当前位置:文档之家› 电力系统中性点接地方式及其运行分析研究毕业设计论文

电力系统中性点接地方式及其运行分析研究毕业设计论文

电力系统中性点接地方式及其运行分析研究毕业设计论文
电力系统中性点接地方式及其运行分析研究毕业设计论文

学号:2009302540166

密级:_____________ 武汉大学本科毕业论文

电力系统中性点接地方式及其运行分析研究

BACHELOR'S DEGREE THESIS OF WUHAN UNIVERSITY

Neutral Grounding Mode of the Electric Power System and Its Operation Analysis

College :School of Electrical Engineering

Subject :Electrical Engineering and Automation

Name :Yu Zhang

Directed by :Associate Prof. Ding Jianyong

June 2013

郑重声明

本人呈交的学位论文,是在导师的指导下,独立进行研究工作所取得的成果,所有数据、图片资料真实可靠。尽我所知,除文中已经注明引用的内容外,本学位论文的研究成果不包含他人享有著作权的内容。对本论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确的方式标明。本学位论文的知识产权归属于培养单位。

本人签名:_________________ 日期:_________________

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解XX大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

摘要

电力系统中性点接地方式是一个非常综合的技术问题,它与电网电压等级、电网结构、对象类型、绝缘水平、供电可靠性、继电保护、电磁干扰、人身安全都有很大的关系。电力系统中性点接地方式的选择涉及到技术水平、经济发达程度和安全性等多个方面,基于各个国家和地区电力技术的水平、条件和运行经验等因素的不同,中性点接地方式也不尽相同。掌握各级电力系统中性点采用何种接地方式,对于电力系统专业的学生以及实际操作的工作人员都具有很重要的理论和现实意义。

本论文简单介绍了各种中性点接地方式在国内外的发展和现状,并对中性点不同接地方式进行对比,包括中性点直接接地,中性点经消弧线圈接地,中性点不接地,中性点经电阻接地四种常见接地方式的特点和问题,并对其各自的原理、适用范围和优缺点等进行理论分析。

通过具体算例(10kV大型公共设施供电系统)来建立数值计算模型,对不同中性点接地方式电网的过电压等级和短路电流大小进行计算,根据相关标准规范,选定恰当的中性点接地方式及接地设备。

关键词:配电网;中性点接地方式;单相接地故障;短路电流

ABSTRACT

It is an important technical problem to neutral grounding mode of the electric power system which associates with voltage level, network structure, object type, insulation level, and reliability of power supply, protective relaying, electromagnetic interference, and personal safety. The selection of neutral grounding mode is relevant to many aspects such as technology level, economic development and security demand. The selection of the neutral grounding mode varies according to the level of electric power technology, operation experience and other factors of the power system. For the power system professional students and the actual operation staff, mastering the selection of neutral grounding mode under different conditions has a very important theoretical and practical significance.

In the thesis, the development and current status of the neutral grounding technologies at both home and abroad are been introduced, as well as the theoretical analysis of the advantages and disadvantages of different modes, including direct neutral grounding, neutral grounding through arc suppression coil, neutral ungrounding and neutral grounding through resistance.

Numerical model is been created through specific examples (10kv large public facilities supply system). Calculate the overvoltage and short circuit current level in different neutral grounding modes, selecting appropriate neutral grounding mode and equipment according to relevant principle.

Key words: Power distribution network, Neutral grounding mode, Single-phase grounding fault and Short-circuit current.

目录_Toc357347651

第1章绪论

1.1论文研究的目的和意义 (1)

1.2中性点接地方式在国外的发展和现状 (1)

1.3中性点接地方式在我国的发展和现状 (3)

1.3.1中性点接地方式在我国的发展 (3)

1.3.2目前我国的10KV配电网中性点接地方式 (5)

1.4本论文的主要内容 (6)

第2章中性点接地方式的选择

2.1电力系统中性点接地方式的类型 (7)

2.1.1中性点有效接地方式 (7)

2.1.2中性点非有效接地方式 (8)

2.2影响中性点接地方式的主要因素 (9)

2.2.1供电可靠性 (9)

2.2.2电气设备与线路的绝缘水平 (10)

2.2.3继电保护的可靠性 (10)

2.2.4人身安全 (11)

2.2.5设备安全 (11)

2.2.6通信干扰 (12)

2.2.7其他影响因素 (13)

第3章四种常见的中性点接地方式

3.1中性点不接地方式 (14)

3.1.1中性点不接地原理综述 (14)

3.1.2中性点不接地运行状况分析 (14)

3.1.3中性点不接地系统的特点 (15)

3.2中性点经消弧线圈接地方式 (16)

3.2.1中性点经消弧线圈接地原理综述 (16)

3.2.2中性点经消弧线圈接地运行状况分析 (16)

3.2.3中性点经消弧线圈接地系统的特点 (17)

3.3中性点经电阻接地方式 (18)

3.3.1中性点经电阻接地的运行原理 (18)

3.3.2以电缆线路为主的城市电网的特点[5] (18)

3.3.3中性点经电阻接地系统的分类 (19)

3.3.4中性点经电阻接地系统的特点 (19)

3.4中性点直接接地方式 (20)

3.5中性点接地方式的比较 (21)

第4章10kV配电网中性点接地方式分析确定

4.110kV配电网电路结构图 (23)

4.2单相接地故障计算 (25)

4.2.1开关1断开,开关2断开 (27)

4.2.2开关1闭合,开关2断开 (28)

4.2.3开关1断开,开关2闭合 (29)

4.2.4开关1闭合,开关2闭合 (30)

4.310kV配电网接地方式的选择 (30)

4.4柴油发电机供电状态下的故障计算 (31)

4.4.1并列开关断开状态 (33)

4.4.2并列开关闭合状态 (34)

4.5柴油发电机供电状态下中性点接地方式的选择 (34)

4.5.1发生单相接地故障时不要求瞬时切机 (35)

4.5.2发生单相接地故障时要求瞬时切机 (35)

第5章总结与展望 (39)

参考文献 (40)

致谢 (42)

第1章绪论

1.1论文研究的目的和意义

在电力系统中,我们把变压器和发电机的中性点与大地之间的连接方式称之为电力系统中性点接地方式。电力系统中性点接地方式是人们为防止电力系统事故而采取的一项重要应用技术,具有理论研究与实践经验密切相结合的特点,是电力系统实现安全与经济运行的技术基础。电力系统的电压等级较多,不同额定电压电网的中性点接地方式也不尽相同,从而使得电力系统的中性点有多种接地方式。确定电力系统的中性点接地方式是一个技术问题,必须综合考虑电网与线路结构、过电压保护与绝缘配合、继电保护构成与跳闸方式、供电可靠性与连续性、设备安全与人身安全以及对通信和电子设备的电磁干扰等诸多因素[3]。在不同地区、不同电压等级以及不同发展阶段中性点接地方式是不相同的,因此在选择电力系统中性点接地方式时,应从实际出发,对各种接地方式进行技术经济分析,因地制宜,因时制宜[1]。

近年来随着城市发展和电网建设的不断加强,电网得到了快速地发展,电缆线路在电网中也得到了大量应用,这给原来以架空线路为主的电网带来了新的课题。其中一个重要的问题就是输电线路单相接地故障时接地点故障电流增大,不易息弧,从而引发故障扩大和设备过电压绝缘损坏等问题[2]。电力系统中性点接地方式与系统中频繁的单相接地故障关系最为密切,因此,研究电力系统中性点接地方式的主要目的在于正确认识并有效的解决电力系统中最常见的单相接地故障问题[5],将其不良后果降到最低限度,以提高系统的运行绩效,使效益投资比更高、运行维护费用更低。在选定方案的决策过程中,必须根据系统的现状和发展规划进行全面的技术经济比较,避免因失误造成不良后果,从而保障电力系统能够安全稳定的运行。

1.2中性点接地方式在国外的发展和现状

世界各国对电力系统中性点接地方式的选择没有一个统一的标准,不同国家以及同一个国家中的不同城市都不完全相同,主要是依据本国的运行经验和传统来确定的。

在电力系统发展初期,由于系统容量较小,电力设备的中性点都采用直接接

地的运行方式。随着电力系统的不断发展和扩大,单相接地故障增多,导致线路断路器经常跳闸,造成频繁的停电,于是人们将中性点直接接地方式改为中性点不接地方式运行。此后,由于工业快速发展,使电力系统传输容量增大、传输距离变长,电压等级升高,电力系统在这种情况下发生单相接地故障时,故障点的接地电弧不能自行熄灭,而且因间歇电弧接地产生的过电压往往又使事故扩大,显著降低了电力系统的运行可靠性。为了解决电力系统中的这些问题,德国的彼得生教授于1916年和1917年先后提出了中性点经消弧线圈接地和经电阻接地,并且分别为当时世界上两个工业强国美国和德国所采用。其中德国采用了中性点经消弧线圈的接地方式,自动消除瞬间的单相接地故障,美国则采用了中性点直接接地、经低电阻的接地方式,并配合快速机电保护装置瞬间跳开故障线路。这两种具有代表性的中性点接地方式对世界各国中压电网中性点接地方式的发展产生了很大的影响。

