当前位置:文档之家› 关于混凝土长期性与耐久性问题分析与研究

关于混凝土长期性与耐久性问题分析与研究

关于混凝土长期性与耐久性问题分析与研究
关于混凝土长期性与耐久性问题分析与研究

关于混凝土长期性与耐久性问题分析与研究

摘要:混凝土是当今世界用量最大的建筑材料。本文主要从混凝土原材料的选择、混凝土配合比的合理确定、混凝土施工管理及养护等方面分析探讨了对混凝土耐久性的影响,然后介绍了提高混凝土耐久性的技术策略,从而保证混凝土结构质量。望能为此类工程提供一定的参考价值。

关键词:混凝土耐久性;原材料;配合比;

Abstract: the concrete is the world’s largest amount of building materials. This article mainly from the concrete the choosing of raw materials, the reasonable determination of the mixing proportion of concrete, concrete construction management and maintenance analyses and discusses the influence of the durability of concrete, and then introduced the enhance the durability of concrete’s technology strategy, so as to ensure the quality of concrete structure. Hope for such project to provide certain reference value.

Keywords: durability of concrete; Raw materials; Mix;

中图分类号:TU37文献标识码:A 文章编号:

前言

混凝土是当今世界用量最大的建筑材料。我国混凝土使用量居全球之冠,为适应经济快速发展发挥了极其重要的作用。混凝土的应用过程中暴露出许多问题,其中尤为突出的是耐久性问题。如不少工程在使用10~20 年后,有的甚至在使用几年之后即需维修。混凝土工程大多是永久性的,工程量大、耗资多,若耐久性不良将会给未来社会造成极为沉重的负担。因此,从资金节约、资源的有效利用及环境保护等方面综合考虑,必须深入研究混凝土的耐久性问题。虽然混凝土在遭受压力水, 冰冻或侵蚀等作用时的破坏过程, 各不相同, 但对提高混凝土的耐久性的措施来说, 几乎都是为提高混凝土的密实性为目的。提高混凝土的耐久性措施有: 1) 合理选择水泥品种; 2) 选用较好的砂、石骨料; 3) 合理确定混凝土配合比; 4) 掺用减水剂、矿物掺合料及引气剂; 5) 加强施工质量管理, 严格控制混凝土质量。

一、混凝土原材料选择问题分析

1、水泥。实际应用时, 应根据混凝土工程特点或所处环境条件, 选用合适的水泥。水泥是混凝土中的活性组分, 其强度的大小直接影响着混凝土强度的高低。在我国, 混凝土的质量验收习惯上以混凝土的强度指标为单一的衡量标准, 从而导致水泥工业对水泥强度的不适当追求, 使水泥细度增加, 早强的矿物成分比例提高, 而这一切都不利于混凝土的耐久性, 所以不是所有早强和高标号的水泥就是好的。

混凝土的耐久性和可持续发展问题述评_周维

混凝土技术发展的一个终极目标是最大限度地延长其使 用寿命,也即耐用性(Serviceability)问题。这就对混凝土的长期性能特别是耐久性提出了更高的要求。另外一个很重要的问题是混凝土技术的可持续发展,其目标就是要使混凝土技术的发展与资源、环境等实现良性循环,尽量减少造成修补或拆除的浪费和建筑垃圾,大量利用优质的工业废弃物和矿石,尽量减少自然资源和能源的消耗,减少对环境的污染[1]。 1混凝土的耐久性 混凝土的耐久性可定义为“在使用过程中经受气候变化、化学侵蚀、磨蚀等各种破坏因素的作用而能保持其使用功能 的能力”[2-3] 。一般混凝土建筑物的使用寿命要求在50年以上,很多国家对桥梁、水电站大坝、海底隧道、海上采油平台、核反应堆等重要结构的混凝土耐久性要求在100年以上。气候条件适中的陆上建筑物,应要求混凝土在200年内安全使用。我国GB50010—2002《混凝土结构设计规范》规定,混凝土的耐久性设计应按照环境类别和设计使用年限进行,分为50年和100年2个耐久性预期目标,对于重大、重要工程应按照100年寿命来设计混凝土。近几年来,我国已有不少工程的混凝土设计寿命达到100年,这些工程大都结合环境条件和特点,采取专门有效的措施,以充分保证混凝土工程的耐久 性设计要求。比较著名的百年工程有三峡大坝、东海大桥、南 京地铁1号线、崇明越江通道北港桥梁、重庆朝天门大桥空心桥墩、杭州湾大桥等[4]。 但是近几十年以来,混凝土构筑物因材质劣化造成失效以至破坏崩塌的事故在国内外也是屡见不鲜,并有愈演愈烈之势。 国际上混凝土的大量使用始于20世纪30年代,到五六十年代达到高峰[1]。许多发达国家每年用于建筑维修的费用都超过新建的费用。 过去,除了大型水利工程外,我国混凝土工程的耐久性问题长期不受重视,混凝土结构没有达到预期的使用寿命,受环境作用过早破坏的实例很多,由此造成的经济损失也很大。由于许多工程设计只满足荷载要求,而没有提出耐久性的要求,使已建成的混凝土构筑物存在耐久性隐患。我国在50年代兴建的水电站大坝有很多已经成为“病坝”,我国的混凝土工程量在改革开放30多年来突飞猛进,可以预见,耐久性不佳的混凝土工程的劣化问题将会日趋严重。因此,混凝土耐久性问题越来越受到人们的重视。1.1混凝土的耐久性破坏 混凝土耐久性涉及到混凝土性能的方方面面,是影响混凝土使用寿命的首要因素。造成混凝土耐久性不佳的原因多种多样,主要可分为:(1)物理破坏:由温度变化引起的收缩膨胀裂缝(这是由于混凝土内骨料和硬化水泥浆体不同的温度膨胀系数而引起),如冻融循环、除冰盐分对混凝土的剥蚀等;(2)化学破坏:由混凝土内部材料引起的碱骨料反应以及外部侵蚀性离子(Cl-)引起的诸如钢筋锈蚀、硫酸盐侵蚀(SO42-)以 混凝土的耐久性和可持续发展问题述评 周维1,朱惠英2 (1.广西建筑工程质量检测中心,广西南宁 530011; 2.广西建筑科学研究设计院,广西南宁530011) 摘要:从提高混凝土耐久性和混凝土技术可持续发展方面概述现代混凝土技术的发展趋势和发展方向。混凝土技术发展的根 本方向是坚持可持续发展战略,在与地球资源环境和谐共生的发展基础上,最大限度地改善混凝土的耐久性,提高其使用寿命。 关键词:混凝土;耐久性;可持续发展中图分类号:TU528 文献标识码:A 文章编号:1001-702X(2007)09-0077-05 Reviewofdurabilityandsustainabledevelopmentofconcrete ZHOUWei1,ZHUHuiying2 (1.GuangxiBuildingEngineeringQualityInspectionCenter,Nanning530011,Guangxi,China;2.GuangxiBuildingScienceResearch&DesignInstitute,Nanning530011,Guangxi,China) 收稿日期:2007-05-12 作者简介:周维,男,1965年生,广西柳州人,高级工程师。通迅联系 人: 朱惠英。 全国中文核心期刊

