当前位置:文档之家› 行列式练习题目及答案.doc

行列式练习题目及答案.doc

行列式练习题目及答案.doc
行列式练习题目及答案.doc

第一章行列式

一、单项选择题

0 0 0 1

0 0 1 0

( ). (A) 0 (B) 1 (C) 1 (D) 2 1.

1 0 0

1 0 0 0

0 0 1 0

2. 0 1 0 0

( ). (A) 0 (B) 1 (C) 1 (D) 2

0 0 0 1

1 0 0 0

a

11

a

12

a

13 1

,则 D1

2a11

a

13

a

11 2a12

3. 若D a21 a22 a23 2a21 a23 a21 2a22 ( ).

a

31 a

32

a

33

2

2a31

a

33

a

31 2a32

(A) 4 (B) 4 (C) 2 (D) 2

4.若 a11 a12 a ,则a

12 ka

22 ( ).

a21 a22 a11 ka21

(A)ka (B) ka (C)k2a (D) k2 a

5.已知4 阶行列式中第 1 行元依次是4,0,1,3,第3 行元的余子式依次为2, 5,1, x , 则 x ( ).

(A) 0 (B) 3 (C) 3 (D) 2

8 7 4 3

6. 若 D 6 2 3 1

,则 D 中第一行元的代数余子式的和为 ( ).

1 1 1 1

4 3 7 5

(A) 1 (B) 2 (C) 3 (D)0

3 0

4 0

7. 若 D 1 1 1 1

).

0 1 0

,则 D 中第四行元的余子式的和为 (

5 3 2 2

(A) 1 (B) 2 (C) 3 (D) 0

x1 x2 kx3 0

8. k 等于下列选项中哪个值时,齐次线性方程组x1 kx2 x3 0 有非零解 .

kx1 x2 x3 0

( )

(A) 1 (B) 2 (C) 3 (D)0

二、填空题

1 1 1 0

1.

0 1 0 1

. 行列式

1 1 1

0 0 1 0

0 1 0 0

0 0 2 0

2.行列式.

0 0 0 n 1

n 0 0 0

a11 a1(n 1) a1 n

a21 a2 (n 1) 0

. 3.行列式

a n1 0 0

a

11 a

12

a

13

a

11

a

13 3a12 3a12

4.如果 D a21 a

22

a

23 M,则D1

a

21

a

23 3a22 3a22 .

a

31 a

32

a

33

a

31

a

33 3a32 3a32

5.已知某 5 阶行列式的值为5,将其第一行与第 5 行交换并转置,再用2 乘所有元素,则所得的新行列式的值为.

1 1 1 x 1

1 1 x 1 1

.

6.行列式

x 1 1 1

1

x 1 1 1 1

1 1 1

7.n阶行列式1 1 1

.

11 1

8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为.

1 2 3 4

5 6 78

9.设行列式D,A4 j( j1, 2, 3, 4) 为D中第四行元的代数余子式,

4 3 2 1

8 7 6 5

则 4A 41 3A 42

10.已知 D

2 A 43

A

44

.

a b c

a

c b a b , D 中第四列元的代数余子式的和为

.

b a

c c a c b

d

1 2 3 4

11. 设行列式 D

3 3

4 4 6 , A 4 j 为 a 4 j ( j 1, 2, 3, 4) 的代数余子式,则

1 5 6 7

1 1

2 2

A 41

A 42

, A 43

A 44

.

1 3 5 2n 1

1 2 0 0

12.已知行列式 D

1 0 3

0 , D 中第一行元的代数余子式的和为

1 0

n

.

kx 1 2x 2 x 3 0

.齐次线性方程组

2x 1 kx 2

0 仅有零解的充要条件是

.

13

x 1 x 2

x 3 0

x 1

2x 2 x 3 0

.若齐次线性方程组

2x 2 5x 3 0 有非零解,则 k = .

14

3x 1

2x 2 kx 3

三、计算题

a b c d x y x y

a

2 b 2 c 2 d 2

1.

