mm 密度为250 kg m 3?的普通硅酸铝

浅述热能动力工程在锅炉方面的发展

浅述热能动力工程在锅炉方面的发展 发表时间:2017-10-18T18:07:19.400Z 来源:《电力设备》2017年第17期作者:赵俊平[导读] 摘要:随着经济的发展、人民生活水平的提高,我国面临的能源问题以及由此引发的环境问题越来越多。中国正处于经济快速发展阶段,在能源和环境的双重压力下,都要求火力发电机组提高能源利用率,降低供电煤耗,减少污染物排放。锅炉是火力发电机组的三大核心设备之一,它通过燃烧和传热将燃料的化学能转化为蒸汽的热能。因此,如何让电厂锅炉的燃烧效率达到市场经济的要求,对于电厂 来讲,运用热能动力技术推动电厂锅炉的技术进步就 (內蒙古第一电力建设工程有限责任公司內蒙古包头 014030) 摘要:随着经济的发展、人民生活水平的提高,我国面临的能源问题以及由此引发的环境问题越来越多。中国正处于经济快速发展阶段,在能源和环境的双重压力下,都要求火力发电机组提高能源利用率,降低供电煤耗,减少污染物排放。锅炉是火力发电机组的三大核心设备之一,它通过燃烧和传热将燃料的化学能转化为蒸汽的热能。因此,如何让电厂锅炉的燃烧效率达到市场经济的要求,对于电厂来讲,运用热能动力技术推动电厂锅炉的技术进步就显得尤为关键。 关键词:热能动力;工程;锅炉;发展 一、热能与动力工程 热能与动力工程涉及的范围十分广泛,应用起来十分广泛,结合当前经济发展,我们可以看出热能与动力工程的应用在解决实际能源录用方面具有十分重要的地位,它直接关系着我国电力企业的发展方向以及经济效益的实现情况。并且热能与动力工程充分利用了各个学科之间的相互关系,有效的支持了各种能量之间的转化,为社会经济的发展奠定了良好的基础。从热能与动力工程的专业角度来看,研究热能与动力工程的同时,还要注意对机械能力、物理能量的研究,把热能与机械能量之间的转化作为重中之重。并且随着科学技术的不断发展,热能与动力工程也逐渐朝着自动化化和智能化发展。 二、对锅炉结构及动力原理的分析 锅炉的燃气控制、锅炉的外壳及锅炉的生产配套部分共同构成了锅炉,而燃气锅炉外壳还包括底壳和面壳两方面,每个部分都发挥着不同的作用,其中底壳主要负责锅炉燃烧,也是锅炉燃烧的关键环节,因底壳上有电控盒和热交换器等部件,锅炉通过底壳与其他部分更好的进行连接,从而形成一个完整的结构。而面壳的作用主要是防止灰尘等杂物进入锅炉,更好的保护锅炉,进而使其使用寿命得到延长。除此之外,锅炉的核心部件电气控制也在锅炉的运行中发挥着关键作用,其主要任务是保障锅炉各项工作和锅炉燃烧的正常运转。近年来,随着科技水平的不断进步,使锅炉行业得到较快发展,目前锅炉业均已实现自动化控制,这样就能很好的控制锅炉的热平衡及锅炉的燃烧,从而使锅炉的燃烧效率得到提高,保证热能的利用率,从而有效地减少能源浪费。 三、我国电厂锅炉中存在的问题 在工业锅炉发展的过程中也加深了对热能与动力功能之间的转化研究,转化效率得到了极大的提高,但是当前仍然存在着一些问题需要解决,保证工业锅炉的正常使用。