疲劳与环境作用下混凝土的耐久性研究进展

疲劳与环境作用下混凝土的耐久性研究进展 发表时间:2019-06-06T16:00:10.553Z 来源:《建筑学研究前沿》2019年3期作者:周艳霞1 谢波1 [导读] 桥梁、公路、海洋平台等混凝土结构在实际服役环境中经历着荷载与环境共同作用。 中核新能核工业工程有限责任公司山西太原 030012 摘要:桥梁、公路、海洋平台等混凝土结构在实际服役环境中经历着荷载与环境共同作用。对疲劳荷载加载方式、疲劳荷载对混凝土碳化及氯离子侵蚀的影响进行了总结与分析,并指出需要进一步研究和探索的问题。 关键词:混凝土;疲劳荷载;碳化;氯离子 Review Progress on Durability of Concrete under Fatigue and Environment Zhou yanxia1,Xie bo1 (CNNC Xinneng Nuclear Engineering Co.,Ltd,Taiyuan 030012,China) Abstract:Concrete structures such as bridges,highways,and offshore platforms experience the combined effects of loads and the environment in the actual service environment.This paper summarizes and analyzes the loading methods of fatigue,the effects of fatigue load on carbonation of concrete and chloride ion erosion,and points out issues that need further research and exploration. Key words:concrete;fatigue load;carbonation;chloride ion 引言 近年来,随着我国城市化进程的不断推进及现代化不断发展,高铁、地铁、机场、道路、桥梁等工程建设迎来了高峰期。混凝土结构因其取材容易、性能稳定、耐火性能好等诸多优点而被广泛地应用上述工程。在实际服役过程中,此类混凝土结构不仅经历着环境作用(空气中CO2碳化作用、腐蚀性离子侵蚀、冻融作用等),同时还经历着循环往复的交通运输荷载(即疲劳荷载),在诸多作用下混凝土耐久性问题变得越来越突出。 在疲劳荷载作用下,混凝土内部微裂缝不断萌生、扩展、汇合,直至混凝土试件失稳破坏。混凝土碳化及氯离子侵蚀均是CO2、Cl-1通过混凝土孔隙、裂缝进入内部并发生作用。处于海洋环境、除冰盐环境中的混凝土结构,在混凝土碳化、氯离子侵蚀与疲劳荷载耦合作用下,混凝土结构的耐久性性能会加剧劣化,直接关系到混凝土结构能否满足正常使用要求、能否达到预定的服役年限,甚至影响建筑结构的安全性[1]。 鉴于公路、铁路、桥梁等混凝土结构在疲劳荷载和环境共同作用下,将导致混凝土结构耐久性退化和过早劣化,将造成严重的安全隐患和巨大的经济损失。本文将着重论述疲劳荷载与环境作用下混凝土的耐久性研究现状,并讨论需要进一步研究和探索的问题。 1.疲劳荷载的加载方式 疲劳荷载可按照不同的方式进行加载,获得不同疲劳损伤程度混凝土试件用于研究。 宋玉普[2,3]等通过自行改造的MTS疲劳试验机实现混凝土在定侧压下等幅和变幅抗压疲劳。杨健辉[4]等通过大连理工大学研制的大型三轴试验机实现混凝土试件在双向侧压作用下受拉疲劳。吕培印[5]基于室内试验,设计了在等幅和变幅疲劳荷载作用下混凝土的轴拉疲劳试验。易成[6]、石小平[7]、王晶[8]利用三分点加载的方式实现混凝土试件弯曲疲劳。 2.疲劳荷载对混凝土碳化的影响 混凝土碳化是大气环境中的CO2气体通过混凝土内部孔隙、裂缝与混凝土中水化物发生化学反应的过程。疲劳荷载作用会造成混凝土内部产生更多的裂缝,促使裂缝和孔隙贯穿连通,为环境中CO2提供更多通道向混凝土内部扩散,所以疲劳荷载大小和形式一定会影响混凝土碳化性能。到目前为止,国内外学者对疲劳荷载作用下混凝土碳化性能研究已取得不少成果。 胡刚等[9]通过对使用年限不同的实际工程结构在疲劳荷载作用下,对其耐久性性能退化问题进行了调查研究,研究了在疲劳荷载作用下混凝土碳化性能随时间变化的规律,结果表明,疲劳荷载加速了CO2在混凝土中的扩散能力,加快了混凝土碳化速率,同时也加剧了混凝土中钢筋锈蚀的程度。蒋金洋等[10]研究了疲劳荷载作用下超高程泵送钢纤维混凝土碳化性能,研究结果表明,疲劳荷载对混凝土碳化性能劣化存在临界值,一旦疲劳循环次数超过相应的临界值,SFRC试件的抗碳化性能就会随着疲劳次数的增加而降低。王晶等[8]研究了不同疲劳损伤度混凝土的耐久性性能变化规律,综合分析了疲劳损伤对相对动弹模、混凝土碳化深度、空气渗透性、裂缝等多方面的影响,研究结果表明,混凝土碳化深度随疲劳损伤度的增大而增大。 3.疲劳荷载对氯离子侵蚀的影响 在实际工程中,处于海洋环境中或除冰盐环境中的混凝土结构,研究疲劳荷载作用下混凝土氯离子侵蚀性能具有重大的实际工程意义和理论研究价值。到目前为止,国内外学者对疲劳荷载作用下混凝土氯离子侵蚀性能已开展了不少研究。 张武满等[13]研究了在抗压疲劳荷载作用下,GGBFS和SF对混凝土氯离子渗透性影响。分析表明,氯离子渗透速率随应力水平增高而增大;GGBFS掺量不大于30%、SF掺量不大于10%时,可有效抑制氯离子在混凝土中的渗透性速率。 李炜等[14]采用轴向压缩疲劳加载方式,通过控制应力水平、加载循环次数,确定不同疲劳损伤度混凝土试件,研究了疲劳荷载对混凝土中氯离子扩散系数的影响。研究表明,混凝土中氯离子扩散系数随疲劳损伤的增加而增大,该规律在高应力水平下更为明显,但未给出定量表达式。 孙培华[15]通过轴向压缩进行疲劳加载,对不同疲劳损伤程度混凝土进行了氯离子侵蚀试验。结果表明,在疲劳荷载下,氯离子的侵蚀速率和侵蚀深度明显提高,特别当疲劳荷载水平超过0.6fu时,氯离子的侵蚀速率和侵蚀深度显著提高。不足的是该研究未建立考虑疲劳荷载影响的氯离子扩散模型。 Saito等[16]研究了循环压缩荷载对混凝土氯离子侵蚀性能影响。分析得出,当循环压缩荷载水平大于60%时,混凝土中氯离子侵蚀速度显著增大;氯离子侵蚀速率随混凝土残余应变的增大而增大;但未提出定量公式。Xi等[17]利用微观监测方法,研究了轴心抗压疲劳与氯离子扩散交互作用下混凝土的氯离子传输性能,也得出了与Saito等[16]一致的结论。 Xiang等[18]利用数值模拟和可靠性分析方法,研究了不同疲劳损伤度混凝土氯离子扩散速率随时间变化规律,得出了以疲劳损伤度为