; 2. y

x y x ;

a

3

b

3

c 3 d

3

x

y

x

y b c d a c d a b d a b c

0 1 x 1

3 . 解 方 程

1 0 1 x 0 ;

4.

x 1 1 0

1 x 1

a 0 1 1 1 1 a 1

1 1

1 1 a

2 1 ( a j 1, j 0,1, ,n );

1

1

1

a n

1 1 1 1 1 1 1 1 3 1 b

1 1 b 1 a 1 a 1 a 1

5. 1 1 2 b 1

6. b 1 b 2

a 2

a 2 ;

1

1 1 (n 1) b b 1 b

2 b 3

a n

x a 1 a 2

a n

1 x

2 x x

x x

2

a 1 x a 2

a n

1

1

1

n

x 2x 1 1 x 22

x 2

x

n

;

7. a 1 a 2

x

a n ; 8.

a 1 a 2 a 3

x

x n x 1

x n x 2

1 x n 2

2 1 0 0 0 1 a

a

0 0 0 1

2 1 0 0

1 1 a

a

0 0

1 2 0 0 ;

9. 10. D

0 1 1 a

a

0 .

0 0 0 2 1 0

0 1 1 a

a

0 0

1 1

a

1 2

参考答案

一. 单项选择题

C C A B C

D B B 二.填空题

1) n 1 n! ;

n (n 1)

4 ; 1. 0 ; 2. ( 3. ( 1) 2

a 1n a 2( n 1) a n1 ; 4. 3M ;

5. 160 ;

6. x

7. (

n)

n 1

; 8. 2 ; 9. 0 ; 10. 0 ; 11. 12, 9

; 12. n! (1 n

1 ) ; 13. k

2,3

;

k 1 k

14. k 7

三.计算题

1. (a

b c d)(b a)(c a)(d a)( c b)(d b)(d c) ; 2.

2(x 3 y 3 ) ;

n

n

1

3. x

2,0,1; 4.

(a k 1)(1

) ;

k 0

k 0

a k

1

n

5. (2 b)(1 b) ((n 2) b) ;

6. ( 1) n (b k a k ) ;

k 1

n n n

7. ( x a k ) ( x a k ) ; 8. 1 x k ; 9. n 1 ;

k 1 k 1 k 1

10. (1 a)(1 a 2 a 4 ) .

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

工程数学教案行列式的性质与计算

教案头 教学详案 一、回顾导入(20分钟) ——复习行列式的概念,按照定义计算一个四阶行列式,一般需要计算四个三阶行列式,如果计算阶数较高的行列式利用定义直接计算会比较麻烦,为简化行列式的计算,我们需要研究行列式的主要性质。 二、主要教学过程(60分钟,其中学生练习20分钟) 一、行列式的性质 定义 将行列式D 的行换为同序数的列就得到D 的转置行列式,记为T D 。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行(列),行列式变号。 推论 如果行列式有两行(列)完全相同,则此行列式为零。性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。性质4 行列式中如果有两行(列)元素成比例,则此行列式为零。性质5 若行列式的某一列(行)的元素都是两数之和。 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。二、行列式按行(列)展开 定义 在n 阶行列式中,把元素 ij a 所在的第i 行和第j 列划去后,留下来的1-n 阶行列式叫做元素ij a 的余子式,记作ij A 。记ij j i ij M A +-=)1(,叫做元素ij a 的代数余子式。引理 一个n 阶行列式,如果其中第i 行所有元素除ij a 外都为零,那末这行列式等于ij a 与它的代数余子式的乘积,即 ij ij A a D =。定理 行 列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 ),,2,1(,2211n i A a A a A a D in in i i i i =+++=。 推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即 j i A a A a A a D jn in j i j i ≠+++=,2211 。 行列式的代数余子式的重要性质: ???≠===∑=;,0,,1j i j i D D A a ij n k kj ki 当当δ???≠===∑=;,0, ,1j i j i D D A a ij n k jk ik 当当δ

第一章行列式练习题目及答案

第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 7. 若2 23 5 00 1 011110403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0

8. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. 行列式=0 100111010100111. 2.行列式 = -0 10000200 0010 n n . 3.行列式 =--0 01) 1(2211)1(111 n n n n a a a a a a . 4.如果M a a a a a a a a a D ==3332 31 232221131211 ,则=---=32 323331 2222232112121311133333 3a a a a a a a a a a a a D . 5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为 . 6.行列式 = --+---+---111 1 111111111111 x x x x . 7.n 阶行列式=+++λλλ 111 1 11111 . 8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为 .