德国自1917年开始便在各种电压等级的电力网中大量采用中性点经消弧线圈接地的电力系统谐振接地方式,在30~220KV的电网中都采用了这种接地方式,甚至在柏林市的30KV、1400km电容电流高达4000A的电缆配电网中,也采用了中性点经消弧线圈接地方式。德国电网Leipzig公司110/10KV变压器为Y/Y接法,10KV电网中性点经消弧线圈接地,消弧线圈附加回路装设大功率电阻(1.4Ω,2000A/s),系统出现接地后,接地信号启动短时(0.1s)投入该电阻,相当于系统短时接入低电阻接地,增大了接地电流,通过保护继电器的测量发现接地线路并发出报警指示,快速隔离故障线路[16]。此后德国莱茵电力公司认为电缆网络的中性点还是通过低电阻接地比较合适,最近有资料显示,德国对消弧线圈的使用开始日渐减少。

美国各电力公司在中压配电网中,中性点的接地方式很不统一。早期广泛采用快速切除故障方式,因此一直采用中性点直接接地和经低电阻、低电抗的接地方式,并配合快速继电保护和开关装置瞬时跳开故障线路。目前在城市供电网中(22~77KV)中性点直接接地或经低电阻接地的占71%,经消弧线圈接地的占12%,不接地的占10.5%,经小电抗接地的占6.5%。这是因为美国基本为私营电力企业,系统的备用容量大,网架结构好,供电可靠性高[8]。

英国的132KV电网全部采用直接接地,因为它的投资最经济,故障的选择性较好,66KV电网中性点采用经电阻接地方式,而对33KV及以下由架空线路

组成的配电网改为经消弧线圈接地;由电缆组成的配电网仍采用中性点经低电阻接地。

日本东京电力公司配电网中性点接地方式随电压等级不同而不同:66KV配电网采用电阻接地,电抗接地和消弧线圈接地,22KV配电网采用电阻接地,6.6KV电网采用不接地方式运行。日本的情况很不统一,11~33KV配电网中性点接地方式大体如下:中性点经消弧线圈接地占28%,经电阻接地占30%,直接接地占2%,不接地占40%。

前苏联的110KV电网中性点采用直接接地、或经消弧线圈接地,低压电网中性点采用直接接地,10~35KV电网中性点采用消弧线圈接地或不接地方式运行。前苏联规定在下列情况下采用中性点不接地方式:6KV电网单相接地电流小于30A;10KV电网单相接地电流小于20A;15~20KV电网单相接地电流小于15A;35KV电网单相接地电流小于10A。如果单相接地电流超过上述各值,则需采用中性点经消弧线圈接地方式。

世界各国的配电网中性点在五十年代前后大多采用中性点不接地或经消弧线圈接地方式,到六七十年代以后有的采用直接接地和低电阻接地方式,有的采用经消弧线圈接地方式。

1.3中性点接地方式在我国的发展和现状

1.3.1中性点接地方式在我国的发展

在建国初期,我国的配电网完全参照前苏联的规定,对3~66KV电网的中性点主要采用不接地或经消弧线圈接地两种方式。但在上述两种接地方式中有一个关键的问题没有得到彻底解决,那就是单相接地故障的快速、准确选线与定位。八十年代中期,我国城市10KV配电网中电缆线路逐渐增多,电容电流不断增大,而且运行方式经常发生变化,消弧线圈调谐存在很大的困难,当发生单相接地时间一长,往往发展成为两相短路,对此国内开始重新考虑合适的接地方式。

从1987年开始,广州部分变电站为了满足10kV电缆较低的绝缘水平,采用了中性点经低电阻接地的方式。随后深圳根据其10kV配电网电缆不断增加的实际,从1995年开始实施10kV配电网中性点采用低电阻接地方式的工程。天津电缆网比较多,过去以消弧线圈接地为主,现在对35kV电缆网试行中性点经低电阻接地方式,运行情况正常;苏州工业园区,其配电网采用20kV供电,全

部为电缆线路,中性点也采用低电阻接地的运行方式,自1996年正式投运至今,运行正常。上海在90年代对35kV配电网全面采用低电阻接地的运行方式[13]。

1997年在合肥召开的高压技术年会上,与会各界学者对城市电网中性点接地方式问题进行了热烈的讨论并达成共识:配电网中性点接地方式的选择是具有综合性的技术问题,中性点不接地、经消弧线圈接地和经电阻接地各具其优缺点,应结合电网具体条件,通过技术经济比较确定。针对上述情况,原国家电力工业部颁布的新规程即国家电力行业标准DL/T620-1997《交流电气装置的过电压保护和绝缘配合》中,对有关3~35KV系统接地方式和运行中出现的各种电压做出了重大修改:

(1)增补了电力系统电阻接地方式,根据国内中性点经小电阻接地的运行经验,对6-35kV主要由电缆线路构成的系统,其单相接地故障电容电流较大时,可采用低电阻接地的运行方式。

(2)对于6-10kV系统以及发电厂厂用系统,其单相接地故障电容电流较小时,为防止谐振、间歇性电弧接地过电压等对设备的损害,可采用高电阻接地的运行方式。

现将DL/T620-1997《交流电气装置的过电压保护和绝缘配合》中相关规定摘录如下[20]:

3kV~10kV不直接连接发电机的系统和35kV、66kV系统,当单相接地故障电容电流不超过下列数值时,应采用不接地方式;当超过下列数值又需在接地故障条件下运行时,应采用消弧线圈接地方式:

a)3kV~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,10A。

b)3kV~10kV非钢筋混凝土或非金属杆塔的架空线路构成的系统,当电压为:

1)3kV和6kV时,30A;

2)10kV时,20A。

c)3kV~10kV电缆线路构成的系统,30A。

3kV~20kV具有发电机的系统,发电机内部发生单相接地故障不要求瞬时切机时,如单相接地故障电容电流不大于表1.1所示允许值时,应采用不接地方式;大于该允许值时,应采用消弧线圈接地方式,且故障点残余电流也不得大于

该允许值。消弧线圈可装在厂用变压器中性点上,也可装在发电机中性点上。

表1.1 发电机接地故障电流允许值

发电机内部发生单相接地故障要求瞬时切机时,宜采用高电阻接地方式。电阻器一般接在发电机中性点变压器的二次绕组上。

1.3.2目前我国的10KV配电网中性点接地方式

近年来随着城市电网的高速发展,北京、上海、广东等经济发达的城市10KV 配电网中性点改为经低电阻接地的运行方式。与此同时不少地区在以往消弧线圈接地运行的基础上开始推广使用自动跟踪、自动调谐的消弧线圈接地方式,使配电网经常处于最佳补偿状态下运行。自动跟踪补偿的消弧线圈还与微机接地保护、故障选线装置相配合取得较好的运行效果。

总结近十多年我国各地10KV配电网中性点接地方式的运行经验,发现对低电阻接地和经消弧线圈接地两种方式存在较大的争议,运行情况也存在很大的差异。国内最早采用低电阻接地的广州供电局对区庄变电站低电阻接地方式进行研究,现场实测表明:采用中性点经低电阻接地,在大多数情况下可使单相接地过电压明显降低。从限制电力系统内过电压来讲,采用低电阻接地效果还是十分可观的。此后北京、上海、深圳、珠海等许多城市也先后采用了中性点经低电阻接地的运行方式,在许多地区收到良好的效果。如上海供电局万善良等在“上海市区配电网中性点接地方式的技术分析”中指出:上海市区中心35KV及6~10KV 电网中电缆线路居多,宜采用中性点经低电阻接地方式,用以降低发生单相接地故障时的过电压。但低电阻接地系统在实际运行中也遇到了相当多的问题,许多10KV电网中性点经低电阻接地系统经常发生跳闸,供电可靠性降低,停电事故增多,此外对人身安全构成严重的威胁[4]。

如珠海局在采用低电阻接地方式后,发现中性点经低电阻接地方式对事故的

抵御能力较差,供电可靠性差,线路跳闸率普遍偏高,最高达到了120次/百公里?年,更为严重的是该运行方式对人身安全构成极大的威胁,自投运以来共发11起人身伤亡事故。珠海局张振旗、黄培专在珠海电力工业局《10KV低电阻接地系统运行浅析》中指出:通过运行实例,可以看出10KV电网中性点经低电阻接地方式对供电可靠性及人身安全有着不可低估的影响,应慎重实施,几年的实践证实低电阻接地方式给电力系统安全、经济运行带来不少负面影响,是不可取的[10]。

