当前位置:文档之家› 土壤容重、含水率及三相比的测定

土壤容重、含水率及三相比的测定

土壤容重、含水率及三相比的测定
土壤容重、含水率及三相比的测定

土壤容重、孔隙度、含水率等测定方法

1.土壤含水量(含水率)测定 采用酒精燃烧法测定。 操作步聚: (1)取小铝盒若干,洗净后烘干,用天平称出每—铝盒重量(逐一标量记录) (2)在标准地内挖土壤剖面,分20cm 一层。在分层的土壤剖面上用铝盒自下而上刮一层土(约半盒、注意避开根系和石砾等杂物),马上称重(得出湿土重十铝盒重) (3)倒入酒精8-12ml ,振荡铝盒使与土壤混合均匀(如土壤很湿要用小刀拌匀成泥浆),点燃酒精,在火焰将熄灭时,用小刀轻拔土壤,使其充分燃烧,烧完后再加入3~4ml 进行第二次燃烧(如土壤粘重、含水量较大,再加入2~3ml 酒精进行第三次燃烧)。 冷却后,马上称出重量(得干土重十盒重)。每层重复三次。 (4)土壤含水量及现有贮水量计算 ①土壤含水量(重量)=%重(干土重+盒重)-盒干土重+盒重)(湿土重+盒重)-(100? =水分重/干土重×l00% ②土壤含水量(体积)=) ()容重(土壤含水量(重量%)33g/cm 1g/cm ? =%土壤体积 水分体积100? (注:水的容重一般取lg /cm 3) 2.土壤物理性质测定 采用环刀法 操作步聚: (1)首先量取环刀的高度和内径,计算出其容积(标记、做好记录): V =πr 2H 式中:V —环刀体积(cm 3) R —环刀内半径(cm) H —环刀高度(cm) 将环刀在天平上称重(做好标记、记录)。 (2)选择标准地,在测定地点做一平台(山地),挖土壤剖面,分层取样测定(按20cm —层),每层设三个重复。 (3)打入环刀(一定要垂直打入,且不能晃动),待土壤至环刀下沿齐平时,在环刀上垫—滤纸层后把盖盖好,挖出环刀,用刀削平底部土壤,垫好滤纸,盖好下盖。迅速称重(得:自然土重十环刀重)

1土的含水率烘干法的试验步骤

1土的含水率烘干法的试验步骤: 答: ①取具有代表性试样,细粒土15~30 g,砂类土.有机土50 g,砂砾石为1~2㎏放入称量盒内,立即盖好盒盖,称取湿土质量m,准确至 0."01g. ②揭开盒盖,将试样和盒放入烘箱内,在温度105~110℃恒温下烘干.烘干时间对细粒土不得少于8h,对砂类土不得少于6h.对含有机质超过5%的土,应将温度控制在65~70℃,的恒温下烘干,干燥12~15h为好. ③将烘干后的试样和盒取出,放入干燥器内冷却(一般只需 0."5~1h).冷却后盖好盒盖,称质量m s,准确至 0."01g。 ④含水率计算公式: w=(m- m s)/ m s×100% 本试验须进行二次平行测定,取两次平行试验的平均值作为含水率,允许平行差应符合规定。 2.简述密度测定(环刀法)的步骤 ①按工程需要取原状土或制备所需状态的扰动土样,整平两端,环刀内壁涂一薄层凡士林,刀口向下放在土样上。

②用修土刀将土样上部削成略大于环刀直径的土柱,然后将环刀垂直下压,边压边削,至土样伸出环刀上部为止。削去两端余土,使与环刀口面齐平,并用剩余土样测定含水率。 ③擦净环刀外壁,称环刀与土合质量,准确至 0."1g。 ④结果整理湿密度p=(m 1﹣m 2)/V.其中m 1为土样质量, m 2为剩余土样质量, V为环刀容积.干密度p d=p/(1+ 0."01 w)其中w为含水率(%). 本试验须进行两次平行测定,取其算术平均值,其平行差不得大于 0."03g/㎝3 3测定土的液塑限的试验步骤 (1)取有代表性的天然含水率或风干土样进行试验.如土中含有大于 0."5㎜的土粒或杂物时,应将风干土样用带橡皮头的研杵研碎或用木棒在橡皮板上压碎,过 0."5㎜的筛.取代表性土样200g,分开放入三个盛土皿中,加不同数量的蒸馏水,使土样的含水率分别控制在液限(a点)、略大于塑限(c点)和二者的中间状态(b点)附近。用调土刀调匀,密封放置18h以上。 将制备好的土样充分搅拌均匀,分层装入盛土杯中,试杯装满后,刮成与杯边齐平。给圆锥仪锥尖涂少许凡士林,将装好土样的试杯放在联合测定仪上,