第1章行列式自测题(答案)

内容提要: 一、行列式的定义 1、2阶和3阶行列式 2112221122 21 1211a a a a a a a a D -== 31231232211333221133 32 31 23222113 1211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a --- 2、排列与逆序 定义 由n ,,3,2,1 组成的一个有序数组称为一个n 阶排列. 3、n 阶行列式定义 定义 称∑ -== n n n p p p np p p p p p nn n n n n a a a a a a a a a a a a D 21212121) (2 1 22221 11211 )1(τ )det(ij a = 为n 阶行列式,记作D 或n D .也记作)det(ij a . 4、三角形行列式:主对角线元素的乘积。 二、行列式的性质 性质1 D D ='. 性质2 互换行列式的某两行(或列),行列式仅变符号. 推论 若行列式中某两行(或列)相同,则行列式为零. 性质3 行列式某行(列)的各元素乘以k ,等于用数k 乘以行列式. 推论 行列式的某行(或列)各元素的公因子可以提到行列式符号外面相乘. 推论 若行列式的某两行(或列)的对应成元素成比例,则行列式为零.

性质4 nn n n in i i n nn n n in i i n nn n n in in i i i i n a a a a a a a a a a a a a a a a a a 21 21 1121121 21112112 1 2211112 11βββαααβαβαβα+=+++ 性质5 将行列式的某行(或列)各元素乘以数k 加到另一行(或列)的对应元素上,行列式的值不变. 三、行列式的展开定理 定义 在n D 中划掉ij a 所在的行和列(即第i 行和第j 列),余下的元素按原来的相对位置构成一个(1-n )阶行列式,称为ij a 的余子式,记作ij M . ij j i ij M A +-=)1( ——ij a 的代数余子式 定理1 in in i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 行展开 或 ni ni i i i i A a A a A a D +++= 2211 (n i ,,2,1 =) →按第i 列展开 推论 02211=+++jn in j i j i A a A a A a (j i ≠) 或 02211=+++nj ni j i j i A a A a A a (j i ≠) 四、Cramer 规则 ?????? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 222212********* (1) 定理 当0≠D 时,方程组(1)有唯一解 D D x 11= ,D D x 22=,……,D D x n n =.

行列式检验测试题(有规范标准答案)

第九讲 行列式单元测试题点评 一、填空题(每小题2分,满分20分) 1.全体3阶排列一共有 6 个,它们是123,132,213,231,312,321; 2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次 对换变为奇排列; 3. 行列式D和它的转置行列式D'有关系式D D' =; 4. 交换一个行列式的两行(或两列),行列式的值改变符号; 5. 如果一个行列式有两行(或两列)的对应元素成比例,则这 个行列式等于零; 6. 一个行列式中某一行(列)所有元素的公因子可以提到 行列式符号的外边; 7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列) 的对应元素上,行列式的值不变; 8. 行列式的某一行(列)的元素与另一行(列)的对应元素的 代数余子式的乘积之和等于零; 9. 11121 222 1122 ; 00 n n nn nn a a a a a a a a a = L L K M M M M L

10.当 k=22 ±时,542k k k =。 二、判断题(每小题3分,满分24分) 1.1)(,)(31221±==k i i i i k i i i n n ΛΛππ则若 (∨) 的符号 的一般项则设n n j i j i j i nn n n n n a a a a a a a a a a a a D ΛΛ M M M M ΛΛ2211D ,.221 2222111211= .)1() (21n j j j Λπ-是 (×) 3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。 (×) 6.若行列式D 的相同元素多于2n n -个,则D=0. (×) 7. 11 121313233321222312 222331 32 33 11 21 31 a a a a a a a a a a a a a a a a a a = (×) 8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。 (×) 三、单项选择题(每小题4分,满分20分) 1.位于n 级排列12111k k n i i i i i -+L L 中的数1与其余数形成的反序个数为( A )