混凝土的耐久性研究

混凝土的耐久性研究 摘要:随着城市化建设力度加快,混凝土以价格低廉、性能优越在基础设施中成为了首选的施工材料,具有用量大、用途广等特点。对于混凝土结构,它的耐久性是施工质量以及安全的重要保障[1]。碳化、钢筋腐蚀、冻融及碱-骨料反应等构成混凝土耐久性的主要内容, 而耐久性与强度作为混凝土的两个重要指标,在施工与设计中,受各种因素影响,对混凝土耐久性的重视力度明显缺乏。针对这种情况,为了促进混凝土施工持续发展,必须在环境保护与基础设施上,提高混凝土施工的耐久性。本文从混凝土的抗冻性、混凝土的碳化、碱集料反应、耐磨性、钢筋锈蚀等5个方面对混凝土耐久性影响因素改善措施等方面进行了深度研究和探索,通过从结构形式、原材料、细节构造、工艺措施等方面进行综合对比,从施工、设计与维修上提升施工质量。 关键词:混凝土耐久性;抗冻性;碳化;钢筋锈蚀;碱骨料反应; Abstract:LiFePO4is an important cathode material for lithium-ion batteries. Regardless of the biphasic reaction between the insulating end members, Li x FePO4, optimization of the nanostructured architecture has substantially improved the power density of positive LiFePO4 electrode. The charge transport that occurs in the interphase region across the biphasic boundary is the primary stage of solid-state electrochemical reactions in which the Li concen-trations and the valence state of Fe deviate significantly from the equilibrium end members. Complex interactions among Li ions and charges at the Fe sites have made understanding stability and transport properties of the intermediate domains difficult. Long-range ordering at metastable intermediate eutectic composition of Li2/3FePO4has now been discovered and its superstructure determined, which reflected predomi-nant polaron crystallization at the Fe sites followed by Li+redistribution to optimize the Li Fe interactions. Keywords: cathode material; LiFePO4; lithium ion battery; metastable mesophase; Li2 / 3FePO4; solid material

桥梁混凝土结构耐久性施工方案

《桥梁混凝土结构耐久性施工方案》 一、编制说明 根据施工设计图提供技术参数及资料,本工程地处多为盐碱和盐 碱水环境,其地质多为海相沉积形成,富含Cl- SO2等多种离子。工 程处于寒冷地区,雨雪天后为保证通行主要市区道路和部分公路都喷 洒化冰盐水;本工程桥梁结构所处的环境类型为Ⅱ类,根据工程地 质勘察本场地河水、地下水及基土对混凝土存在微腐蚀性,对钢筋混 凝土结构中的钢筋具弱等腐蚀性,本工程设计基准使用100年。因此 确定桥梁各部位防腐等级如下:钻孔灌注桩、墩柱、桥墩、桥台按不 低于环境作用等级C级采取防护。 二、根据混凝土防腐设计设计图依据工程施工规范标准: 1、《普通混凝土配合比设计规程》JGJ55-2011) 2、《公路工程混凝土结构防腐技术规范》(JIC/TB07-01-2006) 3、《混凝土结构工程施工质量验收规范》(GB50204-2015) 4、《混凝土耐久性检验评定标准》(JGJ/T193-2009) 5、《混凝土外加剂》(BG8706-2008) 6、《天津市钢筋混凝土耐久性设计规程》(DB/29-165-2006) 7、《天津市市政工程施工技术规范》(DB29-75JI0406) 8、《混凝土结构工程施工质量验收规范》(GB50204-2015)

9、《普通混凝土拌合物性能试验方法标准》(GB/50080-2016) 10、《普通混凝土长期性能和耐久性能试验方法标准》 (GB/T5008-2016) 11、《普通混凝土拌合物力学试验方法标准》 (GB/T5008-2016) 12、《用于水泥和混凝土中的粒化高炉矿渣》 (BG/T18046-2008) 13、《用于水泥和混凝土中的粉煤灰》(BG/T1596-2005) 14、《混凝土拌合水标准》(JGJ63-2006) 15、《公路工程质量检验评定标准》(JTGF80/1-2018) 16、《公路桥涵施工技术规范》(JTG/F50-2011) 三、防腐混凝土耐久性配合比选择: 充分考虑混凝土配合比试配时的指标:电通量、抗冻性、抗裂性、密实性、耐磨性、耐蚀性、抗碱-骨料反应检验满足工程要求。所以在钻孔桩配合比中掺加粉煤灰,增加混凝土流动度和易性,便于工程施工。对于墩柱掺加粉煤灰、磨细矿渣粉使混凝土更加密实内实外光、色泽一致。预制梁或现浇箱梁掺加磨细矿渣粉降低水化热又能增加其强度。根据拌