土壤水份和植物组织含水量的测定

土壤水份和植物组织含水量的测定 实验的目的与要求: 通过对植物和土壤水分的测定来学习和使用烘干法水分测定仪,掌握实验和实习的技巧,了解一定的实习的规则! 通过对实习数据的比较,以及结合自身的知识来分析土壤和植物组织含水量的关系,了解水分对植物生长的影响,了解土壤中水分对植物生长的影响。 结合生态学的知识来分析土壤和植物含水量受整个生态系统的影响。 实验的主要内容: 记录实验地的周围环境的各种生态环境因素,如温度,风向,湿度。 测量土壤和植物组织含水量值,在不同的环境下测量对比,同一环境下不同物种的值。 记录实验测量的数据值,分析得出结论。 实习的主要工具: 1.烘干法水分测定仪(LSH-100A型): 最大秤量:100g 实际标尺分度值:1mg 准确度级别:2级 水分测量允许误差:±0.2%(样品≥2克) 水分含量测定可读性:0.01% 测量水分范围:0~100% 加热源:卤素灯(环型400W) 温控精度:±1℃ 加热温度设定:室温~160℃(以1℃调整) 时间设定:0~180min(以1min调整) 测量方法:手动、自动 操作温度范围:10~30℃ 电源及功耗:AC220V±22V 50Hz 420W 秤盘尺寸:¢100mm 外壳尺寸:360mm×250mm×270mm 净重:7kg 实验用剪刀、小袋子 实验原理: 首先对同一环境下的不同生长情况的高山榕进行水分的测定,记录数据并比较,然后对不同环境下的不同株池杉进行水分的测定,在数据中得出结论。用烘干法测定仪进行含水量的测定,使用小塑料袋来装实验品以防止植物叶子和土壤水分的蒸发。 实验的步骤: 首先进行样本的采样,在学校的马路边分别进行不同生长情况高山榕叶子的取样,然后再树下进行土壤的取样。在昭阳湖旁不同地方生长情况相同的池杉的叶子和土壤的进行取样。将取来的样品装入袋中,并做好标签。 预热烘干法测定仪后,将取来的样品放入烘干仪中保持5-8分钟,待屏幕中的数值稳定后进行数据的记录。 对数据进行整理分析和讨论,得出结论。 实验的结果:

土含水率的检测方法汇总

土的含水量试验(烘干法、酒精燃烧法)土的含水量试验(烘干法、酒精燃烧法) 烘干法 一、定义 土的含水量是在105-110℃下烘至恒量时所失去的水分质量和达恒量后干土质量的比值,以百分数表示,本法是测定含水量的标准方法。 二、适用范围 粘质土、粉质土、砂类土和有机质土类。 三、主要仪器设备 烘箱:可采用电热烘箱或温度能保持105-110℃的其他能源烘箱,也可用红外线烘箱 天平:感量0.01g。 称量盒(定期调整为恒质量) 四、计算公式 含水量=(湿土质量-干土质量)/干土质量×100% 注:计算至0.1%。 五、允许差值 本试验须进行二次平行测定,取其平均算术平均值,允许平行差值应符合如下规定 含水量(%)允许平行差值(%) 5以下0.3 40以下≤1 40以上≤2 酒精燃烧法 一、适用范围 本法适用于快速简易测定细粒土(含有机质的除外)的含水量。 二、主要仪器设备 称量盒(定期调整为恒质量)。 天平:感量0.01g。 酒精:纯度95%。 三、其余同"烘干法" 土的颗粒分析试验(筛分法、比重计法) 筛分法 一、适用范围 适用于分析粒径大于0.074mm的土。 二、主要仪器设备 标准筛:粗筛(圆孔):孔径为60mm、40mm、20mm、10mm、5mm、2mm;细筛:孔径为