锅炉的构成部件十分复杂,其中风机是通过把电能转化为动能并向锅炉内部输送氧气的重要部件,风机的工作承受度是有限的,随着人们对能源需求量的逐年增加,企业为了追求更多的利益,开始盲目地增加锅炉的工作量,进而超过风机工作的承受度,导致风机出现损坏的现象,不仅对锅炉整体设备造成不良影响,同时也中断了企业的生产。由于风机内部构造十分繁杂,工作人员很难准确判定风机内部的温度,所以应该加强对锅炉中风机内部温度测量的研究,目前最为常用的方法就是通过对不同方向上流入风机叶片的燃烧速度进行测量,根据测量的数据进行建模并划分出网络结构,直观地观察风机和其他部件之间的联系,并逐渐完善风机的设计,提高风机的工作能力和效率,进而提高整个锅炉的运转能力。 四、热能与动力工程在锅炉中的应用 4.1锅炉燃烧控制技术的创新 如何有效地调节能量转换是锅炉燃烧控制中的重要部分。早期工业生产中,我国的锅炉填充燃料绝大多数是采取人工添加的方式,从而保障锅炉相关工作的正常稳定运转。不过,随着科学技术的发展,绝大部分企业已从人工填料方式向步进式的自动化转变,而连续控制系统是主要的锅炉燃烧方式,其主要由各种气体的分析装置及燃烧的控制器等部分构成,通过热电偶的有效检测来设定合理数值,再利用计算机准确计算出所测数值偏差,从而保证输出结果的准确性,与此同时,还能够有效且合理的对锅炉燃烧进行控制。 4.2在锅炉风机监控中的应用 要想实现锅炉的良好运转,必不可少的装置便是风机的安装,风机将外界含有氧气的气体传送到锅炉内,实现燃料的有效燃烧。然而现阶段对能源的需求逐渐增加,风机运行的压力越来越大。因为风机的运行过程中会产生很大的热量,锅炉整体与风机的距离较近,风机得不到降温,就会产生工作负荷,导致风机被烧坏,这种情况不仅没有实现增加能源供应的目的,还严重影响了锅炉的正常运转。然而锅炉风机装备结构较复杂,采用常规的测量方式很难测到风机的温度,它需要采用高科技对温度进行智能监控。目前我们还没有找到解决这种问题的技术对策。现阶段,采取的是应用热能与动力工程研发出相应的软件,从而对风机的温度进行有效计算。 结语 综上所述,热能动力工程是工业发展过程中需要重点研究的一个方面,这种热能动力工程的发展的价值和意义是比较明显的,能够为工业的发展提供源源不断的发展动力,具体到锅炉的使用中来看,这种热能动力工程也能够发挥出较强的应用价值和效果,对于改善和提升锅炉应用效果具备着较为突出的积极作用,值得在今后的锅炉应用中进行深入的研究和探讨,尤其是对于炉内燃烧控制技术以及软件仿真锅炉风机翼型叶片的使用来说,其积极价值更为明显,这些优势的体现也就促使人们不断的加强对于热能动力工程及其相关应用的研究,进而最大程度上提升其应用的效果。 参考文献: [1]吴江,郑莆燕,任建兴,等.关于热能与动力工程专业卓越工程师培养的探索与实践[J].中国电力教育,2011. [2]魏齐欣,程光宇,刘艳珍,曹华.热能与动力工程在电厂中的合理运用分析[J].黑龙江科技信息,2015. [3]张晓杭.新形势下电厂锅炉应用在热能动力工程中的应用[J].中国高新技术企业,2015.