【混凝土】结构耐久性研究现状

混凝土结构耐久性研究现状 由于钢筋混凝土结构结合了钢筋抗拉与混凝土抗压的优点,表现出良好的受力性能,成为应用最普遍最广泛的结构形式,近年对水工结构、港工结构、桥梁结构、建筑结构的大量工程调查显示,钢筋混凝土结构表现出了严重的耐久性问题,许多既有钢筋混凝土结构工程往往达不到设计使用年限就需要进行加固修复,其中耐久性的降低是一大影响因素。钢筋混凝土结构耐久性问题的日益突出,引起了世界各国对加强钢筋混凝土结构耐久性研究的重视。 耐久性是指在确定的环境和维修、使用条件下,构件在设计使用年限内保持适用性、安全性的能力。钢筋混凝土结构在其使用过程中经常会受到各种各样的腐蚀和损伤,降低了构件的耐久性和结构的可靠度,导致工程的实际使用寿命往往短于设计使用年限。 影响耐久性的因素,混凝土的碳化,钢筋锈蚀,混凝土的冻融,碱-骨料反应等。 我国在钢筋混凝土耐久性问题上尚缺少全国性的系统资料,但从一些调查资料和发表的有关文献来看,钢筋混凝土耐久性问题也是极其严重的。中国建筑科学研究院的调查表明,我国现役工业建筑物损坏严重,其结构的使用寿命一般不能保证50年,多数在25-30年左右就必须进行大修或加固。1994年铁路部门的统计表明,我国铁路存在有病害的钢筋混凝土桥2675座,其中的722座发生裂损;仅使用20年的北京西直门立交桥,由于长期在冬季使用化冰盐,部分梁柱锈蚀严重,现己拆除重建。从发达国家所取得的经验来看,钢筋混凝土耐久性问题造成的损失己是惊人的。美国标准局(NBS)1975年的调查表明,美国每年因腐蚀造成的各种损失为700多亿美元,蚀破坏的修复费,1998年度就需要2500亿美元。英国为解决海洋环境下钢筋混凝土结构的腐蚀与防护问题和修复已损伤的钢筋混凝土结构,每年耗资将近200亿英镑,而日本引以为自豪的新干线,在运行10年后也出现大面积的混凝土开裂、剥蚀现象,日本运输省曾检查了其103座混凝土港口码头,发现使用20年以上的都有大量的顺筋裂缝,目前日本每年用于房屋结构维修的费用就达400亿日元。 混凝土结构耐久性降低首先起源于材料性能劣化,继而引起混凝土构件强度、刚度衰减,最后影响整个结构安全。由于客观条件,很多研究基于一般假设,如先钢筋锈蚀后加载试验,忽略荷载对混凝土力学性能劣化影响。在实际工程中绝大多数混凝土结构经受荷载和环境因素同时作用,混凝土在承受荷载时,混凝土本身力学性能退化;同时对钢筋保护作用降低,加速钢筋锈蚀,有效钢筋截面面积减小致使构件承载力降低,钢筋与混凝土黏结性能退化使得钢筋塑性不能充分发挥,降低结构延性。混凝土结构经受荷载和环境因素共同作用,荷载与环境等各因素产生的交互作用使得实际服役混凝土结构破坏过程复杂。研究荷载与环境综合作用下混凝土结构耐久性问题对实际工程更具有意义。 混凝土结构在荷载与一般大气环境综合作用下,荷载对混凝土碳化影响不容忽视,混凝土碳化与荷载大小(应力水平)和荷载形式(拉、压应力)等有关。当荷载应力抑制混凝土内部微裂缝发展时,混凝土碳化减缓; 而当荷载应力扩展混凝土内部微裂缝时,混凝土碳化加速。 荷载与特定大气环境( 如人工气候环境、盐雾大气环境、海洋大气环境等) 综合作用下构件耐久性研究成果甚少。张俊芝等试验研究了人工气候环境下承受荷载作用混凝土梁受压

混凝土结构耐久性论文

混凝土结构耐久性探析 摘要:混凝土耐久性是指混凝土在使用条件下,抵抗周围环境中各种因素长期作用而不破坏的能力。本文分析了混凝土结构耐久性影响因素,探讨了提高混凝土结构耐久性的措施。 关键词:混凝土;结构;耐久性 abstract: the durability of concrete is refers to the concrete in the use of conditions, the resistance of various factors in the surrounding environment without destroying long-term effects of ability. this paper analyzes the factors affecting the durability of concrete structure, and probes into the measures to improve the durability of concrete construction. keywords: concrete; structure; durability 中图分类号:tv331文献标识码:a 文章编号: 混凝土耐久性是指混凝土在使用条件下,抵抗周围环境中各种因素长期作用而不破坏的能力。环境对混凝土结构的物理化学作用以及混凝土结构抵御环境作用的能力,是影响混凝土结构耐久性的因素,对现有混凝土结构进行的耐久性检测与评估十分重要。 曾有调查表明 ,国内大多数工业建筑在使用25一30年后即需大修 ,处于严酷环境下的建筑物的使用寿命仅15 一20年 ,桥梁、港口等基础设施工程尤其严重。许多工程建成后几年就出现钢