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 、填空 1 ?已知三阶方阵A 的行列式为3,贝U 2A = -24 1 2 ,g(x) 0 1 3 .设, ,为3维列向量, 记矩阵 A ( , , ),B ( A 3, 则B 3 = ,,丨 6 1 1 1 4?行列式 1 1 x 的展开式中,X 的系数是 2 . 1 1 1 1 0 1 0 5.设A 则A k 。(k 为正整数). 2 1 2k 1 7.已知四阶行列式D 中第三列元素分别为1 , 3 , 别为3, 2, 1 , 1,则行列式D =二3 24 4 (1) 1 , 2, 3, 2 16m n 2.设A 则 g(A )= n ,则 1 , 2, 3,2 1 2 16m n 2, 2,它们对应的余子式分

(X ) 解:D = 1 X 3+ 3X(— 2) + (— 2)X 1 + 2X 1 = — 3 二、判断题 1. 设A 、B 均为n 阶方阵, |AB | [AB AB A|B. (V ) 二、行列式计算 3 3 3 3 4 3 3 4 (1) D n 3 3 4 3 3 3 3 4 3n 1 3 Cl C 2 3n 1 4 解: Ci C 3 D n 3n 1 3 G C n 3n 1 3 1 1 1 1 1 2 3 1 (2 D 1 4 9 1 1 8 27 1 2. 设A 、B 均为n 阶方阵, 解:(范得蒙行列式)=(— 3 3 3 1 =3n 1 1 0 0 0 1 3 3 3n 1 3 3 D n 0 「3 A 4 3 ——0 3 4 r n r 1 ax 1 X 2 X 3 2 五、 a 为何值时, 线性方程组: X 1 ax 2 X 3 2 有唯一解? X 1 X 2 ax 3 3 a a 1 1 解: det A 1 a 1 (a 2)(a 1)2 a 2且a 1时,有唯一解 1 1 a 1)=— 240 1 — 3) (— 1 + 2) (— 1— 1) (3+ 2) ( 3— 1) ( — 2—

高二数学上册 9.4《三阶行列式》教案(3) 沪教

9.4(1)三阶行列式 一、教学内容分析 三阶行列式是二阶行列式的后继学习,也是后续教材学习中一个有力的工具.本节课的教学内容主要围绕三阶行列式展开的对角线法则进行,如何理解三阶行列式展开的对角线法则和该法则的应用是本节课的重点内容. 二、教学目标设计 经历观察、比较、分析、归纳的数学类比研究,从二阶行列式的符号特征逐步形成三阶行列式的符号特征,从二阶行列式展开的对角线法则逐步内化形成三阶行列式展开的对角线法则,感悟类比思想方法在数学研究中的应用. 三、教学重点及难点 三阶行列式展开的对角线法则、三阶行列式展开的对角线法则形成的过程. 四、教学用具准备 可以计算三阶行列式值的计算器 五、教学流程设计 六、教学过程设计 一、情景引入 1.观察

(1)观察二阶行列式的符号特征: 1325 023 1 - 612 711 - a b c d (2)观察二阶行列式的展开式特征: 13112321=?-? 02013(2)3 1-=?-?- 6 12 6(11)712711 =?--?- a b a d c b c d =?-? 2.思考 (1)二阶行列式算式的符号有哪些特征? (2)你能总结一下二阶行列式的展开式有哪些特征吗? [说明] (1)请学生观察二阶行列式的符号特征,主要是观察二阶行列式有几个元素,这几个元素怎么分布?从而可以类比得到三阶行列式的符号特征. (2)请学生观察和总结二阶行列式的展开式特征,可以提示学生主要着力于以下几个方面: ① 观察二阶行列式的展开式有几项? ② 二阶行列式的展开式中每一项有几个元素相乘;这几个元素在行列式中的位置有什么要求吗? ③ 二阶行列式的元素在其展开式中出现了几次?每个元素出现的次数一样吗? 二、学习新课 1.新课解析 【问题探讨】 结合情景引入的两个思考问题,教师可以设计一些更加细化的问题引导学生发现二阶行列式的符号特征以及二阶行列式的展开式特征,从而类比得到三阶行列式相应特征.比如教师可以设计如下几个问题: 问题一,通过学习和观察,我们发现二阶行列式就是表示四个数(或式)的特定算式,这四个数分布成两行两列的方阵,那么三阶行列式符号应该有怎么样的特征呢? 问题二,说出二阶行列式的展开式有哪些特征? (① 二阶行列式的展开式共有两项;② 二阶行列式的展开式中每一项有两个元素相乘;③ 相乘的两个元素在行列式位于不同行不同列;④ 二阶行列式的元素在其展开式中出现了