2mm、0.5mm、0.25mm、0.074mm。 天平:称量5000g,感量5g; 称量1000g,感量1g; 称量200g,感量0.2g。 三、试样 从风干、松散的土样中,用四分法按照下列规定取出具有代表性的试样: 小于2mm颗粒的土100-300g。 最大粒径小于10mm的土300-900g。 最大粒径小于20mm的土1000-2000g。 最大粒径小于40mm的土2000-4000g。 最大粒径大于40mm的土4000g以上。 四、计算公式 按下式计算小于某粒径颗粒质量百分数: X=(A/B)×100 式中:X-小于某粒径颗粒的质量百分数,%; A-小于某粒径的颗粒质量,g; B-试样的总质量,g。 当小于2mm的颗粒如用四分法缩分取样时,试样中小于某粒径的颗粒质量占总质量的百分数:X=(a/b)×p×100 式中:a-通过2mm筛的试样中小于某粒径的颗粒质量,g; b-通过2mm筛的土样中所取试样的质量,g; p-粒径小于2mm的颗粒质量百分数。 关于不均匀系数的计算: Cu=d60/d10 式中:Cu-不均匀系数; d60-限制粒径,即土中小于该粒径的颗粒质量为60%的粒径,mm; d10-有效粒径,即土中小于该粒径的颗粒质量为10%的粒径,mm; 比重计法 一、适用范围 本法适用于分析粒径小于0.074mm的土。 二、主要仪器设备 比重计:(1)甲种比重计:刻度单位以摄氏20℃时,每1000 ml悬液内所含土质量的克数表示,刻度为-5~50,最小分度值为0.5。 (2)乙种比重计:刻度单位以摄氏20℃时悬液的比重表示,刻度为 0.995~1.020,最小分度值为0.0002。 量筒:容积为1000ml,内径为60mm,高度为350±10mm,刻度为0~1000ml。 细筛:孔径为2mm,0.5mm,0.25mm; 洗筛:孔径为0.074mm。 天平:称量100g,感量0.1g; 称量100g(或200g),感量0.01g。 温度计:测量范围0~50℃,精度0.5℃。 洗筛漏斗:上口径略大于洗筛直径,下口直径略小于量筒直径。 煮沸设备:电热板或电砂浴。 搅拌器:底板直径50mm,孔径约3mm。 三、试样

土壤含水量测定方法小结

土壤含水量测定方法小结 1,烘干称重; 这个不多说了。准确度最高,但测定得到的是质量含 水量,与其他方法所得数据进行比较是注意换算。 2,中子仪; 技术比较成熟,准确性极高,是烘干法以外的第二标 准方法。 但是中子仪测定需要安装套管,理论上可达任何深度,设备昂贵,投入很大。中子射线对操作者身体有损害,严格来说需要相关证件才可以操作。无法测定表层土 壤。 3,电阻法; 一般使用石膏块作为介质埋设地下,石膏块中埋设两根导线,导线之间的石膏成分组成电阻,石膏块电阻与土壤含水量相关。石膏块制作简单,哪怕进口的成品成本也是非常低廉,可以作很多重复,可以不破坏土壤在田间连续自动监测。存在问题,石膏块滞后时间较长,所以不可能用来做移动式测定和自动灌溉系统。石膏块只适合用于非盐碱土壤中,同时石膏块不适合使用直流电(文献查得,表示怀疑,因为所有的石膏块读书表都是用干电池作为电源),测定受土壤类型影响很大,标定结果会随时间改变,达到一定年 限后,石膏会逐渐溶解到土壤中。 4,TDR(Time Domain Reflectometry) TDR有两种时域反射仪和时域延迟,两者均简称TDR。TDR技术是当前土壤水分测定装置的主流原理,可以连续、快速、准确测量。可以测量土壤表层含