热能与动力工程机械基础制冷与空调习题

第六章制冷与空调思考题和习题 1、制冷系统的冷凝温度低则效率高,试评价用另外一个制冷系统来冷却该制冷系统冷凝器的冷却水的可能性。两个系统组合后的性能是比单个的好、相同或者差?为什么? 答:这个系统可行,这就是复叠系统,复叠系统是为了获取低温,解决单级压缩蒸气受到循环压比的限制以及制冷剂热物理特性限制而出现的一种制冷系统。复叠制冷系统图见图1。如果冷热端温差相差不大,单级压缩系统能够正常运行,复叠系统比单级压缩系统制冷系数小,运行并不经济,因为复叠系统的冷凝蒸发器存在换热温差,会发生一部分不可逆传热损失。如果冷热端温差相差较大,采用单级压缩系统会导致超压比运行,使实际压缩过程更偏离等熵压缩过程,引起压缩机排温升高、效率降低、功耗增大。此时采用多级复叠循环系统比较经济。 2、制冷系统中的热交换器的传热系数与哪些因素有关?如何提高运行中的热交换设备的传热效果? 答:制冷系统中的热交换器的传热系数与传热管的形式,介质的换热条件,管内外热阻的大小等因素有关。运行中机组分油效果要好,避免油进入换热器,在换热器表面形成油膜,增大热阻,影响换热效果;避免结霜、结露现象。 3、为什么要规定压缩机的运行工况?空调工况和标准工况中的冷凝温度和蒸发温度各为多少? 答:任何压缩机都是在一定的外界条件下工作的。为了考核压缩机在通常工作条件下的工作状态,规定了标准工况和空调工况。标准工况下,蒸发温度为-15℃,冷凝温度30℃。空调工况下,蒸发温度为5℃,冷凝温度为40℃。

4、试分析从蒸发器出来的低压蒸气过热程度及过热度大小对制冷系统的影响。 答:蒸气过热的影响,见图2。 图2 从图中可以看出,制冷量增加了,增加量为: 功也增加了,增加量为: 因此,制冷系数 是否增加和制冷剂的特性有关。各种制冷剂制冷系数随过热度变化情况见图3。 图3 制冷系数随过热度变化情况 5、试用p -h 和有关公式分析,当一台制冷压缩机运行时的冷凝温度tk 降低(此时蒸发温度t0不变)和蒸发温度t0升高(此时冷凝温度tk )不变时,制冷压缩机的制冷量Q0和理论制冷循环的制冷系数ε0将如何变化? 答:蒸发温度不变,冷凝温度降低的影响:见图4 01'1q h h ?=-'02'211()() w h h h h ?=---' 00 000 q q q w w w ε+?'==' +?

2021年锅炉及能源领域的热能动力工程发展现状探讨

锅炉及能源领域的热能动力工程发展现状探讨 能源动力的发展,是影响国家经济发展的重点,下面是搜集的一篇探究热能动力工程发展现状的,供大家阅读参考。 伴随着我国科技现代化的不断推进,其相应的产业正在不断的扩展,这对基本的经济生产能力,以及社会的现代化建设,都有很大的促进作用。但是生产过程中需要大量的能量来进行供给,而现代能源领域的发展,还主要通过热能来进行驱动,如果驱动存在问题,那么就可能影响到现代化建设的进程。而从我国近年来的社会发展,可持续发展战略的提出,就对这一形式的建设提出了需求上的调整。本文针对锅炉以及能源领域的热能动力工程开发进行简要的讨论。 就现阶段的世界能源使用情况来看,积极的开发新能源,已经成为了一项重要的责任指标,我们从能源的利用率出发,对其工程的能源资源利用率来说,其高低就决定了工程的合理性。专业领域在研究的过程中,会影响到自身能源资金的有效性,因工程领域内的环境来说,其所发挥出的基本能力以及供给发挥作用,都能够对其运行效率有所提升。下面我们对锅炉与能源领域额热能动力工程进行简要分析。

能源动力工程是对现代热能工程以及热力发动机的研究,其主要包括了对基本工程技术与热物冷藏等多个工程方面的合理化设计,这一点与热能的动力转化形式来说,可根据其技术的热能工程以及热力发动机的多个方面,其作用在于对热能和动力发动机的综合设计。在我国的煤炭资源丰富建设上,可结合企业的节制性质来看,可结合世界范围内的场景分析,并完善其在废气的处理,根据土壤环境的诸多危害,改善对脱硫技术等多方面的改进,对于基本的威胁作用,都会严重影响到资源的使用率,在应用的过程中,我们从环境的污染情况进行综合发展研究,其利用率是影响其转化率的重点。 就我国近年来的社会发展程度来说,对于工业锅炉的电站锅炉发展情况,其作用对于锅炉的使用来说,作用也可以确保其基本的设施需求,在连接上,根据整体的能应用渠道进行整体检测控制,这从基本的燃气阀冰箱调控等,都会产生主体形式上的调控失调,从配件的通过率上,可满足其整体的设计。其作用技术形式,对热力的发动机以及工程物理作用等,都会形成一套有效的促进作用,这在我国的人口基数以及促进的煤炭效应等方面,根据其科技水平的发展,也逐渐的影响到了对科技水平的实践作用。对于存储量的资源设施受益建设,其科技的进步是确保电脑控制方法得体的根本所在。