行列式习题答案

行列式习题答案

2 线性代数练习题 第一章 行 列 式 系 专业 班 姓名 学号 第一节 n 阶 行 列 式 一.选择题 1.若行列式x 5 22 31521- = 0,则 = x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组? ? ?=+=+4 733 22 1 21 x x x x ,则方程组的解),(2 1 x x = [ C ] (A )(13,5) (B )(13-,5) (C )(13, 5 -) (D )(5,13--) 3 . 方 程 09 3 142112 =x x 根的个数是 [ C ] (A )0 (B )1 (C )2 (D )3

3 4.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315 a a a a a a (B )6553443226 11a a a a a a (C ) 34 6542165321a a a a a a (D ) 26 654413 3251a a a a a a 5.若55 443211) 541() 1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的 值及该项的符号为[ B ] (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1 2 21 --k k 0 ≠的充分必要条件是 3,1 k k ≠≠- 2.排列36715284的逆序数是 13 3.已知排列397461t s r 为奇排列,则r = 2,8,5 s

行列式练习题及答案

一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0000000010 020001000 -= ( ). (A )! n (B )!)1(2) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数x x x x x x f 2 1 1 23232101)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.

一、填空题 1.若D=._____324324324,133 32 3131 232221211312111113332 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2913251323 2 213211x x --=0的根为___________ . 二、计算题 1. 8 1 71160451530169 14 4312----- 2. d c b a 100 1100 11001--- 3.a b b b a b b b a D n =

第一章行列式作业及答案

第一部分 行列式作业 (一)选择题(15分) 1.在5阶行列式展开式中,12335544i j a a a a a 是其中带有正号的一项,则,i j 之值为( ) (A) 1,2i j == (B) 2,3i j == (C) 1,3i j == (D) 2,1i j == 2.在5阶行列式展开式中,包含1325,a a 并带有负号的项是( ) (A) 1325344251a a a a a - (B) 1325314254a a a a a - (C) 1325324154a a a a a - (D) 1325314452a a a a a - 3.已知行列式11 121321 222331 3233a a a a a a m a a a =,则行列式2122 1331113212331 311211222 1323 222222a a a a a a a a a a a a a a a ---=+++( ) (A)-4m (B)-2m (C)2m (D)4m 4.已知4101 1111 11111111 x D ---=----,则4D 中x 的系数是( ) (A)4 (B)-4 (C)-1 (D)1 5. 设方程组12312312 3112 x x x x x x x x x λλλ--=?? ++=??-++=? ,若方程组有惟一解,则λ的值应为( ) (A)0 (B)1 (C)-1 (D)异于0与1±的数 (二)填空题(15分) 1.排列(1)(2)321n n n -?-??? 的逆序数为 。 2.排列12n a a a 与排列121n n a a a a - 的逆序数之和等于 。 3.行列式D 中第2行元素的代数余子式之和21222324A A A A +++= ,其中 1111 1111 11111111 D -= --。