厦门供电局要焕年、曹梅月以及珠海电力局张振旗、黄培专等学者对低电阻接地方式持反对意见。要焕年、曹梅月在《电缆网络的中性点接地方式问题》一文中指出:低电阻接地方式客观上是增大单相接地短路故障电流,理论分析和运行经验表明,对于中压电网尤其是电缆网络,必须着力地限制单相接地故障电流、尽可能地减少其危害性,而不是人为的提升单相接地故障电流[5]。

中性点经低电阻接地和经消弧线圈接地从各地的运行情况来看各有利弊,目前还很难单独取舍。国内也有不少城市两种接地方式都在使用,针对不同的供电区域采用不同的接地方式,如:城市中心区域,电缆线路较为集中,系统电容电流较大,采用低电阻接地方式;而在城市郊区,多以架空线路为主,则采用消弧线圈接地方式。无论采用中性点经小电阻、消弧线圈或其他接地方式,主要目的都是为了提高系统的可靠性。

1.4本论文的主要内容

在充分阅读国内外相关文献和参考书的基础上对电力系统各个电压等级中性点接地方式的选择问题进行研究。综述各种不同中性点接地方式在国内外的发展历史和目前现状,并简要介绍其原理。对中性点不同接地方式进行对比,包括中性点直接接地,中性点经消弧线圈接地,中性点不接地,中性点经电阻接地四种常见接地方式的特点和问题,并对其各自的原理、适用范围和优缺点等进行理论分析。

通过具体算例(10kV大型公共设施供电系统)来建立数值计算模型,对不同中性点接地方式电网的过电压等级和短路电流大小进行计算,根据相关标准规范,选定恰当的中性点接地方式及接地设备。

第2章中性点接地方式的选择

2.1电力系统中性点接地方式的类型

美国电机工程师学会(AIEE)的第32号标准,从开始执行以来一直沿用至今,在国际上得到了广泛的认同。当系统或其指定部分的各点上,不论运行方式和连接的发电机容量如何,只要零序电抗与正序电抗之比不大于3(X0/X1≤3)、零序电阻与正序电抗之比不大于1(R0/X1≤1)时,则它们的中性点为有效接地方式;

反之则为非有效接地方式。

2.1.1中性点有效接地方式

中性点有效接地方式(system with effectively earthed neutral),因接地系数比较低,当系统发生单相接地故障时,非故障相的工频电压升高均低于80%线电压,它适用于高压系统;若接地系数更低,非故障相电压的升高将远低于80%线电压,则称之为非常有效接地方式,它适用于超高压和特高压系统。电力系统中性点有效接地方式的主要特点,是系统正常运行的时候其中部分主变压器的中性点可以不接地运行。而中性点直接接地的数量和位置的选定,除满足AIEE第32号标准的规定外,还必须与继电保护相配合,保证零序过电流保护装置的灵敏度,以便发生接地时能瞬间跳开故障线路。220kV系统的中性点采用有效接地方式,国际上很久以来已无异议,它也适用于电压与之相近的系统。现就我国而论,它适用于220、110kV系统,有时也含330kV系统。中性点非常有效接地又称全接地方式,广泛适用于500kV及以上的超高压和特高压系统。如我国的500kV系统和西北电网的750kV系统,及1000kV特高压试验示范工程等。因接地系数甚低,故非故障相的工频电压升高和系统中的内部过电压均受到限制,这样便可降低绝缘水平,节省巨额基建投资。根据计算分析,系统的单相短路电流可超过三相短路电流的1.5倍。为方便断路器的选择和提高系统稳定等,可令部分主变压器的中性点经小电阻或小电抗接地,接地方式的属性不变。超高压、特高压系统的另一特点,是输电线路一般较长,有的甚至超过1000km。为了限制线路空载时的末端工频电压升高,需要在线路上装设补偿度为60%~90%的并联补偿电抗器,并在其中性点接入一个适当的小电抗器。当线路发生单相接地故障时,自动跳开

该相两端的断路器,使潜供电流电弧瞬间熄灭,配合单相自动重合闸装置,可显著提高系统的运行可靠性。

2.1.2中性点非有效接地方式

中性点非有效接地方式(system with non-effectively earthed neutral),因接地系数普遍较高,非故障相电压的升高均大于80%线电压,有的可达100%、乃至105%线电压。此类中性点接地方式适用于中压电力系统。同时,以单相接地电弧能否自动熄灭为必要和充分条件,又可分成大电流接地方式和小电流接地方式。大电流接地方式主要包括中性点直接接地、经低(中)电阻或经低电抗接地;小电流接地方式主要包括中性点不接地、经消弧线圈或经高电阻接地。前者以中性点经低电阻为代表,后者则以中性点经消弧线圈为代表,两者互有优缺点,因此在不同的国家和地区都有了相当大的发展[6]。

我国的6~35kV配电网电力系统大多属于小电流接地系统,而这种接地系统的中性点接地方式就有:中性点不接地、中性点接消弧线圈接地等。接地故障是由导体与地连接或对地绝缘电阻变得小于规定值而引起的故障。根据电力运行部门的故障统计,由于外界因素的影响,配电网单相接地故障中最常见的,发生率最高,占整个电气短路故障的80%以上。系统一旦发生单相接地故障,在故障点长时间(中性点不接地系统或谐振接地带单相接地故障最长可运行两小时)流过

很大的电容电流或残流。如果在人口稠密的市区,较大的跨步电压和接触电压,对人身安全构成极大的威胁。但是,当系统发生单相接地故障时,由于不构成短路回路,接地故障电流比负荷电流小的多,特别是中性点经消弧线圈接地系统接地电流很小,三相线电压仍然保持对称关系,不影响对负荷连续供电,故不必立即跳闸,规程规定可以继续运行1~2h。但是,由于接地点的出现,此时系统中非对地相的对地电压升至原电压的倍,对电网的绝缘形成威胁,很容易在电网的薄弱地点诱发另一点接地,进而形成相间短路。随着系统容量的增加,线路总长度的增加,电容电流越来越大,弧光接地引起的过电压倍数甚高。近几年,在电厂厂用电、二次变电站和大型厂矿企业的高压供配电系统中发生了电缆爆炸,烧毁PT,甚至烧毁母线,造成电厂机组停运、工艺流程中断等恶性事故,对安全生产造成极大的影响。

研究电力系统中性点接地方式其中一个主要目的,就是在于正确处理电力系

统中的单相接地故障问题.在选定不同电压等级电网的中性点接地方式时,应力求将此种故障的不良后果限制到最低程度,使运行费用最低和效益投资比最高。

2.2影响中性点接地方式的主要因素

2.2.1供电可靠性

供电可靠性一直历来都是电力部门最值得关心的问题,也是对电力系统的首要要求,它关系着供电企业的服务质量,也是供电企业质量考核的重要指标。我国城市电网设备一般比较陈旧,加上更新改造不快,除部分主要用户外供电多为单电源单回路方式,一旦发生事故不仅会给国民经济带来损失,同时也给人民生活带来不便,但是随着城市电网的改进,江苏等沿海地区的城市市区供电已采用手拉手接线方式,这样大大提高了城市的供电可靠性,但如何提高供电可靠性仍然是放在最首要的问题。

单相接地是电网中最常见的一种故障。当中性点直接接地系统单相接地时,将产生很大的接地电流,个别情况下甚至比三相短路电流还大,任何部分发生单相接地故障时必须将它切除,即使采用自动重合闸装置,在发生永久性故障时,供电仍将长期中断。电力系统的运行经验表明,单相接地故障绝大多数是瞬间性的,特别是架空线路电网,只要是小电流接地系统,便无需继电保护和断路器动作,在系统和用户几乎无感觉的情况下,接地电弧便可瞬间自动熄灭,系统可以保持连续供电。而对于极少数的永久单相接地故障,可以允许电网在一定时间内带故障运行。因此,从供电可靠性和故障范围的观点来看,小接地电流电网,特别是经消弧线圈接地的电网具有明显的优越性。

低电阻接地方式与配电网中性点不接地或经消弧线圈接地不同,不论单相接地故障是瞬间,还是永久性的,都必须自动切除故障线路。因此网络应采取全容量备用的原则,以及备用电源自动投入和环网自动化等措施,从而提高供电可靠性。而采用全容量备用需要增加大量投资,这对我国广大的城市和农村的中压电网是不现实的。

直接接地方式可正确迅速切除接地故障线路,但故障线路需间断供电。过去,由于接地继电保护不能有选择性地动作,要依靠人工逐条试拉以检出故障线路,待负荷转移后再将故障线路切除。这种运行方式,虽避免了长时间停电事故,但