对热能与动力工程专业的认识及规划

对热能与动力工程专业的认识通过上网查询和老师的介绍,认识到热能与动力工程 是研究热能的释放、转换、传递以及合理利用的学科,它广泛应用于能源、动力、空间技术、化工、冶金、建筑、环境保护等各个领域。 一热能与动力工程专业培养目标 热能与动力工程专业的培养目标;主要培养能源转换与利用和热力环境保护领域具有扎实的理论基础,较强的实践、适应和创新能力,较高的道德素质和文化素质的高级人才,以 满足社会对该能源动力学科领域的科研、设计、教学、工程技术、经营管理等各方面的人才需求。学生应具备宽广的自然科学、人文和社会科学知识,流体工程、流体力学、流体机械、动力机械、水利工程等宽厚理论基础、热能动力工程专业知识和实践能力,掌握计算机应用与自动控制技术方面的知识。能从事汽车动力工程、制冷与低温技术、暖通空调,能源与环境工程、电厂热能动力、燃气工程、船舶、流体机械等方面的科研、教学、设计、开发、制造、安装、检修、运行管理和经营销售等方面工作的高级工程技术人才。 二热能与动力工程专业方向; 我校热能与动力工程专业设立了两个方向; 制冷与空调方向和热电方向。 主干学科:动力工程与工程热物理、机械工程、传热学、工程热力学。 主要课程;工程数学、画法几何与机械制图、工程力学、材料力学、机械原理、机械零件、电工与电子学、机械制造基础、机械原理、机械设计、工程热力学、流体力学、传热学、工程经济学,控制工程基础、微机原理与接口技术、单片机原理、测试技术、制造工艺学、优化设计等。 制冷方向专业科目:主要研究制冷与低温技术。主要有制冷与空调测量技术、制冷原理与装置、低温技术、空气调节、制冷压缩机、制冷系统CAD、计算机绘图、泵与风机、制冷空调电气自动控制、冰箱冷库、制冷热动力学、热泵制冷空调故障诊断等有关课程。专业方向培养从事制冷与空调技术和设备设计、科研、开发、制造和管理工作的高级工程技术人才。 本专业方向毕业生可在制冷、低温和空调技术及其相关应用领域的企业和科研院所、高等学校、设计院以及相关政府管理部门从事制冷与空调技术和设备的研究开发、设计制造、运行控制、管理、技术服务和营销等方面的工作。 热电方向专业科目;主要研究大气环境保护理论和技术,主要有电站锅炉原理核电技术、燃气轮机及其联合循环、热力发电厂、循环流化床锅炉、电厂汽轮机原理,发电厂自动化、电机学、发电厂电气设备、继电保护原理等有关课程。 毕业生主要从事热力设备的运行、维护、管理、科研开发以及热力系统的设计等工作,还可以在航天、机械、化工、船舶、核能等行业从事相关工作,也可以在军事部门、核电工业和辐射科学相关的科研设计单位、核电站、高等院校等从事规划、设计、运行、施工、管理、教育和研究开发工作。 三热能与动力工程专业前景: 伴随现实环境的发展,热能与动力工程的重要性正在日渐突出。 目前全世界常规能源的日渐短缺,人类环境保护意识的不断增强,节能、高效、降低或消除污染排放物、发展新能源及其它可再生能源成为本学科的重要任务,在能源、交通运输、汽车、船舶、电力、航空宇航工程、农业工程和环境科学等诸多领域获得越来越广泛的应用,在国民经济各部门发挥着越来越重要的作用。 能源动力及环境是目前世界各国所面临的头等重大的社会问题,我国能源工业面临着经济增长、环境保护和社会发展的重大压力。我国是世界上最大的煤炭生产和消费国,煤炭占商品煤炭、(%,已成为我国大气污染的主要来源。已经探明的常规能源剩余储量76能源消费的.