水量。一般的TDR原理的设备响应时间约10-20秒,适合移动测量和定点监测。测定结果受盐度影响很小,TDR缺点是电路比较复杂,设备较昂贵。 5,FDR(Frequency Domain Reflectometry)几乎具有TDR的所有优点,探头形状非常灵活。比较夸张的甚至可以放在做成犁状放在拖拉机后面运动中 测量。FDR相对TDR需要更少的校正工作。 TDR和FDR同样有一个缺点,当探头附近的土壤有空洞或者水分含量非常不均匀时,会影响测定结果。 非常奇怪的是,基于FDR原理的往往是低端的仪器设备,根据笔者实际使用经验,FDR技术可能在精度上存在瓶颈,经常在5%的误差左右,写文章时候数据基本上不好用。

土壤含水量测量实验报告

土壤水分的测定实验 一、实验目的 1、了解土壤的实际含水情况,以便适时灌排,保证植物生长对水分的需求。 2、风干土样水分的测定,是各项分析结果计算的基础。土壤水分含量的多少,直接影响土壤的固、液、气三相比例,以及土壤的适耕性和植物的生长发育。 二、实验原理 土壤水分大致分为化学结合水、吸湿水和自由水三类。自由水是可供植物自由利用的有效水和多余水,可以通过土壤在空气中自然风干的方法从土壤中释放出来;吸湿水是土壤颗粒表面被分子张力所吸附的单分子水层,只有在105-110℃下才能摆脱土壤颗粒表面分子力的吸附,以气态的形式释放出来,由于土粒对水汽分子的这种吸附力高达成千上万个大气压,所以这层水分子是定向排列,而且排列紧密,水分不能自由移动,也没有溶解能力,属于无效水;而化学结合水因为参与了粘土矿物晶格的组成,所以是以OH-的形式存在的,要在600--700℃时才能脱离土粒的作用而释放出来。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 三、实验器材 铝盒、烘箱、干燥器、天平、小铲子、小刀。 四、实验步骤 1、在室内将铝盒编号并称重,重量记为W0 。 2、用已知重量的铝盒在天平上称取欲测土样15—20克,称量铝盒与新鲜土壤样

实验三 土壤水分含量的测定

实验三 土壤水分含量的测定 一、目的要求 土壤水分是土壤的重要组成部分,也是重要的土壤肥力因素。进行土壤水分的测定 有两个目的:一是了解田间土壤的水分状况,为土壤耕作、播种、合理排灌等提供依据; 二是在室内分析工作中,测定风干土的水分,把风干土重换算成烘干土重,可作为各项 分析结果的计算基础。 本实验要求掌握烘干法和酒精燃烧法测定土壤水分的原理和方法, 能较准确地测定 出土壤的水分含量。 二、仪器与试剂 天平(感量0.01g和0.001g)、烘箱、干燥器、称样皿、铝盒、量筒(10ml)、无 水酒精、滴管、玻棒等。 三、测定方法 测定土壤中水分含量的方法很多,常用的有烘干法和酒精燃烧法。烘干法是目前测 土壤水分的标准方法,其测定结果比较准确,适合于大批量样品的测定,但这种方法需 要时较长。酒精燃烧法测定土壤水分快但精确度较低,只适合田间速测。 (一)烘干法 1. 方法原理 在105±2℃的温度下从土壤中全部蒸发,而结构水不会破坏,土壤 有机质也不被分解。因此,将土壤样品至于105±2℃下烘至恒重,根据其烘干前后质量 之差,就可以计算出土壤水分含量的百分数。 2. 操作步骤 (1)取有盖的铝盒(或称样皿),洗净,放入干燥器中冷却至室温,然后再分析天 平上称重(W1),并注意标好号,以防弄错。 (2)用角匙取过1mm筛孔的风干土样4~5g(精确至0.001g),铺在铝盒中(或 称样皿中)进行称重(W2) (3)将铝盒盖打开,放入恒温箱中,在105±2℃的温度下烘6h左右。 (4)盖上铝盒盖子,将铝盒放入干燥器中20~30min,使其冷却至室温,取出称 重。 (5)打开铝盒盖子,放入恒温箱中,在105±2℃的温度下再烘2h,冷却,称重至 恒重(W3)。 3. 结果计算 以烘干土为基数计算土壤水分的百分含量(W%) 土壤水分含量= (W2- W3)/W3*100% 水分系数(x)=烘干土重/风干土重