是很不方便。近几年来,国内兴起的自动跟踪消弧线圈接地方式,利用微机接地保护装置自动检出故障线路,可瞬间或延时自动切除,也可延时手动切除,进一步提高了供电连续性[11]。

2.2.2电气设备与线路的绝缘水平

绝缘水平与中性点的接地方式是密切相关的,电气设备与线路的绝缘水平会影响到设备的安全性和可靠性,以及投资的经济性。中性点接地方式对系统的过电压和绝缘水平有着很大影响。电气设备和线路的绝缘水平除与长期最大工作电压有关外,主要决定于各种过电压的大小,对于小接地电流系统来说,无论最大长期工作电压或各种过电压均较中性点直接接地时要大。一般说来,中性点直接接地系统的绝缘水平与不直接接地系统相比,大约可降低20%,所以从过电压与绝缘水平的观点来看,采用接地程度越高的中性点接地方式,越有利[19]。

消弧线圈接地方式由于能够快速熄灭电弧并且不再重燃,比中性点不接地方式下的间歇性电弧过电压的水平要低,有效地保护了电气设备的绝缘。与大电流接地系统较小的非故障相电压升高相比,绝缘要承受√3倍的相电压,但是消弧线圈接地方式的绝缘水平完全能够承受。

2.2.3继电保护的可靠性

小电流接地的继电保护问题一直是大的技术难题,在中性点不接地或经消弧线圈接地的系统中,单相接地电流往往比正常负荷电流小得多,因而要实现有选择性的接地保护比较困难。现在利用微机计算速度快,灵敏度高和判断能力强的特点,使小电流保护的问题得到了较好的解决。因此以前的消弧线圈接地方式的残流很小,继电保护难以配合的障碍已经得到了很好的解决。

相反,低电阻接地方式却遇到了困难,根据北京供电局在中性点经低电阻接地的10kv电网中的现场试验结果,当裸导线发生断线接地时,计算的接地电流值为465A,但实际接触沥青路面时,在15s只能达到15A;经过0.33s接地电流增至114A时线路跳闸。在绝缘导线断线的情况下,若断面较脏,情况与裸线相似;若为新断面,则观察不到电弧,线路也不会跳闸;当裸线断线后与水泥路面接触时,经2~3s后接地故障电流从约4.2A增大到21A时被切断;绝缘导线与沥青路面接触时情况相似,只有断面被弄湿后,才能引起故障线路跳闸。何况,运行中的绝缘导线断线后,外部绝缘会自然拉长,故障线路跳闸就更加困难了。

珠海市10kv电网的运行经验证明,单相接地故障多次持续半小时后,方自动跳闸。为了使零序过电流保护能够瞬间跳闸,则必须加大接地故障电流[10]。显然,接地故障电流越大,问题和缺点越多,越难适应现代负荷特性的变化。

中性点直接接地系统中,由于接地电流较大,继电保护一般都能迅速而准确地切断故障,且结构简单,工作可靠。所以从继电保护的角度出发,以采用大接地电流系统的工作方式较为有利。

2.2.4人身安全

人身安全也是选择中性点接地方式的一个主要方面,对于人身安全主要考虑以下三点:

(1)单相接地电流流入大地附近的跨步电压;

(2)人接触接点的设备金属部件(正常时不带电);

(3)人直接触及处于工作电压下的带电部分。

当发生单相接地故障时,故障点及中性点接地装置附近都会产生较大的接地电流和跨步电压,容易对人身安全造成伤害,跨步电压的大小取决于接地点故障电流的大小,在考虑中性点接地方式的时候如何通过限制接地电流也是一个重要的参考指标。

一般认为,在大接地故障电流的条件下,防止人身事故与设备事故,即使瞬间跳开故障线路也依然存在问题。只有限制单相接地故障电流、降低接触电压和跨步电压方能达到目的。

我国试点低电阻接地方式的几个城市,单相接地故障电流一般为400~600A,现场试验和运行经验表明,不能保证继电保护在所有的情况下都能够瞬间跳闸,因而触电和烧伤的威胁是很严重的。前面谈到的珠海市的10kv电网,中性点改用低电阻接地方式运行以来,多次发生人身伤亡事故就是有力的证明。

采用消弧线圈接地后,接地故障的电流可以被限制到10A以下,接地电流的危害大大地减轻了,对于瞬时性的单相接地故障,可以自行消除故障,大大地减小了人身触电事故发生的机率。而对于单相永久性接地故障,因为残流很小,接触电压和跨步电压都很低,在带故障运行的状态下,即使触电,发生生命危险的概率也比较小。

2.2.5设备安全

中性点经消弧线圈接地方式可以有效地限制接地故障电流的危害性,不仅能够保护人和动物的生命安全,同时对电网中的电力设备均可起到不同程度的保护作用。例如,减少对一次设备频繁的短路电流冲击、减少断路器的开断次数和继电保护的动作次数与误动、拒动的概率以及运行人员的误操作概率、降低线路绝缘子的损坏率、减轻设备的运行维护与检修工作量等。

在低电阻接地方式下,为了能使零序保护正确动作,需要有足够大的接地电流来启动。随着电容电流的增大,将会使故障点和中性点的地电位升高,可能超过一些设备的绝缘水平。当中压侧向低压侧闪络击穿时,低压中性线上有环流而产生过电压,同时降压变压器的接地体与低压中性线或接地体之间的耦合,可在低压侧引起过电压。解决的办法一是除去外加电流的有功分量,二是补偿接地点的电容电流这个无功分量,显然最有效的方式是采用消弧线圈的接地方式进行补偿。

2.2.6通信干扰

电力网络在正常运行和故障运行的情况下,因为存在电磁耦合、静电感应、地中电流传导、高频电磁辐射等情况可能对通信网络产生干扰作用。前三种干扰的主要表现为音频干扰、工频干扰、接触干扰、地电位升高和纵向电势等,它们与中性点的接地方式有着密切的关系。一般而言,通信干扰的危害性很大,轻则影响通信质量,重则危害通信设备和人身的安全。前者为干扰影响,后者为危险影响,而且,随着信息网络的发展,问题将会越多,必须加以防范。通信干扰可由两种原因产生,均与中性点接地方式密切相关,如果零序阻抗较高,以电容耦合为主,较低则以电感耦合为主。因此可以看出,中性点接地方式的研究牵涉到电力系统的各个方面,要很好地解决这个问题要从各个方面进行分析。

当电力网正常运行时,如三相对称,则不管中性点接地方式如何,中性点电位为零,各相电流及对地电压三相对称,因而它们在线路周围空间各点形成的电场和磁场均彼此抵消,不会对通信和信号产生干扰。但当电网发生单相接地时,所出现的单相接地电流将形成强大的干扰源,电流愈大,干扰愈严重。因此,从干扰的角度来看,中性点直接接地系统当然最为不利,中性点经消弧线圈接地方式是最佳选择。

理论与实际表明限制单相接地电流是防止通信干扰的有效措施。中性点经消

最新电力系统稳态分析考试试题

三.简答题:(每小题5分,共25分) 1、对电力系统的基本要求是什么? 2、对调频电厂的基本要求是什么?什么电厂最适宜担负系统调频电厂? 3、什么叫功率分点?标出下图所示电力系统的功率分点。 4、在下图所示的电路中,变压器的实际变比如图所示,并联运行的两台变压器中有无循环 功率存在?为什么?如果循环功率存在的话,请指出循环功率的方向。 5、在无功电源不足引起电压水平普遍偏低的电力系统中,能否通过改变变压器变比调压? 为什么? 四.计算题:(共50分) 1、某35KV电力系统采用中性点经消弧线圈接地的运行方式,已知35KV线路长度为100公里,线路每相的对地电容为,单相接地时流过接地点的电流为3.6安培,求消弧线圈的 电感值。(10分) 2、110kv降压变压器铭牌数据为: ①计算变压器的参数(归算到110KV侧); ②画出变压器的形等值电路。(10分) 3、某地方电力网的等值电路如下图,有关参数均已标于图中,求网络的初步功率分布标出 其功率分点,并计算其经济功率分布。(10分) 4、联合电力系统的接线图及参数如下,联络线的功率传输限制为300MW,频率偏移超出才进行二次调频,当子系统A出现功率缺额200MW时,如系统A不参加一次调频,联络线 的功率是否越限?(10分)