热处理箱式电阻炉课程设计

热处理箱式电阻炉课程设计 一、设计任务 1、炉型:箱式炉 2、设计要求:(1)生产率或一次装炉量:100kg/h (2)零件尺寸:长、宽、高尺寸最大不超过150mm (3)零件材料:中、低碳钢、低合金钢及工具钢 (4)零件热处理工艺:淬火加热 3、任务分析: (1)生产率或一次装炉量为100kg/h ,属小型炉; (2)生产长、宽、高尺寸最大不超过150mm 的零件,选择箱式炉合理; (3)淬火加热工艺表明所设计的箱式炉属于中温范畴。 二、电阻炉的炉体结构设计 1、炉型选择:由于所生产的零件尺寸较小,都不大于150mm ,且品种较多,热处理 工艺为淬火加热,具体品种的淬透性不同,工艺有所差别,故采用周期作业中温箱式热处理炉进行设计。(额定温度为950℃) 2、炉膛设计 (1)典型零件的选定 参照设计任务的要求,选用40Cr 钢齿轮模拟设计 ①齿轮参数:分度圆mm d 128= 齿顶圆mm d a 136= 齿数32=z 模数 4=m 齿宽mm b 70= 全齿高mm h 9= 齿根圆mm d f 118= 齿轮孔径mm d 40=孔 ②设定工艺曲线: 加热时间 t=a ×k ×D (a :加热系数,k :工件装炉条件修正系数,D :工件 《热处理手册》第四版第二卷,机械工业出版p55 工艺周期为5h 《热处理设备》p117表5-4

有效厚度) 查表得:a 为1.2-1.5min/mm 取1.3 min/mm k 取1.8 故时间 t=1.3×1.8×70=163.8min 取加热时间3h ,保温时间2h 工艺周期为5h (2)确定炉膛尺寸 一次装炉量=生产率×周期=100kg/h ×5h=500kg 单位重量 kg kg d d 337.6108.7b ])2 ( )2[(m 322 =???-=孔π 零件个数 809.78337 .6500 ≈== n 个 查表可知,炉底单位面积生产率 h m kg P ?=20100 有效面积 22 01100 100m m P P F === 有效 由于工件之间距离为工件高度的0.3-0.5,故取工件之间距离为30mm 设计每次装炉80个零件,分两层分布,每层40个,纵向8个,横向5个 实际炉底面积 224.125.18 .01 m m K F F ≈== = 有效实 (K 为炉底利用系数,通常为0.8-0.85) 取 长 L=1.4m , 宽 B=1.0m 炉子高度一般为(0.52-0.90)B ,取0.6B ,故H=0.6m 3、炉体各部分结构 (1)炉衬:分为内层耐火层和外层保温层 内层:用QN —1.0的轻质耐火粘土砖 外层:B 级硅藻土砖,热导率为t 1023.0131.03 -?+,最高使用温度为900℃ (2)炉墙: 耐火层:QN —1.0轻质耐火粘土砖,规格为230×113×65mm ,热导率为 t 3110256.029.0-?+=λ,厚度 mm 1131=δ 保温层:B 级硅藻土砖,规格为230×113×65mm ,热导率为 t 1023.0131.03 -2?+=λ,厚度 mm 2302=δ 炉膛尺寸: L=1.4m B=1.0m H=0.6m 《热处理设备课程设计指导书》附表2

相关主题
文本预览
相关文档 最新文档