第一章 行列式试题及答案

第一章 行列式试题及答案 一 选择题 (每小题3分,共30分) ⑴ n 元排列 i 1 i 2… i n 经过相邻对换,变为i n … i 2 i 1,则相邻对换的次数为( ) (A) n (B) n /2 (C) 2n (D) n (n -1)/2 ⑵ 在函数()x x x x x x f 21421 12---=中,x 3的系数是( ) (A) -2 (B) 2 (C) -4 (D) 4 ⑶ 若D n =det(a ij )=1,则det(-a ij ) = ( ) (A) 1 (B) -1 (C) (-1)n (D) (-1) n(n -1)/2 ⑷ 设 n n λλλλλλ 21 2 1 = ,则n 不可取下面的值是( ) (A)7 (B) 2k +1(k ≥2) (C) 2k (k ≥2) (D) 17 ⑸ 下列行列式等于零的是( ) (A)100123123- (B) 031010300- (C) 100003010- (D) 2614226 13- ⑹ 行列式D 非零的充分条件是( ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 ⑺ =+++1 11 222c bc ac bc b ab ac ab a ( ) (A) 1 000100 01222 +c bc ac bc b ab ac ab a (B) 1111122222 +++++c bc ac bc b ab ac ab c bc ac bc b ab ac ab a (C) 101011122 22 2 +++++c bc bc b ac ab c bc ac bc b ab ac ab a (D) 1 1122 2 bc ac bc ab ac ab c bc ac bc b ab ac ab a + ⑻ 设a ,b ,c 两两不同,则02 22=+++c b a c b a b a a c c b 的充要条件是( ) (A) abc =0 (B) a+b+c =0 (C) a =1, b =-1, c =0 (D) a 2 =b 2 , c =0 ⑼ 四阶行列式 =4 4 3 322 1 1 a b a b b a b a ( ) (A) (a 1a 2- b 1b 2) (a 3a 4- b 3b 4) (B) (a 1a 4- b 1b 4) (a 2a 3- b 2b 3) (C) (a 1b 2- a 2b 1) (a 3b 4- a 4b 3) (D) (a 1b 4- a 4b 1) (a 2b 3- a 3b 2) ⑽ 齐次线性方程组??? ??=-+=+-=-+03020 223 21321321x x x x x x x x x λ只有零解,则λ应满足的条 件是( ) (A) λ=0 (B) λ=2 (C) λ=1 (D) λ≠1 二 填空 (每小题3分,共15分) ⑴ 在五阶行列式中,3524415312a a a a a 的符号是_________。 ⑵ 五阶行列式=6 200357020381002 300031000___________。 ⑶ 设7 3 4 369 02 111 1875 1----= D ,则5A 14+A 24+A 44=_______。 ⑷ 若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 ⑸ 设x 1,x 2,x 3是方程x 3+px +q =0的根,则行列式=1 32213 3 21 x x x x x x x x x __。 三 计算行列式 (每小题6分,共30分) ⑴ 0 112 2 1 032101132 2 2 1 13 1 3211----- ⑵ ()()()()()()()()()()()()2 22 2 2222 2222 2222321321321321++++++++++++d d d d c c c c b b b b a a a a ⑶ y y x x -+-+11 1 1 111111111111 ⑷ a c b a c b a c b a c b a ⑸ x b b b a x b b a a x b a a a x D n =(a ≠ b ) 四 证明题 (每小题10分,共20分) ⑴ 用归纳法证明: 任意一个由自然数1,2,…,n 构成的n 元排列,一定可以经过不超过n 次对换变成标准排列12…n ⑵ 设平面上三条不同的直线为 000 =++=++=++b ay cx a cy bx c by ax , 证明: 三条直线交于一点的充分必要条件是0=++c b a

线代教案第1章行列式

第1章行列式(共4学时) 一、教学目标及基本要求 1.了解逆序数的概念 2.掌握n阶行列式的定义和行列式的性质 3.掌握行列式的按行(列)展开定理 4.利用行列式的性质和展开定理计算行列式的值 二、教学内容与学时分配 1.预备知识 2.n阶行列式的定义(2学时) 3.行列式的性质 4.行列式的展开(2学时) 三、教学内容的重点及难点 重点:利用行列式性质及展开计算行列式 难点:行列式的计算技巧 四、教学内容的深化和拓宽 行列式的拉普拉斯展开定理及行列式在实际中的应用,或讲稿中部分结论推广 五、思考题与习题 思考题:见讲稿 作业:2,(2),(4),(6);3,(1),(3);7,(1),(3),(5) 六、教学方式与手段 注意行列式定义的引入,应用启发式