5、某降压变电所装有一台容量为10MVA,电压为的变压器。已知:最大负荷时变压器高压侧电压为114KV,归算到高压侧的变压器电压损耗为5KV;最小负荷时变压器高压侧电压为115KV,归算到高压侧的变压器电压损耗为3KV。现要求在低压母线上实行顺调压(最大负荷时要求电压不低于线路额定电压的倍;最小负荷时要求电压不高于线路额定电压的 倍),试选择变压器的分接头。(10分) 三.简答题:(每小题5分,共25分) 1、答:对电力系统的基本要求有:满足用户对供电可靠性的要求(2分);具有良好的电能质量(2分);电力系统运行的经济性要好(1分)。(意思对即可得分) 2、答:对调频厂的基本要求是①具有足够的调节容量;(1分)②调节速度要快;(1分) ③调节过程的经济性要好(1分)。具有调节库容的大型水电厂最适宜作为调频电厂(2分)。 3、答:电力系统中如果某一负荷点的负荷功率由两侧电源供给,则该负荷点就是功率分点,功率分点又分为有功功率分点和无功功率分点(3分),分别用“▼”和“▽”标注。图示电力系统中负荷点2为有功功率分点(1分),负荷点3为无功功率分点(1分)。 4、答:有循环功率存在(3分)。因为上述网络实际上是一个多电压等级环网,两台变压 器的变比不匹配(如取绕行方向为顺时针方向,则,所以存在循环功率(1分);循环功率的方向为逆时针方向(1分)。 5、答:不能(3分),因为改变变压器的变比并不能改善电力系统无功功率平衡状态(2分)。 四.计算题:(共50分) 1、解: 单相接地短路时的原理电路图和相量图如下:

《电力系统分析》试题

《电力系统分析》试题 一、选择题 1.采用分裂导线的目的是(A) A.减小电抗 B.增大电抗 C.减小电纳 D.增大电阻 2.下列故障形式中对称的短路故障为( C ) A.单相接地短路 B.两相短路 C.三相短路 D.两相接地短路 3.简单系统静态稳定判据为(A) A.>0 B.<0 C.=0 D.都不对 4.应用等面积定则分析简单电力系统暂态稳定性,系统稳定的条件是( C )A.整步功率系数大于零 B.整步功率系数小于零 C.最大减速面积大于加速面积 D.最大减速面积小于加速面积 5.频率的一次调整是(A) A.由发电机组的调速系统完成的 B.由发电机组的调频系统完成的 C.由负荷的频率特性完成的 D.由无功补偿设备完成的 6.系统备用容量中,哪种可能不需要( A) A.负荷备用 B.国民经济备用 C.事故备用 D.检修备用

7.电力系统中一级负荷、二级负荷和三级负荷的划分依据是用户对供电的(A)A.可靠性要求 B.经济性要求 C.灵活性要求 D.优质性要求 9.中性点不接地系统发生单相接地短路时,非故障相电压升高至(A) A.线电压 B.1.5倍相电压 C.1.5倍线电压 D.倍相电压 10.P-σ曲线被称为( D ) A.耗量特性曲线 B.负荷曲线 C.正弦电压曲线 D.功角曲线 11.顺调压是指( B ) A.高峰负荷时,电压调高,低谷负荷时,电压调低 B.高峰负荷时,允许电压偏低,低谷负荷时,允许电压偏高 C.高峰负荷,低谷负荷,电压均调高 D.高峰负荷,低谷负荷,电压均调低 12.潮流方程是( D ) A.线性方程组 B.微分方程组 C.线性方程 D.非线性方程组 13.分析简单电力系统的暂态稳定主要应用( B ) A.等耗量微增率原则 B.等面积定则 C.小干扰法 D.对称分量法 14.电力线路等值参数中消耗有功功率的是(A) A.电阻 B.电感 C.电纳 D.电容

低压电力系统的保护接地分析 李荣根

低压电力系统的保护接地分析李荣根 摘要:接地在电气技术上具有很高的重要性、普遍性和复杂性。各种系统均有 多种复杂的接地要求,而且是与系统紧密联系的组成部分。 关键词:接地:保护;低压电力系统; 从功能性接地和非功能性接地两方面解析了接地的作用及保护原理,说明了 防止电击措施有多种,等电位联结只是其中使用最广泛、方便和经济的一种。 一、低压系统接地分类 低压系统接地分为TN、TT和IT。第一种代表变压器中性点接地(工作接地)方式,第二种代表用电设备外壳接地方式。T-直接接地;I-不接地;N-外壳与中性点金属连接;第一种决定电力系统的工作接地方式,第二种决定了设备的保 护接地方式。高压系统只是说工作接地包含有效接地和非有效接地,而低压系统 不仅表明电源侧工作接地,同时还表明了用户侧的保护接地。由于低压系统有中 性线引出,因此,在分析计算时需考虑接地电流和接零电流,两者大小可能不一样。高压系统的电气设备金属外壳都要求直接接地,低压系统设备金属外壳实质 上也是要求直接接地。那么外壳接地是不是就能起到保护作用呢?回答是否定的,只有满足一定的条件才是安全的。根据《交流电气装置的接地设计规范》推荐: 短时间(15 s)内体重50 kg的人承受的最大交流电流有效值是Ib=116/t(mA),体重70 kg的人承受的最大交流电流有效值是Ib=157/t(mA)。长时间内作用在人身上的电压小于50 V(通过电流30 mA)是安全的。出现接地故障时人体是否 安全,小电流接地系统按照长时间接触验算。大电流接地系统按照短时间接触验算。 1.保护接地。为电气安全,将系统、装置或设备的一点或多点接地。 2.接地电压。电气设备发生接地故障时,其接地部分与大地零电位点之间的 电位差称之为接地电压。 3.转移电压。接地故障电流流过接地系统时,由一端与该接地系统连接的金 属导体传递的接地系统对参考地之间的电位差。 4.接触电压。接地故障电流通过接地装置时,地表面形成电位分布,设备垂 直距离2 m和地面水平距离1 m处之间的电位差。此处1 m处容易误导,设备往 往距离其接地装置相当远,用接地线连接的设备外壳电位与接地装置一样,虽然 人距离设备水平距离1 m,实际人与设备外壳的电位差应是人与接地装置之间的 电位差,绝不是1 m的电位差。 5.跨步电压。接地故障电流通过接地装置在地面水平距离为1 m的两点之间 的电位差。人体能够承受的电压不仅与电流还与人体电阻有关,人体电阻变化范 围很大,我国采用1.5 kΩ作为参考值,人体单脚接地等效金属圆盘电阻3ρ。 二、高压配电装置接地 由于开关站和变电所的进线电源一般是10 kV及以上的高压,亦有可能出现 接地故障,所以有必要简单介绍高压配电装置的接地。高压电力系统的接地分为 有效接地和非有效接地。非有效接地系统向1 kV以下低压装置供电的高压配电装 置的保护接地电阻R≤50/I且不应大于4Ω,高压配电装置金属外壳的对地电压不 得超过50 V。接触电压和跨步电压小于接地电压,自然满足安全性要求。非有效 接地系统单相接地故障电流是线路电容电流,数值较小,所以一般容易做到。有 效接地系统向1 kV以下低压装置供电的高压配电装置的保护接地电阻R≤2 000/I。故障时接地电压允许值可达2 000 V,切除故障时间0.4 s,应该考虑均压措施。利

电力系统稳态分析作业答案

第一章电力系统的基本概念 1.思考题、习题 1-1.电力网、电力系统和动力系统的定义是什么 答:由变压器、电力线路等变换、输送、分配电能设备所组成的网络称为电力网。 把生产、输送、分配和消费电能的各种电气设备连接在一起组成的整体称为电力系统。 发电厂的动力部分和电力系统合在一起称为动力系统。 1-2.对电力系统运行的基本要求是什么 答:(1)保证可靠地的持续供电(2)保证良好的电能质量(3)保证系统运行的经济性。(4)环保性。 1-3.何为电力系统的中性点其运行方式如何它们有什么特点我国电力系统中性点运行情况如何答:星型连接的变压器或发电机的中性点就是电力系统的中性点。中性点的运行方式有直接接地和不接地以及中性点经消弧线圈接地。 直接接地供电可靠性低。系统中一相接地,接地相电流很大,必须迅速切除接地相甚至三相。不接地供电可靠性高,对绝缘水平的要求也高。系统中一相接地时,接地相电流不大,但非接地相对地电压升高为线电压。 我国110kV及以上的系统中性点直接接地,60kV及以下系统中性点不接地。 1-4.中性点不接地的电力系统发生单相接地故障时,各相对地电压有什么变化单相接地电流的性质如何怎样计算 中性点不接地的电力系统发生单相接地故障时,接地相电压为0 倍,即升高为线电压。单项接地电流为容性。接地相的对地电容电流应为其它两非接地相电容电流之和, 倍非接地相对地电容电流,也就等于正常运行时一相对地电容电流的3倍。(可画向量图来解释) 1-5.消弧线圈的工作原理是什么补偿方式有哪些电力系统一般采用哪种补偿方式为什么 消弧线圈就是电抗线圈。中性点不接地系统中一相接地时,接地点的接地相电流属容性电流,通过装消弧线圈,接地点的接地相电流中增加了一个感性分量,它和容性电流分量相抵消,减小接地点的电流。使电弧易于熄灭,提高了供电可靠性。 补偿方式有欠补偿和过补偿,欠补偿就是感性电流小于容性电流的补偿方式,过补偿就是感性电流大于容性电流的补偿方式。电力系统一般采用过补偿方式。因为随着网络的延伸,电流也日益增大,以致完全有可能使接地点电弧不能自行熄灭并引起弧光接地过电压,所以一般采用过补偿。 1-6.目前我国电力系统的额定电压等级有哪些额定电压等级选择确定原则有哪些 答:我国电力系统的额定电压等级有3kV、6kV、10kV、35kV、60kV、110kV、154kV、220kV、330kV、500kV、750kV、1000kV。 额定电压等级选择确定原则有:用电设备的额定电压=系统额定电压。发电机的额定电压比系