混凝土耐久性的主要因素与其提高的措施

混凝土耐久性的主要因素与其提高的措施 混凝土耐久性是指混凝土构件在长期使用条件下抵抗各种破坏因素作用而保持其原有性能的性质。近年来,随着混凝土技术的发展,高性能混凝土的研究与应用普遍得到人们的重视,混凝土耐久性的研究则是其核心的研究内容。 标签:混凝土耐久性;主要因素;提高措施 1.影响混凝土耐久性的主要因素 1.1混凝土的抗渗性 混凝土的抗渗性是指混凝土在压力水的作用下抵抗渗透的能力。如果混凝土的抗渗性不好、溶液性的物质能浸透混凝土、与混凝土的胶结材料发生化学反应而使混凝土的性能劣化。在钢筋混凝土中、由于水分与空气的渗透、会引起钢筋的锈蚀。钢筋的锈蚀导致其体积增大、造成钢筋周围的混凝土保护层的开裂与剥落、使钢筋混凝土结构失去其耐久性。渗透性对混凝土的抗冻性也有重要的影响。因为渗透性决定了混凝土可能为水饱和的程度。渗透性高的混凝土、其内部孔隙为水分充满、在水的冰冻压力作用下、混凝土内部结构更易于产生损伤与破坏。因此可以说、混凝土的抗渗性是其耐久性的第一道防线。混凝土与其微观结构的劣化和侵蚀性介质的传输有关、混凝土的渗透性取决于其自身的微结构和饱和水程度、是决定混凝土性能劣化的关键因素。因此可能通过检测混凝土的渗透性来评估其耐久性。 1.2混凝土的抗冻性 混凝土的抗冻性决定于水泥石的抗冻性和骨料的抗冻性。从冰冻对水泥石和骨料的作用可以看出诸多因素影响混凝土的抗冻性。这些因素包括:水分迁移路径的距离、混凝土的孔结构、混凝土的饱和度、混凝土的抗拉强度以及冷却速度等。提高混凝土的抗冻性可以采用以下措施; (1)引气:这是因为在水泥石受到冻融作用时、水分迁移所引起的压力、可以由引入的微细气泡得到释放。一般说来、混凝土的抗冻性随着阴气量的增加而增加。而当含气量一定时、气泡尺寸、气泡数量和气泡的间距都会影响混凝土的抗冻性能。 (2)控制水灰比:水泥石内的大孔隙量与水灰比和水化程度有关。一般说来、水灰比小、水化程度高则水泥石中的孔隙越少。由于表面张力的原因、大孔隙内的水比小孔隙内的水更易于結冰、因此、在同等条件下、水灰比大的水泥石内可结冰的水更多、发生冻融破坏的几率更大。 (3)降低饱和度:混凝土的饱和度对冻融破坏有很大的影响、干燥的或部分干燥的混凝土不容易受到冻融破坏。一般存在一个临界饱和度、当混凝土的含

北交大混凝土的耐久性研究报告

混凝土的耐久性

摘要:混凝土抵抗环境介质作用并长期保持其良好的使用性能和外观完整性,从而维持混凝土结构的安全、正常使用的能力称为耐久性。对耐久性的检测方法以及施工要求都有论述。关键词:耐久性指标,耐久性检测项目,施工要求,耐久性检验新方法。 一.背景 二.混凝土材料的耐久性指标一般包括: 1、抗渗性 2、抗冻性 3、抗侵蚀性 4、混凝土的碳化(中性化) 5、碱骨料反应 三.耐久性检测项目 1、电通量:用通过混凝土的电通量来反应混凝土抗氯离子渗透性能; 2、混凝土抗冻标号:用慢冻法测得的最大冻融循环次数来划分的混凝土抗冻性能等级; 3、混凝土抗冻等级:用快冻法测得的最大冻融循环次数来划分的混凝土抗冻性能等级; 4、抗硫酸盐等级:用抗硫酸盐侵蚀试验方法测得的最大干湿循环次数来划分的混凝土抗硫酸盐侵蚀性能等级; 5、快速氯离子迁移系数法:通过测定混凝土中氯离子渗透深度,计算得到氯离子迁移系数来反映混凝土抗氯离子渗透性。 能的试验方法-简称为RCM法;该方法应用较为广泛,且多应用于工程现场氯离子含量的检测。

另外一种更快更简洁的试验方法简称为NEL法;该方法多应用于高校及科研院所中快速氯离子检测,现场工程应用尚少。 6、早期抗裂试验:用于测试混凝土试件在约束条件下的早期抗裂性能; 7、抗水渗透试验: (1)渗水高度法:用于以测定混凝土在恒定水压力下的平均渗水高度来表示的混凝土抗水渗透性能; (2)逐级加压法:用于通过逐级施加水压力来测定以抗渗等级来表示的混凝土的抗水渗透性能。 8、耐磨性(常见的方法有圆环法,风沙法) 9、护筋性 10、碱骨料反应 四.施工要求 一、控制骨料粒形和级配。粗骨料中针片状含量不得大于8%。粗骨料必须采用二级配或三级配;用于梁部、框架涵、墩台墩帽等钢筋密度大的结构时,最大粒径不大于20mm,用于 钻孔桩、承台、墩台身等钢筋密度较小的结构时,最大粒径不大于35mm。 二、合理使用外加剂,外加剂对混凝土的强度和耐久性影响重大,要严格控制外加剂进料、抽检、贮存等环节;严格执行公司物资管理规定,确保外加剂质量。 三、同等级而不同用途的混凝土,应根据用途要求的混凝土性能设计不同的配合比。在不同的施工环境下,同等级同用途的混凝土应设计不同配合比以使混凝土的性能适应施工环境变化。 四、试配的试件应分为标准养护和同条件养护两种,待分别达到标准规定的龄期进行试压,以评估混凝土在同等养护条件下的强度表现。在工地尚没有进行施工的情况下,可按施工组织设计制订的现场养护方案,模拟同等养护条件。 五、每种混凝土配合比设计均应采用多种配合比方案,反复比选。 六、用于室内设计混凝土理论配合比的原材料应与现场采用的原材料相同。如原材料改变,则必须相应调整配合比。此间,尤其要注意碎石或砂的品质和级配发生改变。不允许不顾原材料改变而"一张配合比通知单用到底"。 七、通过比选,合理采用矿物添加料品种和数量。应同时添加粉煤灰和矿粉,矿粉在矿物添加料中的比例宜为35%~50%。在满足使用性能要求的前提下,防止盲目加大水泥用量。在符合《铁路混凝土工程施工质量验收补充标准》规定最大水胶比条件下,尽可能降低水胶比。混凝土耐久性检测折叠 五.混凝土耐久性检测 1.传统渗透性检测方法 传统的检测方法有渗水法(抗渗标号法、渗透高度法、渗透系数法)渗油法、透气法(氧气、氮气等)。现行中国混凝土渗透性评价方法为抗渗标号法,遵循规范为国家建设部准GBJ82-1985《普通混凝土长期性能和耐久性能试验方法》。检测设备为国家技术监督局认定的标准HS-40型混凝土渗透仪。此标准对于C30以下的普通混凝土是有效的,对于现代混凝土,特别是高性能混凝土,已不适用。 2.新颖渗透性检测方法 新型的渗透性检测方法有表面透气法(氮气法)、表面吸水法(Suction)、电量法(ASTMC1202)、氯离子扩散系数法(电化学分析法:Fick第二定律、电迁移法:Nernst-Planck方程、电导法:NEL 法Nernst-Einstein方程)。 六.结束语 我国人口众多,对建筑安全有很多要求,对于混凝土的耐久性,由于忽视维修养护,导致许多问题。我们需要根据混凝土结构所处环境、结构重要程度和设计使用寿命等因素,根据规