讲稿内容 1.1 预备知识 为什么要学习行列式呢?因为它是一个很重要的数学工具,在数学的各个分支中都经常用到,比如,用二阶行列式来解二元线性方程组,用三阶行列式来解三元方程线性组等;又如,已知平面的三点 ),(),,(),,(332211y x y x y x ,则以这三点为顶点的三角形面积为下面行列式的绝对值:.1112 1 3 3 22 11 y x y x y x 这一章主要引进行列式的概念并讨论行列式的性质,以及利用行列式的性来计算行列式的值。下面我们利用线性方程组的求解引入行列式的概念。 设有二元线性方程组 ?? ?? ?=+=+)2()1(22221211212111b x a x a b x a x a 可用消元法来解该方程组。 1222211211222111222)(:)2()1(a b a b x a a a a a a -=-?-? 2111122211222112111)(:)1()2(a b a b x a a a a a a -=-?-? 若0)(21122211≠-a a a a ,则21 1222112111122211222111222211,a a a a a b a b x a a a a a b a b x --=--= 如果我们定义 bc ad d c b a -=, d c b a 称为二阶行列式,横排称为行,纵排称为列,二阶行列式共有二行 二列四个元素,其值等于主对角线元素之积与次对角线元素之积的差。这样一来,二元线性方程组的解可简 单表示为 D D x D D x 2211,== 其中22 211211a a a a D = 为方程组未知数的系数所组成的行列式称为方程组的系数行列式; 2221211a b a b D = (用方程组的常数项代替系数行列式的第1列) 2 211 11 2b a b a D = (用方程组的常数项代替系数行列式的第2列) 类似地,我们可用三阶行列式来解三元线性方程组: ??? ??=++=+=++33332321 3123232221211 313212111b x a x a x a b x a x a x a b x a x a x a + 定义32211331231233221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a D ++==

线性代数第一章自测题

第一章 行列式 (√)1.若11 12 13 2122 23313233a a a a a a d a a a =,则13 1211 23222133 32 31 a a a a a a d a a a =. 2.互换行列式的任意两行,行列式值不变. ( ) 3.排列631254的逆序数是6. ( ) 4.对角行列式的值等于其所有对角元素的乘积. ( ) 5.分块对角阵的行列式等于对角线上各方块行列式之积.( ) 6.设A 为3阶方阵,2A =,则 12 T A A =__________. 7.逆序数()21n τ= _____________. 8.排列32514的逆序数是: . 9.排列631254的逆序(631254)t = 8 . 10.设四阶行列式1 11 222 43334 4 4 p a b c p a b c D p a b c p a b c = ,则第四列的代数余子式之和 = 0 . 11.设3312243,0311A t B ?-?? ? =≠ ? ?-?? 且AB=0,则t = 3 . 12.设a 、b 为实数,则当a =___且b =___时,01 0000 =--a b b a 13.== 3 4 3 3 3 2 3 1 242322214 3211 111 x x x x x x x x x x x x D __________________________. 14.设D 为一个三阶行列式,第三行元素分别为-1,2,3,其余子式分别为1,2,1,则D ____________=.

15.设 211 111 401 D - = - , ij A为D中元素 ij a的代数余子式,则 313233 A A A ++=_ ______. 16.sin cos cos sin αα αα - =_____________. 17.001 020 00 n = _____________. 18.设 211 111 401 D - = - , ij A为D中元素 ij a的代数余子式,则 313233 A A A ++=_ ______. 19.若D是n阶行列式,下列说法中错误的是(). .A D与T D相等; .B若D中有两行元素成比例,则D等于零; .C若D中第i行除()j i,元外都为零,则D等于()j i,元与它的代数余子式的乘积;.D D的某一行元素与另一行的对应元素的余子式乘积之和为零. 20.行列式349 571 214 -的元素 23 a的代数余子式 23 A为() A. 3 B.3- C.5 D.5- 21.方程 1 110 12 λλ λ λ - =的实根个数为() A. 0 B. 1 .C 2 .D 3 22. 23.计算行列式 2111 1211 1121 1112 D=; 1 311 131 113 D=; 2 111 135 1925 D=; 1 411 141 114 D=;

线性代数习题册行列式-习题详解.doc

行列式的概念 一、选择题 1. 下列选项中错误的是 ( ) a b c d (B) a b d b (A) d a b ; c d c ; c a a 3c b 3d a b a b a b (C) c d c ; (D) c d c . d d 答案: D 2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行 列式的值( ). (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D) 保持相同的正负号. 答案: C 二、填空题 1. log a b 1 =. 1 log b a 解析: log a b 1 log a b log b a 1 1 1 0 . 1 log b a cos sin 2. 3 6 =. sin cos 3 6 cos sin 解析: 3 6 cos cos sin sin cos0 sin cos 3 6 3 6 2 3 6 2x 1 3 3. 函数 f (x) x x 1 中, x 3 的系数为 ; 2 1 x 2x 1 1 g( x) x x x 中, x 3 的系数为. 1 2 x 答案: -2 ; -2.