电力系统接地分类

电力系统接地分类详解 电力系统接地分类详解 在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象,这几种接地形式从目的上来说是没有什么区别的,均是通过接地接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的。现代工厂在接地上都要求形成一张严密的网,而所有的被保护对象都挂在这个安全的接地网上,但不同的接地都需要从接地装置处的等电位点连接。 对于防雷接地,主要是通过将雷电产生的雷击电流通过接地网这一有效途径引入大地,从而对建筑物起到保护作用。一般有两种避雷方式供选择,其一是避雷针接地,其二是采用法拉第笼方式接地。它们是两种不同的防雷模式,它们在防雷原理上有显著的区别。避雷针的原理是空中拦截闪电、使雷电通过自身放电,从而保护建筑物免受雷击,避雷针的保护范围是从地面算起的以避雷针高度为滚球半径的弧线下的面积,对于法拉第笼,它认为避雷针的范围很小,而且在避雷针保护的空间内仍有电磁感应作用,而且避雷针附近是强的电磁感应区,有很大的电位梯度,在它周围有陡的跨步电压存在,在这一范围内的人们有生命危险,鉴于种种观点,现在的防雷接地系统中法拉第笼占有重要地位。实验证明,一个封闭的金属壳体是全屏蔽的,在雷电流通过时,是沿着壳体的外表面流入大地,而在壳体的内部没有感应电动势及磁通,即雷电流没有对内部的设备产生干扰效应。而法拉第笼下部的环状接地环、等电位均压网也避免了人在此等电位环境中被雷击的危险。 采用保护接地是当前低压电力网中的一种行之有效的安全保护措施。通常有两种做法,即接地保护和接零保护。将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接是电气工作的一个重点,也就是我们通常说的接地。将电气设备和用电装置的金属外壳与系统零线相接叫做接零。由于电力系统中采用保护接地,是我们对用电设备、金属结构及电子等设备采取的接地保护措施,这样就可以避免电器设备漏电、线路破损或绝缘老化漏电等漏电事故造成

电力系统接地讲解知识

电力系统的中性点接地有三种方式: 有效接地系统(又称大电流接地系统) 小电流接地系统(包含不接地和经消弧线圈接地) 经电阻接地系统(含小电阻、中电阻和高电阻) 大电流接地系统 用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。 作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。 作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV 侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV 侧中性点通过间隙接地,并且不再加装间隙保护。 0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。虽然接入的负荷多为单相负荷,由于每个负荷较小,并不一定会造成三相负荷电流严重不一致(中性点电流小于额定电流的25%),不会造成三相电压严重不平衡。但当线路出现对地短路时,短路电流较小,往往不能使断路器(空气开关)跳开或熔断器熔断,致使事故扩大,许多情况下形成火灾。此时应在变压器中性点引线处加装过流保护,跳开高压侧断路器。显然这是比较复杂的。 使用△/Y0接线的变压器,可以克服这一缺点。但充油变压器的分接开关制作比较困难,尤

电力系统分析-试题第二套

第二套 一、判断题 1、分析电力系统并列运行稳定性时,不必考虑负序电流分量的影响。() 2、任何不对称短路情况下,短路电流中都包含有零序分量。() 3、发电机中性点经小电阻接地可以提高和改善电力系统两相短路和三相短路时并列运行的暂态稳定性。() 4、无限大电源供电情况下突然发生三相短路时,短路电流中的周期分量不衰减, 非周期分量也不衰减。() 5、中性点直接接地系统中,发生儿率最多且危害最大的是单相接地短路。() 6、三相短路达到稳定状态时,短路电流中的非周期分量已衰减到零,不对称短 路达到稳定状态时,短路电流中的负序和零序分量也将衰减到零。() 7、短路电流在最恶劣短路情况下的最大瞬时值称为短路冲击电流。() 8、在不计发电机定子绕组电阻的情况下,机端短路时稳态短路电流为纯有功性质。() 9、三相系统中的基频交流分量变换到系统中仍为基频交流分量。() 10、不对称短路时,短路点负序电压最高,发电机机端正序电压最高。() 二、选择题 1、短路电流最大有效值出现在()。 A短路发生后约半个周期时B、短路发生瞬间;C、短路发生后约1/4周期时。 2、利用对称分量法分析计算电力系统不对称故障时,应选()相作为分析计算的基本相。 A、故障相; B、特殊相; C、A相。 3、关于不对称短路时短路电流中的各种电流分量,下述说法中正确的是 ()。 A、短路电流中除正序分量外,其它分量都将逐渐衰减到零; B、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都不会衰减: C、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都将从短路瞬间的起始值衰减 到其稳态值。 4、不管电力系统发生什么类型的不对称短路,短路电流中一定存在()。

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

(完整版)电力系统稳态分析考试试卷及解析

电力系统稳态分析 一、单项选择题(本大题共10分,共 10 小题,每小题 1 分) 1. 双绕组变压器的变比为110±8×1.25%/11,+4档分接头对应的变比为()。 A. 114.5/11 B. 115.5/11 C. 116.5/11 D. 117.5/11 2. 电力网络的无备用接线不包括()。 A. 单回路放射式 B. 单回路干线式 C. 单回路链式网络 D. 两端供电网络 3. 下列说法不正确的是()。 A. 中性点经消弧线圈接地时,有过补偿和欠补偿之分。 B. 欠补偿是指消弧线圈中的感性电流小于容性电流时的补偿方式。 C. 过补偿是指消弧线圈中的感性电流大于容性电流时的补偿方式。 D. 在实践中,一般采用欠补偿的补偿方式。 4. 频率的二次调整是由()。 A. 发电机组的调速器完成的 B. 发电机组的调频器完成的 C. 调相机的励磁调节器完成的 D. 静止无功补偿器完成的 5. 双绕组变压器的电阻()。 A. 可由空载损耗计算 B. 可由短路电压百分值计算 C. 可由短路损耗计算 D. 可由空载电流百分值计算 6. 隐极式发电机组运行极限的原动机功率约束取决于()。 A. 原动机的额定视在功率 B. 原动机的额定有功功率 C. 原动机的额定无功功率 D. 原动机的最大机械功率 7. 电力系统电压波动产生的原因有()。 A. 由幅度很小,周期很短的偶然性负荷变动引起 B. 由冲击性或者间歇性负荷引起 C. 由生产和生活的负荷变化引起 D. 由气象变化引起 中一不变的值的中枢点8. 在任何负荷下都保持中枢点电压为(102%~105%)U N 电压调整方式是()。 A. 逆调压 B. 顺调压 C. 常调压 D. 故障时的调压要求

电力系统中性点接地方式浅析

电力系统中性点接地方式浅析 【摘要】电力系统中性点接地方式是指电力系统中发电机和变压器中性点与地的连接方式,中性点不同接地方式各具优点与不足,涉及电网安全运行、供电可靠性、过电压与绝缘的配合、断路器选用、继电保护方式、接地设计等多种因素。 【关键词】中性点;接地;方式 0 引言 电力系统中性点接地方式分为大接地电流系统和小接地电流系统。前者分为中性点直接接地电流系统、中性点经低值阻抗接地系统,后者可分为中性点不接地系统、中性点经消弧线圈接地系统、中性点经高值阻抗接地系统。本文将对各类中性点接地方式的优点与不足进行分析探讨。 1 大接地电流系统 1.1 中性点直接接地系统 1.1.1 中性点直接接地系统原理 1)单相接地故障时,电压情况 (1)接地故障相电压降低为零; (2)非接地故障相电压不变,依然为相电压; (3)中性点对地电压不变,依然为零。 2)单相接地故障时,电流情况 形成短路?流经很大短路电流?装设继电保护?跳闸切除故障,避免扩大成相间短路。 1.1.2 中性点直接接地系统优点 1)降低设备绝缘水平(约20%),节省造价。