土壤含水量测量方法

土壤含水量测量方法 ( 1 )称重法(Gravimetric) 也称烘干法,这是唯一可以直接测量土壤水分方法,也是目前国际上的标准方法。用土钻采取土样,用0.1g 精度的天平称取土样的重量,记作土样的湿重 M,在 105℃的烘箱内将土样烘 6~8 小时至恒重,然后测定烘干土样,记作土样的干重 Ms 土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质 量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100% ( 2 )张力计法(Tensiometer) 也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率 ( 3 ) 电阻法(Electricalresistance) 多孔介质的导电能力是同它的含水量以及介电常数有关的,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题 ( 4 ) 中子法(Neutronscattering) 中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云

污泥含水率计算

(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中:p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度; p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度; 说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很多气泡,体积与重量不在符合式(8-1)的关系。 例题8-1:污泥含水率从97.5%降低至95%时,求污泥体积。 解:由式(8-1) V2= V1(100-p1)/(100-p2)= V1(100-97.5)/(100-95)=(1/2)V1可见污泥含水率从97.5%降低至95%时,污泥体积减少一半。 (2)挥发性固体(或称灼烧减重)和灰分(或称灼烧残渣):挥发性固体近似地等于有机物含量;灰分表示无机物含量。 (3)可消化程度:表示污泥中可被消化降解的有机物数量。 消化对象:污泥中的有机物。一部分是可被消化降解的(或称可被气化,无机化);另一部分是不易或不能被消化降解的,如脂肪、合成有机物等。 消化程度的计算公式:R d=[1-(p V2p S1)/(p V1p S2)] ×100 (8-2) 式中:R d——可消化程度,%; p S1、p S2——分别表示生污泥及消化污泥的无机物含量,%; p V1、p V1——分别表示生污泥及消化污泥的有机物含量,%。 消化污泥量的计算公式:V d= V1(100-p1)/(100-p d)[(1- p V1/100)+ p V1/100(1- R d/100)] (8-3) 式中:V d——消化污泥量,m3/d; p d——消化污泥含水率,%,取周平均值; V1——生污泥量,m3/d; p1——生污泥含水率,%,取周平均值; p V1——生污泥有机物含量,%; R d——可消化程度,%,取周平均值; (4)湿污泥比重与干污泥比重: 湿污泥重量等于污泥所含水分重量与干固体重量之和。湿污泥比重等于湿污泥重量与同体积的水重量之比值。干固体物质包括有机物(即挥发性固体)和无机物(即灰分)。确定湿污泥比重和干污泥比重,对于浓缩池的设计、污泥运输及后续处理,都有实用价值。 经综合简化后,湿污泥比重(γ)和干污泥比重(γs)的计算公式分别为: γ=(100γs)/[γs p+(100-p)] (8-4)或γ=25000/[250p+(100-p)(100+1.5p V)] (8-8)γs=250/(100+1.5p V)(8-7) 式中:γ——湿污泥比重; γs——污泥中干固体物质平均比重,即干污泥比重; p——湿污泥含水率,%; p V——污泥中有机物含量,%; (5)污泥肥分:污泥中含有大量植物生长所必需的肥分(N、P、K)、微量元素及土壤改良

土壤含水量实验报告

常州工学院市政工程 检测实习报告 土壤水分的测定 专业土木工程 班级 12土一班 姓名申海彬苏磊孙玉鹏王佳男 学号 成绩

日期 2015年10月22日 一、实验目的 进行土壤含水量的测定有两个目的: 一是为了解田间土壤的实际含水情况,以便及时进行播种、灌排、保墒措施,以保证作物的正常生长;或联系作物长相长势及耕作栽培措施,总结丰产的水肥条件。 二是风干土样水分的测定,是各项分析结果计算的基础。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 二、实验器材 铝盒、烘箱、干燥器、天平、土钻、小刀。 三、实验内容 土壤自然含水量是指田间土壤中实际的含水量,它随时在变化之中,不是一个常数。土壤自然含水量测定的方法:烘干法。