阶行列式 D n中的n最小值是. 答案: 1. 1 2 3 5.三阶行列式0 2 4 中第2行第1列元素的代数余子式 3 1 1 等于. 答案: 5. 6.若 2x 8 0 ,则x= . 1 2 答案: 2. 7. 在n 阶行列式 D a ij 中,当 i

第一章行列式与矩阵计算练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 1 11 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:11231232,,,2,,,D αααβαααβ=+- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 .

解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ ) 三、行列式计算 (1)4 3 3 3 34333 343 3334 Λ ΛΛΛΛΛΛ ΛΛ=n D 解: n D n c c c c c c +++13121M 4 3 3 1 334313334133331 3Λ ΛΛΛΛΛΛΛΛ++++n n n n 1 1312r r r r r r n ---M 1 01000 0103 3313Λ ΛΛΛΛΛΛΛΛ+n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

线性代数第1章行列式试卷及答案

第一章 行列式 一、单项选择题 1.行列式D 非零的充分条件是( D ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式 1 2 21--k k ≠0的充分必要条件是( C ) A .k ≠-1 B .k ≠3 C .k ≠-1且k ≠3 D .k ≠-1或≠3 3.已知2阶行列式 2 21 1b a b a =m , 2 21 1c b c b =n ,则 2 22 111c a b c a b ++=( B ) +n (m+n ) 4.设行列式==1 11103 4 222,1111304z y x z y x 则行列式( A ) A. 32 D.3 8 5.下列行列式等于零的是(D ) A .100123123- B. 031010300- C . 100003010- D . 2 61422613- 6.行列式 1 1 1 101111011110------第二行第一列元素的代数余子式21A =( B ) A .-2 B .-1 C .1 D .2 8.如果方程组?? ? ??=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B ) 9.(考研题)行列式 0000000a b a b c d c d =( B ) A.()2ad bc - B.() 2ad bc -- C.2222 a d b c - D.22 2 2 b c a d - 二、填空题 1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。 2. 行列式11 1 2 3 44916 中(3, 2 )元素的代数余子式 A 32=___-2___. 3. 设7 3 43690211 1 1 875 1----= D ,则5A 14+A 24+A 44=_______。 解答:5A 14+A 24+A 44= 1501 3430 90211 1 15751-=--- 4.已知行列式01 110321 2=-a ,则数a =____3______. 5.若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 解答:0)(1 0100 22=+-=--=---b a a b b a a b b a a =0, b =0 6. 设1 31 2 4321322 )(+--+-+= x x x x f ,则2 x 的系数为 23 。 7. 五阶行列式=6 200357020381002 300031000___________。 解答:4232 1 2 331)1(6 200357020381002 30003100032=?? -=? 8. (考研题)多项式2 1 1 111 )(32 132132 1321+++++= x a a a a x a a a a x a a a a x f 的所有零 点为 01=x ,12-=x ,23-=x 。 9、(考研题)设x d c b d x c b d c x b d c b x x f = )(,则方程0)(=x f 的根为=x 。 【分析】 )(x f 是关于x 的四次多项式,故方程0)(=x f 应有四根,利用行列式的性质知,当d c b x ,,=时,分别会出现两行相等的情况,所以 行列式为零,故d c b x ,,=是方程的三个根。 再将后三列均加到第一列上去可以提取一个公因子为 d c b x +++,所以当)(d c b x ++-=时,满足0)(=x f ,所以得方程的 第四根)(d c b x ++-=。 故方程的四个根分别是:)(,,,d c b d c b ++-。 二、计算题 1、计算000100 0200020120002013000 002014 D = 。 【分析】方法一:此行列式刚好只有n 个非零元素 nn n n n a a a a ,,,,112211--- ,故非零项只有一项: nn n n n t a a a a 112211)1(---- ,其中2 ) 2)(1(--= n n t , 因此 (20141)(20142) 2 (1) 2014!2014!D --=-= 方法二:按行列展开的方法也行。 2、计算行列式 3 214214314324 321= D 。 分析:如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加 法). 解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得

相关主题
文本预览
相关文档 最新文档