混凝土结构耐久性浅谈

网络教育学院 本科生毕业论文(设计) 题目:混凝土结构耐久性浅谈 学习中心: 层次:专科起点本科 专业:土木工程 年级: 学号: 学生: 指导教师: 完成日期: 2013年 11 月 14 日

内容摘要 混凝土由于其具有经济、耐久、节能等众多优点,而成为重要的建筑材料,其应用范围十分广泛。作为目前世界最大宗的人造建筑材料,其在给人类带来巨大文明进步的同时,也面临由此造成的严峻的资源、能源和环境问题。传统意义上的混凝土由于自身结构材料和使用环境的特点,还存在着严重的耐久性问题,已不能满足混凝土行业的绿色可持续发展的要求。因此,提高混凝土的耐久性是实现混凝土环保化、节约化的积极有效措施。本文综述了耐久性对混凝土的重要意义,并着重分析了影响混凝土耐久性的主要因素。最后介绍了目前世界上提高混凝土的耐久性的研究结果以及目前国际上对混凝土的耐久性设计要求。 关键词:耐久性;混凝土;影响因素

目录 内容摘要 ........................................................................................................................... I 引言 . (1) 1 绪论 (2) 1.1 混凝土耐久性问题的提出 (2) 1.2 混凝土耐久性的概念 (2) 2 混凝土结构耐久性问题的分析 (3) 2.1 混凝土冻融破坏 (3) 2.1.1 破坏机理 (3) 2.1.2 影响因素 (4) 2.2 混凝土渗透破坏 (4) 2.2.1 破坏原因 (4) 2.2.2 影响因素 (5) 2.3 碱骨料反应 (5) 2.3.1 破坏原因 (5) 2.3.2 影响因素 (6) 2.4 混凝土的碳化 (6) 2.4.1 破坏原因 (6) 2.4.2 影响因素 (7) 2.5 钢筋锈蚀 (7) 2.5.1 破坏原因 (7) 2.5.2 影响因素 (8) 2.6 化学侵蚀 (8) 2.6.1 产生原因 (8) 2.6.2 影响因素 (9) 3 提高混凝土耐久性的措施 (10) 4 案例分析 (12) 5 结论与展望 (17)

混凝土耐久性与寿命预测

土木工程材料结课论文题目:混凝土耐久性与寿命预测

摘要 摘要:实现混凝土工程的高耐久和长寿命是效益巨大的节能减排和可持续发展之举措, 混凝土的耐久性成为影响混凝土技术未来发展的关键技术已成为共识。混凝土结构的耐久性问题是一个十分复杂的工程问题,不仅影响到结构的使用寿命,更加影响到整个社会的经济效益。本文介绍了混凝土结构耐久性的研究现状,详细阐述了混凝土结构耐久性的影响因素、研究方法以及耐久寿命的定义,重点介绍了混凝土结构材料耐久寿命预测的研究方法,最后提出了混凝土结构耐久性需进一步研究的问题。 关键词:混凝土;耐久性;研究现状;寿命预测 水泥混凝土以其原材料易得、易浇注成型、适应性强、性价比高、综合能耗低等优点而成为当今世界上应用最广泛、用量最大的建筑材料。尽管现代材料科学发展日新月异, 但仍然没有科学家能预言可替代水泥混凝土的建筑材料新品种。从20 世纪30 —40 年代开始,西方国家出于战后重建、工业化、城市化以及能源开发的需要, 用混凝土修建了大量的基础设施, 混凝土用量持续增长。之后, 发展中国家经济的强劲增长进一步助推了混凝土用量的迅猛增长。1987 年, 美国国家材料顾问委员会提交的调查研究报告使混凝土结构的耐久性在美国

乃至世界范围内引起轰动。该报告指出, 大约25.3 万座混凝土桥梁的桥面板, 其中部分仅使用不到20 年就已经发生不同程度地损坏, 使用年限远低于40 ~50 年的设计寿命。大量混凝土结构过早出现严重劣化引起了世界范围内对混凝土耐久性的高度关注, 不仅是因为需要花费巨资修补加固甚至重建, 还在于当今世界人口膨胀、能源供应紧张、环境污染、温室效应导致的气候变暖和生态恶化对可持续发展的迫切需要。混凝土耐久性成为关注焦点促进了世界范围内混凝土理论和技术的快速发展和进步, “混凝土耐久性的整体论模型”、“混凝土结构的寿命预测”、“混凝土结构寿命周期评价(影响评价、成本分析)”等新认识、新方法的出现, 将会为克服混凝土结构在服役过程中的过早劣化问题、实现混凝土技术的可持续发展提供强有力支撑。 混凝土结构的耐久性是一个十分复杂的工程问题。目前的研究主要集中在混凝土腐蚀机理研究、在役结构的健康状况评价和剩余寿命预测、结构性能的防护措施研究等方面,对在役建筑物如何评估其耐久性和剩余使用寿命,也尚无统一方法。事实表明,混凝土结构耐久性的研究滞后于工程实践的需要,因此,积极开展混凝土结构耐久性研究对国民经济建设具有重要意义。本文介绍了工程混凝土结构耐久性的研究现状、影响因素和研究方法,并对混凝土结构材料的寿命预测方法进行了总结和详述。 1 混凝土结构耐久性研究现状 混凝土结构的耐久性,是指混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持其安全、使用功能和外观要求的能力。混凝土结构的耐久性研究应考虑环

普通混凝土耐久性研究

摘要 从上个世纪中期,混凝土结构因耐久性不良造成过早失效及崩塌破坏的事故在国内外都屡见不鲜,世界各国为此付出的代价十分沉重。由于工程安全因素更由于耗费巨资的经济因素,混凝土结构日益突出的耐久性问题,越来越受到世界各国学术界和工程界的广泛重视。提高混凝土的耐久性,对节约资源、能源及资金均有重大的意义。 通过阅读大量关于混凝土耐久性方面的文献资料,总结了国内外混凝土结构的耐久性状况和研究动态,明确了混凝土结构耐久性的意义和重要性。 本论文探讨了混凝土的腐蚀类型和腐蚀机理,包括了混凝土基材水泥的腐蚀类型和机理,钢筋的锈蚀机理和混凝土结构的腐蚀机理,总结了混凝土耐腐蚀性能的主要影响因素以及它与抗渗性能和抗冻性能之间的关系;讨论了原材料的选择,包括水泥品种、集料性质、拌合及养护用水的水质情况、外加剂的种类和掺合料对混凝土耐腐蚀性能的影响。 关键词:混凝土;耐久性;耐腐蚀性