在单相接地故障时,中性点电位仍为零,非故障相对地电压仍为相电压,设备绝缘水平只需按相电压考虑。 2)不另设消弧装置,即可自行消弧。 在单相接地故障时,不会产生间歇性电弧过电压,不会因此导致设备损毁,不需另设消弧装置。 1.1.3 中性点直接接地系统的不足及改进措施 1)不允许故障设备继续运行,可靠性不如小接地电流系统。 发生单相接地故障时,短路电流触发保护装置动作,断路器跳闸切断故障部分,降低了供电可靠性。 2)短路电流很大,单相磁场对弱电干扰,特别是电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 3)接地点还会产生较大跨步电压与接触电压,容易发生触电伤害事故。 1.2 中性点经低值阻抗接地系统(见3) 2 小接地电流系统 2.1 中性点不接地系统 2.1.1 中性点不接地系统原理 1)接地故障相对地电压降低为零; 2)非接地故障相对地电压升高为线电压,且相位改变; 3)中性点对地电压升高为相电压,且方向与故障相电压相反; 4)相对中性点电压和线电压仍不变,认为三相系统对称,可继续运行2h; 5)接地点流过的电容电流是正常每相对地电容电流的3倍,故在接地点产生电弧。 2.1.2 中性点不接地系统优点

2019国家电网电力系统分析笔试题2

2019国家电网电力系统分析笔试题2 湖北国家电网招聘笔试即将来临,接下来就要耐心等待招聘笔试的公告发布啦!对于没有笔试经验的同学来说一定是没有头绪的,中公国企小编在这里整理了有关湖北国家电网招聘笔试的各类习题,大家可以来参考一下,满满的都是干货哦!试题内容/详情如下: ★何谓潜供电流?它对重合闸有何影响?如何防止? 【中公解析】 当故障线路故障相自两侧切除后,非故障相与断开相之间存在的电容耦合和电感耦合,继续向故障相提供的电流称为潜供电流。由于潜供电流存在,对故障点灭弧产生影响,使短路时弧光通道去游离受到严重阻碍,而自动重合闸只有在故障点电弧熄灭且绝。 缘强度恢复以后才有可能重合成功。潜供电流值较大时,故障点熄弧时间较长,将使重合闸重合失败。 为了减小潜供电流,提高重合闸重合成功率,一方面可采取减小潜供电流的 措施:如对500kV中长线路高压并联电抗器中性点加小电抗、短时在线路两侧投入快速单相接地开关等措施;另一方面可采用实测熄弧时间来整定重合闸时间。 ★什么叫电力系统理论线损和管理线损? 【中公解析】 理论线损是在输送和分配电能过程中无法避免的损失,是由当时电力网的负荷情况和供电设备的参数决定的,这部分损失可以通过理论计算得出。管理线损是电力网实际运行中的其他损失和各种不明损失。例如由于用户电能表有误差,使电能表的读数偏小;对用户电能表的读数漏抄、错算,带电设备绝缘不良而漏电,以及无电能表用电和窃电等所损失的电量。 ★什么叫自然功率? 【中公解析】 运行中的输电线路既能产生无功功率(由于分布电容)又消耗无功功率(由于串联阻抗)。当线路中输送某一数值的有功功率时,线路上的这两种无功功率恰好能相互平衡,这个有功功率的数值叫做线路的"自然功率"或"波阻抗功率"。

电力系统的接地形式(图示)

N = N eutral Conductor PE = P rotection- E arth Conductor PEN = P rotectitive- E arth- N eutral- Conductor T = T erre = Earthing I = I solation S = S eparated Neutral and Protective Conductor C = C ombined Neutral and Protective Conductor Abb. 6 TN-S-System Abb. 7 TN-C System Abb. 8 TN-C-S System Abb.9 TT System Abb. 10 IT System Network configuration Power systems Network configuration Network configurations are differed as per kind of – direct current, alternating current – “number of active conductors and the kind of earth connection” using the following characters: First letter: earthing of the current source (part 300, VDE 0100): T – direct earthing of a point I - insulation of all active parts of earth or connection of a point with the earth via an impedance. Second letter: earthing of elements of electrical machine: T – element is directly earthed, independent of the earthing of a point of a current source N – element is directly connected to the operating earth electrode (in networks of alternating voltage the earthed point is mostly the neutral point). Further letters: arrangement of neutral conductor and protective conductor in the TN-system: S – functions of neutral and protective conductor by separate conductors C – functions of neutral and protective conductor combined in one conductor (PEN). In TN-systems a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected to this point via PE- or PEN-conductor. Three types of TN-systems are to be differed (part 300, VDE 0100): TN-S-system - Separated neutral and protective conductor in the entire network (diagram 6)TN-C-system - Functions of neutral and protective conductor are combined in the entire network in one conductor, the PEN- conductor (diagram 7).TN-C-S-system - In one part of the network the neutral and the protective conductor are combined (PEN- conductor) (diagram 8). In the TT-system a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected with earth electrodes, that are separated from the operating earth electrode (diagram 9). The IT-system has no direct connection between active conductors and earthed parts. The elements of the electrical machine are earthed (diagram 10).

电力系统中性点接地方式

电力系统中性点接地方式简述 电力系统中性点是指星形连接的变压器或发电机的中性点。 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。 电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。 电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。 简言之,电力系统的中性点接地方式是一个系统工程问题。 接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。 根据接地的目的不同,分为工作接地和保护接地。 工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。 保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。 接地方式主要有2种,即直接接地系统和不接地系统。 1.中性点直接接地系统

中性点直接接地系统——又称大电流系统;适于110kV以上的供电系统,380V以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。 随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV及以上系统均采用中性点直接接地方式。对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。 对于高压系统,如110kV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√ 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV以上供电系统,多采用中性点直接接地系统。 在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。 1kV以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。

单点接地和多点接地剖析

有三种基本的信号接地方式:浮地、单点接地、多点接地。 1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。缺点:容易出现静电积累引起强烈的静电放电。折衷方案:接入泄放电阻。 2 单点接地方式:线路中只有一个物理点被定义为接地参考点,凡需要接地均接于此。缺点:不适宜用于高频场合。 3 多点接地方式:凡需要接地的点都直接连到距它最近的接地平面上,以便使接地线长度为最短。缺点:维护较麻烦。 4 混合接地按需要选用单点及多点接地。 PCB中的大面积敷铜接地其实就是多点接地所以单面Pcb也可以实现多点接地 多层PCB大多为高速电路地层的增加可以有效提高PCB的电磁兼容性是提高信号抗干扰的基本手段,同样由于电源层和底层和不同信号层的相互隔离减轻了PCB的布通率也增加了信号间的干扰。 在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流会影响小功率电路的正常工作。另外,最敏感的电路要放在A点,这点电位是最稳定的。解决这个问题的方法是并联单点接地。但是,并联单点接地需要较多的导线,实践中可以采用串联、并联混合接地。

将电路按照特性分组,相互之间不易发生干扰的电路放在同一组,相互之间容易发生干扰的电路放在不同的组。每个组内采用串联单点接地,获得最简单的地线结构,不同组的接地采用并联单点接地,避免相互之间干扰。 这个方法的关键:绝不要使功率相差很大的电路或噪声电平相差很大的电路共用一段地线。 这些不同的地仅能在通过一点连接起来。

为了减小地线电感,在高频电路和数字电路中经常使用多点接地。在多点接地系统中,每个电路就近接到低阻抗的地线面上,如机箱。电路的接地线要尽量短,以减小电感。在频率很高的系统中,通常接地线要控制在几毫米的范围内。 多点接地时容易产生公共阻抗耦合问题。在低频的场合,通过单点接地可以解决这个问题。但在高频时,只能通过减小地线阻抗(减小公共阻抗)来解决。由于趋肤效应,电流仅在导体表面流动,因此增加导体的厚度并不能减小导体的电阻。在导体表面镀银能够降低导体的电阻。 通常1MHz以下时,可以用单点接地;10MHz以上时,可以用多点接地,在1MHz和10MHz之间时,可如果最长的接地线不超过波长的1/20,可以用单点接地,否则用多点接地。

电力系统稳态分析复习资料教学文案

电力系统稳态分析 一、单项选择题 1. 工业、农业、邮电、交通、市政、商业以及城乡居民所消耗的功率之和是(C)。 A. 厂用电 B. 供电负荷 C. 综合用电负荷 D. 发电负荷 5. 高峰负荷时,电压中枢点的电压升高至105%U N;低谷负荷时,电压中枢点的电压下降为U N的中枢点电压调整方式是(A )。 A. 逆调压 B. 顺调压 C. 常调压 D. 故障时的调压要求 6. 升压结构三绕组变压器高、中压绕组之间的短路电压百分值(A)。 A. 大于中、低压绕组之间的短路电压百分值 B. 等于中、低压绕组之间的短路电压百分值 C. 小于中、低压绕组之间的短路电压百分值 D. 不大于中、低压绕组之间的短路电压百分值 8. 在原网络的两个节点切除一条支路,节点导纳矩阵的阶数(C)。 A. 增加一阶 B. 增加二阶 C. 不变 D. 减少一阶 7. 线路末端输出有功功率与线路始端输入有功功率的比值,常用百分值表示的是(A)。 A. 输电效率 B. 最大负荷利用小时数 C. 线损率 D. 网损率 9. 电力系统电压波动产生的原因有(B)。 A. 由幅度很小,周期很短的偶然性负荷变动引起 B. 由冲击性或者间歇性负荷引起 C. 由生产和生活的负荷变化引起 D. 由气象变化引起 10. 下列说法不正确的是(B)。 A. 所谓一般线路,是指中等及中等以下长度的线路 B. 短线路是指长度不超过300km的架空线 C. 中长线路是指长度在100~300km之间的架空线路和不超过100km的电缆线路