1. 方法原理 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 2.操作步骤 烘干法是测定土壤含水量的通用方法,测定本身的误差取决于所用天平的精确度和取样的代表性,所以在田间取样时,需要注意取样点的代表性。 测定步骤如下: (一) 用已知重量的铝盒在天平上称取欲测土样15—20克。 (二) 将盛土样的铝盒放入烘箱内,打开盖,在105~110℃温度条件下连续烘6小时,取出后,放入干燥器内冷却。 (三) 将铝盒盖盖上,从干燥器中取出,称量。 (四) 称后再将盖打开,放入105~110℃温度的烘箱中烘2小时,取出称重,如此连续烘至恒重(两次差数小于克) 四、实验结果 土壤含水量(%)= 100A C C B ?-- 式中:A — 铝盒重(g ) B — 铝盒加湿土重(g ) C — 铝盒加烘干土重(g ) 即:土壤含水量%=(湿土重—干土重)/干土重*100

木结构工程木材含水率检验方法

附录C木材含水率检验方法 C.1一般规定 C.1.1本检验方法适用于木材进场后构件加工前的木材和已制作完成的木构件的含水率测定。 C.1.2原木、方木(含板材)和层板宜采用烘干法(重量法)测定,规格材以及层板胶合木等木构件亦可采用电测法测定。 C.2取样及测定方法 C.2.1烘干法测定含水率时,应从每检验批同一树种同一规格材的树种中随机抽取5根木料作试材,每根试材应在距端头200mm处沿截面均匀地裁取5个尺寸为20mm×20mm×20mm的试样,应按现行国家标准《木材含水率测定方法》GB/T 1931的有关规定测定每个试件中的含水率。 C.2.2电测法测定含水率时,应从检验批的同一树种,同一规格的规格材,层板胶合木构件或其他木构件随机抽取5根为试材,应从每根试材距两端 200mm起,沿长度均匀分布地取三个截面,对于规格材或其他木构件,每一个截面的四面中部应各测定含水率,对于层板胶合木构件,则应在两侧测定每层层板的含水率。 C.2.3电测仪器应由当地计量行政部门标定认证:测定时应严格按仪表使用要求操作,并应正确选择木材的密度和温度等参数,测定深度不应小于 20mm,且应有将其测量值调整至截面平均含水率的可靠方法。 C.3判定规则 C.3.1烘干法应以每根试材的5个试样平均值为该试材含水率,应以5根试材中的含水率最大值为该批木料的含水率,并不应大于本标准有关木材含水率的规定。 C.3.2规格材应以每根试材的12个测点的平均值为每根试材的含水率,5根试材的最大值应为检验批该树种该规格的含水率代表值。

C.3.3层板胶合木构件的三个截面上各层层板含水率的平均值应为该构件含水率,同一层板的6个含水率平均值应作该层层板的含水率代表值。

(完整版)土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的:一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛:孔径1mm;③铝盒:小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平:感量为0.001g和0.01g;⑤小型电热恒温烘箱;⑥干燥器:内盛变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3.4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3.4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3.5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至0.001g。用角勺将风干土样拌匀,舀取约5g,

土壤含水量的测定实验报告书

1. 实验二 土壤含水量的测定 (烘干法与酒精燃烧法) 一、目的意义 进行土壤含水量的测定有两个目的:一是为了解田间土壤的实际含水情况,以便及时进行播种、灌排、保墒措施,以保证作物的正常生长;或联系作物长相长势及耕作栽培措施,总结丰产的水肥条件。二是风干土样水分的测定,是各项分析结果计算的基础。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 二、土壤自然含水量的测定 土壤自然含水量是指田间土壤中实际的含水量,它随时在变化之中,不是一个常数。土壤自然含水量测定的方法,介绍烘干法和酒精燃烧法。 (一)烘干法 1.方法原理 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 2.操作步骤 (1)将铝盒擦净,烘干冷却,在1/100天平上称重,并记下铝盒号码(A )。 (2)在田间取有代表性的土样(0~20cm )20g 左右,迅速装入铝盒中,盖好盒盖,带回室内(注意铝盒不可倒置,以免样品撒落),在天平上称重(B ),每个样品至少重复测3份。 (3)将打开盖子的铝盒(盖子放在铝盒旁侧或盖子平放在盒下),放人105℃±2℃的恒温箱中烘6~8小时。 (4)待烘箱温度下降至50℃左右时,盖好盖子,置铝盒于干燥器中30分钟左右,冷却至室温,称重(C ),如无干燥器,亦可将盖好的铝盒放在磁盘或木盘中,待至不烫手时称重。 (5)然后,启开盒盖,再烘4小时,冷却后称重,一直到前后两次称重相差不超过1%时为止(C )。 3.结果计算 土壤含水量(%)= 100A C C B ?-- 式中:A — 铝盒重(g ) B — 铝盒加湿土重(g ) C — 铝盒加烘干土重(g ) 4.注意事项 (1)烘箱温度以105℃±2℃为宜,温度过高,土壤有机质易碳化逸失。在烘箱中,一