目录 一、绪论 (2) (一)混凝土耐久性的含义 (2) (二)国内外混凝土耐久性研究动态 (2) 二、混凝土的腐蚀类型和腐蚀机理 (3) (一)腐蚀 (3) (二)水泥类材料的腐蚀机理 (3) (三)混凝土的耐腐蚀性与抗渗性和抗冻性之间的关系 (5) 三、原材料对混凝土耐腐蚀性能的影响 (5) (一)水泥 (5) (二)集料 (6) 四、普通混凝土高性能化 (6) (一)提高性能的技术途径 (6) (二)提高混凝土耐久性 (7) 五、结论与展望 (8) (一)结论 (8) (二)展望 (8)

普通混凝土耐久性研究 一、绪论 从19世纪20年代波特兰水泥价而成为土建工程中不可缺少的材料,广泛用于桥梁、大坝、高速公路、工业与民用建筑等结构中。据不完全统计,当今世界每年消耗的混凝土量不少于45亿立方米,并且随着逐步增长的城市化建设,年消耗量在不断增长。 混凝土材料经历了低强度、中等强度、高强度乃至超高强度的发展历程,似乎人们总是乐于追求强度的不断提高。但是近四五十年来,混凝土结构因材质劣化造成过早失效以及崩塌破坏的事故在国内外都屡见不鲜,并有愈演愈烈之势。这些混凝土工程的过早破坏,其原因不是强度不够,而是由于混凝土耐久性不良所造成。 (一)混凝土耐久性的含义 所谓的混凝土耐久性,是指其抵抗环境介质的作用,并长期保持良好的使用性能和外观完整性,从而维持混凝土结构的安全和正常使用的能力。 影响混凝土结构耐久性的因素很多,可分为内在因素和外在因素两大类。内在因素是指混凝土结构抵御环境的能力,由结构的设计形状和构造形式、选用的水泥和骨料的种类、外加剂的品种,钢筋保护层的厚度和直径的大小、混凝土的水灰比、浇注和养护的施工工艺等多种因素所决定。外在因素是环境对混凝土结构的物理和化学作用,包括干湿和冻融循环、碳化、化学介质侵蚀、磨损破坏等诸多方面,不同环境对混凝土结构耐久性的影响程度不尽相同,外在因素是通过内在因素而起作用的混凝土耐久性具体包括抗渗、抗冻、耐腐蚀、碳化、碱骨料反应及混凝土中的钢筋锈蚀等性能。虽然混凝土在遭受压力水、冰冻或侵蚀作用时的破坏过程各不相同,但影响因素却有许多相同之处。混凝土的密实度是最为关键的因素,其次是材料的性质、施工质量等。 (二)国内外混凝土耐久性研究动态 混凝土结构耐久性问题的日益突出,引起了世界各国学术机构、学者和工程技术人员对加强钢筋混凝土结构耐久性研究的重视,表现在各种结构耐久性学术

混凝土耐久性影响的研究

关于含水量对混凝土耐久性影响的研究 摘要:混凝土的耐久性是工程上长期以来关注的重点,尤其是水工混凝土。混凝土的冻融破坏是导致混凝土耐久性丧失的最主要的原因之一,严重影响了混凝土建筑物的长期使用和安全维护。因此,进行混凝土冻融后的力学性能研究具有非常重要的现实意义。对于水工混凝土而言,改善其抗冻性能是提高混凝土耐久性的有效手段。目前最常用且最有效的办法就是在混凝土浆体中掺入适量的引气剂。本文以三峡工程II期混凝土工程为例先后说明以上两点。 关键词:混凝土;水工混凝土;耐久性;冻融破坏;引气剂 0前言 混凝土的耐久性是指结构在规定的使用年限内,在各种环境条件作用下,不需要额外的费用进行加固处理就能保持其安全性、正常使用和可接受的外观能力。影响混凝土耐久性的因素很多,如:混凝土冻融、碳化;钢筋锈蚀;侵蚀性介质腐蚀;碱集料反应等。混凝土自身的物理性能是影响其耐久性的内在因素,而具体的使用环境则是外在因素。在这几种主要的影响因素中,尽管碳化对混凝土的耐久性影响较大,但其破坏过程较长,所以冻融破坏则表现的最为明显。而混凝土的抗冻性是指混凝土在受到物理作用(干湿变化,温度变化,冻融变化等)后,保持其强度和外观完整性的能力。它是反映混凝土耐久性的重要指标之一。目前,水工建筑物的耐久性主要通过抗冻性和抗渗性指标来表征[1]。 任一材料,其耐久性都不是固定不变的。然而,混凝土因耐久性不足引起的破坏也不是突然发生的,而是在一段使用时间的环境作用下,混凝土的微观结构和性质逐渐发生变化,直到不能满足使用要求,达到其使用寿命。混凝土受冻融循环作用后,其力学性能和耐久性都会发生劣变,导致混凝土结构的安全性能降低、使用寿命的减短。但是目前关于对混凝土结构工程的设计,往往是忽略了冻融循环对混凝土的力学性能产生的不利影响。所以,对混凝土结构进行冻融循环后的力学性能分析,进而预测其剩余寿命,具有很大的应用价值。现有的关于冻融循环后混凝土性能的研究,大多是以质量损失或相对动弹性模量变化为标准[2],针对混凝土的抗冻安全等级而展开的。而对冻融后混凝土的力学性能研究得较少。然而,在实际应用中,建筑物的使用性能及耐久性恰恰与混凝土的力学性能关系最为密切。因此,研究混凝土冻融循环作用后的力学性能有着非常重要的现实意义。混凝土的冻融破坏实质上是受拉开裂破坏。动弹性模量能够敏感地反映混凝土的内部结构损伤,较直接地测试其抗压强度,进而能更精准地反映混凝土的冻融损伤的情况[3]。此外,以动弹性模量为指标的测试方法为非破损法,且操作简便。 本文以三峡大坝混凝土II期混凝土工程为例,按照现行的GBJ82-85《普通混凝土长期性能和耐久性试验方法》[4]中抗冻性能试验的“快冻法”对混凝土试块进行0、25、50、75、100、125、150、200甚至300次冻融循环试验,并对实验结果进行分析,建立起冻融循环后混凝土的抗压强度与冻融循环次数之间的关系式。在影响混凝土抗冻性的诸多因素中,含水量又起着至关重要的作用。因此,本文在研究混凝土抗压强度与冻融次数之间关系的基础上,进一步分析含水量对混凝土抗冻性能的影响,并提出有效的防治措施。 1 试验准备 1.1 试验样本 本实验的试验样本取自三峡大坝II混凝土工程,为了更好的说明含水量对混凝土冻融的