D. 长线路指长度超过300km的架空线路和超过100km的电缆线路 二、多项选择题 1.导线材料的电阻率略大于材料的直流电阻所考虑的因素有(ABD)。 A. 集肤效应的影响 B. 绞线每股长度略有增长 C. 相间距离略有增大 D. 额定截面积略大于实际截面积 5. 牛顿-拉夫逊迭代法用泰勒级数展开非线性方程后保留(AB )。 A. 常数项 B. 一阶偏导数项 C. 二阶偏导数项 D. 高阶偏导数项 6. 调相机(AD )。 A. 投资大和运行维护困难 B. 只能发出感性无功功率 C. 不能连续调节 D. 在一定条件下,当电压降低时发出的无功功率可以上升 7. 产生循环功率的原因是(ABD )。 A. 双端供电网络两端的电源有电压差 B. 两台并列运行的变压器的变比不同 C. 两回并列运行的输电线路的长度不同 D. 环网中变压器的变比不匹配 8. 原子能电厂原则上应持续承担额定容量负荷的原因是(AB )。 A. 一次投资大 B. 运行费用小 C. 可调容量大 D. 可调速度快 9. 实际中,三绕组变压器各绕组的容量比组合有(ACD )。 A. 100/100/100 B. 50/100/100 C. 100/50/100 D. 100/100/50 10. 确定电力系统结线的基本原则有(ABCD )。 A. 可靠、优质、经济 B. 运行灵活 C. 操作安全 D. 便于发展 三、判断题 2.手算潮流时,在求得各母线电压后,应按相应的变比参数和变量归算至原电压级。(√) 4. 我国交流电力系统的额定频率是50Hz。(√)

电力系统接地故障与处理分析

电力系统接地故障与处理分析 发表时间:2018-08-17T10:15:26.937Z 来源:《电力设备》2018年第15期作者:李晓宏[导读] 摘要:改革开放以来,随着国家的不断发展,社会城市化进程的不断加快,人民生活水平的日益提升,我国电力需求量逐年增加,这就进一步加大了我国电力系统的压力。 (内蒙古霍煤鸿骏铝电有限责任公司电力分公司内蒙古通辽 029200)摘要:改革开放以来,随着国家的不断发展,社会城市化进程的不断加快,人民生活水平的日益提升,我国电力需求量逐年增加,这就进一步加大了我国电力系统的压力。电力系统与人们的日常生活息息相关,一旦出现故障,不但会影响系统的正常运转,还会进一步干扰正常的生产生活,甚至埋下巨大的安全隐患。因此,如何查明并处理电力系统接地故障,是目前需要解决的一个问题。本文就主要介绍 了电力系统接地故障的原因与处理措施,希望可以提供一些参考,进一步推动我国电力行业的发展。 关键词:电力系统;接地故障;处理分析 1 电力系统接地故障的原因判断 1.1 常见故障问题 在电阻性单点接地的情况下,导致接地电阻值逐步降低甚至低于直流系统预定值。此时电力系统绝缘监测装置发出报警信号,为保证接地故障诊断的准确性,可运用绝缘检测仪对支路接地进行检查,并结合故障范围排除接地故障。在多点经高阻接地条件卜,电力系统总接地电阻会逐渐下降甚至低于电力系统预定值,此时电力系统绝缘检测装置发出报警信号,应对不同支路接地电阻进行详细检测,对比分析电阻值情况,以确保接地故障排查的可靠性。电力系统运行中多分支接地故障往往与多个电源点存在密切联系,导致正负电源出现接地故障,且断开一条支路后其他支路仍存在接地故障。为保证接地故障排查的整体效果,检查人员应从整个电力系统入手解列直流系统,循序渐进排查故障点,以确保电力系统接地故障得到妥善解决。 1.2 气候原因 发电厂直流系统中造成接地故障的主要原因与影响因素进行分析,其中最常见的就是气候的原因。通常情况下,恶劣的天气很容易造成直流系统接地故障的产生。在发电厂厂工程的施工过程中如果出现了发电厂内部的设备密封出现问题,就会在工作中出现渗水的现象,如果发生了霜雪更或者渗透的现象就会导致直流系统的节抵扣与导线的文职出现严重的腐蚀。时间一长,腐蚀的部位就会影响发电厂系统的正常运行。 1.3 野生动物原因 在电力系统的运行中的发电厂直流系统中的接线盒需要长期的暴露在外面。所以长时间就会受到多种动物的伤害,这一装置有没有专门的人员看守,因此在野外的环境中会被老鼠不断的啃食。被破坏的接线盒就会将电缆暴露在外面,还会影响发电厂直流接地系统的正常运行。根据相关统计,我国目前很多的很多的发电厂中直流系统的接地故障都是受到动物的伤害。所以,相关部门的管理人员需要制定相关的预防方案,减少这一系统中接地故障的发生概率。 1.4 开关使用发生变形 火力发电厂电力系统接地中,由于全封闭开关的小木柜体在系统运行中开关频率较高,导致其出现严重的变形情况,使得开关柜体产生接地电流,导致接地故障。部分开关把手的设置不规范,固定部位与开关部位之问并未进行绝缘保护,开关变形促使电流与金属导体相互接触,导致电力系统接地故障。 2 电力系统接地故障防护措施 2.1 严格做好日常检查 为有效防范火力发电厂电力系统接地故障,电力工作者应严格做好日常检查工作,确保三相变电的电流与电压保持正常状态,定期做好电源电流值输出的检查工作,确认满足相关标准值范围,并密切监测电力系统运行状态,确认运行中无噪音。不同模块输出电流应保持正常流向,尤其是正负极对接电流绝缘处理应规范,以免埋卜故障隐患。电力检查人员应随时检查通讯设备的功能,发现问题及行处理。定期检查充电模块的供电监控系统运行状态,准确记录检测结果,并以充电模块相关检查为充电电流与电压工况检查提供可靠数据支持,从而保证火力发电厂电力系统日常检查的规范性和有效性,降低电力系统接地故障的发生几率。 2.2 及时查找故障原因 2.2.1 利用绝缘监测装置判断 在安装设备时通常会直接将绝缘监测装置安装在直流母线上。当其处于止常运行状态下时,绝缘监测装置会以数字的形式显示出母线电压,并对直流系统正极和负极母线绝缘情况、母线的运行情况实时监测,并对接地故障进行报告。当前微机选线型直流绝缘监测装置在变电站中应用较为广泛,其不仅能够实时监测直流系统,而且能够对直流系统止负极和支路的对地绝缘状况等信息进行直接测量。应用绝缘监测装置时,在不切断直流同路负荷的情况下即能够寻找故障点。但当平衡桥电阻和切换电阻参数等设计中存在不合理情况时,直流系统止负极对地电压波动会较大,部分时候一点接地还会有误动作发生。 2.2.2 拉回路法进行判断 在电力系统的运行中对于发电厂的直流系统接地故障的查找方法有很多中,这些问题中最常见的就是拉回路法。这种方法的优势就是操作比较的简单,在实际的工作中应用比较的普遍。使用这一方法需要注意的是:第一,需要将照明的回路电源与操作回路的电源进行切断。这样可以保证工作人员的安全,然后在对发电厂中的直流系统进行注意的检查。在这一过程中需要工作人员具备专业的知识与技能。只有具有丰富知识的技术人员才可以在较短的时间内找到故障的主要问题,并及早的解决问题。 2.2.3 便携式定位装置检测法判断 与上述的两种方法相比较,便携式定位装置检测的方法具有的优势就是,使用效率更高,具有更多的优势。因为这种方法的使用可以利用先进的技术方法,便于更快的找到故障的问题,还不用将回路电源进行切断。这是便携式定位装置检测方法的优势,这在发电厂系统的故障检测中具有重要的作用。有利于可持续发展目标的实现,该可以从根本上解决故障问题。对发电厂直流系统的正常运行起到保障的作用。 2.3 有效维护监控系统设备

相关主题
文本预览
相关文档 最新文档