土壤自然含水量的测定

土壤自然含水量的测定(烘干法) 一、仪器设备。 1、铝盒:大型的、小型的、玻璃的。 2、天平:感量为0.01g(百分之一)。 3、电热恒温鼓风干燥箱。 4、干燥器:内有变色硅胶或无水氯化钙。 二、土壤样品:通过2㎜筛(10目)的土壤样。 三、操作步骤。 1、小型铝盒的烘干及称量。①编号,将铝盒标记好实验号。②取小型铝盒在恒温干燥箱中于105℃±2℃烘约2小时。③用钳子将空铝盒移入干燥内冷却至室温(约20分钟)称重,精确至0.0001g,作好记录。 2、称土样,称取土样约5g,精确至0.0001g,作好记录。 3、土样装盒及烘干。将称好的土壤样,均匀地平铺装在铝盒内,铝盒盖倾斜放在铝盒上,置于已预热至105℃±2℃的恒温干燥箱中烘约6小时。 4、土样盒称重。将烘干的土样盒取出,盖好,移入干燥器内冷至室温(约20分钟),立即称重,精确到0.0001g,作好记录。 5、结果计算:结果保留小数点后一位。 6、注意事项: ①保持干燥内的干燥剂整洁。 ②试样必须烘6小时。 ③严格控制恒温温度在105℃±2℃范围内。

土壤有机质的测定 (油溶加热重铬酸钾—容量法) 一、仪器设备。 1、油溶锅。用20—26㎝的不锈钢锅代替,内装固体石蜡(工业用)。 2、硬质试管。18—25㎜×200㎜。 3、铁丝笼。大小和形状与油溶锅配套。 4、滴试管。10.00ml、25.00ml。 5、温度计。300℃。 6、电炉。1000W,配套有消毒柜。 二、试剂。 1、重铬酸钾消煮用液[1/6K2Cr2O7=0.8mol.L-1]; 称取40.0g重铬酸钾溶于600—800mL水中,过滤到1L量筒内,用水洗涤滤纸,并加水至1L。 2、浓硫酸消煮用液。取密度为1.84的浓硫酸加水定容至1L,保存待用。 3、重铬酸钾标准溶液(0.2000mol.L-1)。 称取经130℃烘2-3小时的重铬酸钾(优级纯)9.807克,先用少量水溶解,然后无损地移入1000ml容量瓶中,加水定容。 4、硫酸亚铁铵标准溶液(0.2mol.L-1) 称取硫酸亚铁铵78.4g,溶解于600—800ml水中,加浓硫酸20ml,搅拌均匀,定容至1000ml,贮于棕色瓶中保存。 每次使用时标定其浓度。吸取0.2000 mol.L-1重铬酸钾标准液25.00ml于150ml三角瓶中,加入浓硫酸3-5ml和邻菲罗啉指示剂2-3滴,用硫酸亚铁铵标准溶液滴定,由橙黄-蓝绿-棕红即可,根据硫酸亚铁铵溶液消耗量计算其浓度,取中间值 C=G·V1/V2=0.2×25÷V2 V2=滴定时消耗硫酸亚铁铵标准液的体积(ml)。 5、邻菲罗啉指示剂。