高耐久性混凝土技术

高耐久性混凝土技术 2.1.1 技术内容 高耐久性混凝土是通过对原材料的质量控制、优选及施工工艺的优化控制,合理掺加优质矿物掺合料或复合掺合料,采用高效(高性能)减水剂制成的具有良好工作性、满足结构所要求的各项力学性能、且耐久性优异的混凝土。 (1)原材料和配合比的要求 1)水胶比(W/B)≤0.38。 2)水泥必须采用符合现行国家标准规定的水泥,如硅酸盐 水泥或普通硅酸盐水泥等,不得选用立窑水泥;水泥比22/kg。,不应大于380m表面积宜小于350m /kg3)粗骨料的压碎值≤10%,宜采用分级供料的连续级配,吸水率<1.0%,且无潜在碱骨料反应危害。 4)采用优质矿物掺合料或复合掺合料及高效(高性能)减 水剂是配制高耐久性混凝土的特点之一。优质矿物掺合料主要包括硅灰、粉煤灰、磨细矿渣粉及天然沸石粉等,所用的矿物掺合料应符合国家现行有关标准,且宜达到优品级,对于沿海港口、滨海盐田、盐渍土地区,可添加防腐阻锈剂、防腐流变剂等。矿物掺合料等量取代水泥的最大量宜为:硅粉≤10%,粉煤灰≤30%,矿渣粉≤50%,天然沸石粉≤10%,复合掺合料≤50%。

)混凝土配制强度可按以下公式计算:5. ≥f+1.645σf cu,kcu,0——混凝土配制强度(MPa);f式中 cu,0;——混凝土立方体抗压强度标准值(MPa)f k,cuσ——强度标准差,无统计数据时,预拌混凝土可按《普通混凝土配合比设计规程》JGJ 55的规定取值。 (2)耐久性设计要求 对处于严酷环境的混凝土结构的耐久性,应根据工程所处环 境条件,按《混凝土结构耐久性设计规范》GB/T 50467进行 耐久性设计,考虑的环境劣化因素及采取措施有: 1)抗冻害耐久性要求:a)根据不同冻害地区确定最大水胶 比;b)不同冻害地区的抗冻耐久性指数DF或抗冻等级;c) 受除冰盐冻融循环作用时,应满足单位面积剥蚀量的要求; d)处于有冻害环境的,应掺入引气剂,引气量应达到3%~5%。 2)抗盐害耐久性要求:a)根据不同盐害环境确定最大水胶 比;b)抗氯离子的渗透性、扩散性,宜以56d龄期电通量 或84d氯离子迁移系数来确定。一般情况下,56d电通量宜 ≤800C,84d氯离子迁移系数宜≤;c)混凝2?12s.25?10/m土表面 裂缝宽度符合规范要求。 3)抗硫酸盐腐蚀耐久性要求:a)用于硫酸盐侵蚀较为严重 的环境,水泥熟料中的CA不宜超过5%,宜掺加优质3)根 据不同硫酸盐腐蚀环境,b的掺合料并降低单位用水量;

关于混凝土长期性与耐久性问题分析与研究

关于混凝土长期性与耐久性问题分析与研究 摘要:混凝土是当今世界用量最大的建筑材料。本文主要从混凝土原材料的选择、混凝土配合比的合理确定、混凝土施工管理及养护等方面分析探讨了对混凝土耐久性的影响,然后介绍了提高混凝土耐久性的技术策略,从而保证混凝土结构质量。望能为此类工程提供一定的参考价值。 关键词:混凝土耐久性;原材料;配合比; Abstract: the concrete is the world’s largest amount of building materials. This article mainly from the concrete the choosing of raw materials, the reasonable determination of the mixing proportion of concrete, concrete construction management and maintenance analyses and discusses the influence of the durability of concrete, and then introduced the enhance the durability of concrete’s technology strategy, so as to ensure the quality of concrete structure. Hope for such project to provide certain reference value. Keywords: durability of concrete; Raw materials; Mix; 中图分类号:TU37文献标识码:A 文章编号: 前言 混凝土是当今世界用量最大的建筑材料。我国混凝土使用量居全球之冠,为适应经济快速发展发挥了极其重要的作用。混凝土的应用过程中暴露出许多问题,其中尤为突出的是耐久性问题。如不少工程在使用10~20 年后,有的甚至在使用几年之后即需维修。混凝土工程大多是永久性的,工程量大、耗资多,若耐久性不良将会给未来社会造成极为沉重的负担。因此,从资金节约、资源的有效利用及环境保护等方面综合考虑,必须深入研究混凝土的耐久性问题。虽然混凝土在遭受压力水, 冰冻或侵蚀等作用时的破坏过程, 各不相同, 但对提高混凝土的耐久性的措施来说, 几乎都是为提高混凝土的密实性为目的。提高混凝土的耐久性措施有: 1) 合理选择水泥品种; 2) 选用较好的砂、石骨料; 3) 合理确定混凝土配合比; 4) 掺用减水剂、矿物掺合料及引气剂; 5) 加强施工质量管理, 严格控制混凝土质量。 一、混凝土原材料选择问题分析 1、水泥。实际应用时, 应根据混凝土工程特点或所处环境条件, 选用合适的水泥。水泥是混凝土中的活性组分, 其强度的大小直接影响着混凝土强度的高低。在我国, 混凝土的质量验收习惯上以混凝土的强度指标为单一的衡量标准, 从而导致水泥工业对水泥强度的不适当追求, 使水泥细度增加, 早强的矿物成分比例提高, 而这一切都不利于混凝土的耐久性, 所以不是所有早强和高标号的水泥就是好的。

相关主题
文本预览
相关文档 最新文档