第05章 云中含水量的计算

第5章云中含水量的计算 在云雾物理中,含水量的“水”字,往往泛指固态水及液态水,在纯水云或纯冰云中,则分别指含液水量及含冰水量。 §5.1 绝热比含水量 §5.1.1 表示云中含水量的参量 云中含水量往往用两种参量表示。一种是“比含水量”,或叫“质量含水量”;另一种是“体积含水量”或“含水量”。 1. 比含水量的定义 比含水量是指每单位质量湿空气中含有多少质量的固体或(和)液体水。一般是用(克/千克或kg g)为单位的。 2. 体积含水量的定义 体积含水量是指每单位容积湿空气中含有多少质量的固体或(和)液体水,一般单位取(克/米3或3 g)。与大气中含水汽量的概念对应,第一种类似于“比 m 湿”的概念,第二种类似于“绝对湿度”的概念。 §5.1.2 上升空气的“绝热比含水量” 1. 绝热比含水量随高度的分布 当饱和空气按湿绝热抬升或上升时,必有多余的水汽(即过饱和部分的水汽)凝结出来,成为云中含水的部分。以比含水量来说,设有当从云底按湿绝热上升的1kg湿空气,它在云底时,因水汽正好饱和,无多余水汽可凝结为液水,故比含水量为零。随着空气上升,出现了过饱和状态,于是有多余的水汽凝结出来,具有了比含水量。如果这些凝结出的液水滴始终是随着气块上升而上升(请注意这个是前提条件),那末它的比含水量值,就会随着高度的增大而增大,直到其中水汽全部凝结出来时,比含水量变得最大;再上升,比含水量就不变了。在云内,上升空气并不一定将空气带到其中水汽全部凝结出来的程度。但只要带到空气不再上升的地方,而且在带到该处以前,凝结水并无成为降水而下降现象,虽然此时空气中仍保存有水汽,那里仍属于空气上升轨迹中比含水量极大的地方。如果此后空气下沉,则被携带的液水又会蒸发,使比含水量减少。这时,如果在云内不同高度探测,则所得的各比含水量值,必然正好是由云底上升到各该高度的空气因绝热膨胀冷却所凝结出的总比含水量。该含水量称为“(湿)绝热比含水

油井取样及含水率测定方法1

油井取样及含水率测定方法 孤岛采油厂 2011-07

说明 根据GB/T 8929-2006《原油水含量的测定蒸馏法》、GB/T 260-77《石油产品水分测定法》、Q/SH 0182-2008《采油井资料录取规定》、Q/SHSLJ 1555-2002《含游离水原油水分测定法》、Q/SH1020 0614-2005《油、气、水井和油、水泵站采样方法》四项标准的要求及采油厂的实际情况,制订了采油厂《油井取样及含水率测定方法》。本方法与以上四项标准相比增添内容如下: 1、第3章---仪器、试剂与材料3.1条强调天平(含电子称)精度必须要达到0.1g,并定期检定;对测试环境、测试对象作出了规定,对测试人员作出了相应要求;仪器与材料中增加了冰箱,增加了190#溶剂油。 2、第4章---现场取样及运输补充完善了计量间取样、取样点和方法以及高含水井取样量的要求。 3、第5章—测定步骤对样品中乳化油量多的情况、少的情况和不足以取样的情况分别作了要求;对称量及精度、蒸馏的停止时间进行了明确要求;样品称量过程中增加了对搅棒的称量,增加了接收器内液面不规则情况下读数方法。 4、第八章——增加了对测试精确度的要求。

油井取样及含水率测定方法 1 范围 本方法规定了孤岛采油厂油井取样、化验分析的测试方法。 本方法适用于油井含水率的测试。 2 原理 在回流的条件下,将试样和不溶于水的溶剂混合加热,样品中的水分同时被加热蒸发。蒸发后的油水混合气体在冷凝管中被冷却回流到接收器中,由于油、水互不相溶,且水的密度大于原油和溶剂密度,水沉降在接受器的刻度管中,溶剂则返回到蒸馏烧瓶,因此冷凝液在接收器中分离成明显的上(油)、下(水)两层,计算乳化油含水。根据称量出的游离水最终计算出试样总含水率。 3 基本要求 3.1 环境 本标准对环境的要求按孤岛采油厂《油藏经营管理区及科研系统管理制度及工作标准》《4.化验室现场管理》要求执行。 3.2人员 3.2.1化验员应持证上岗。 3.2.2化验员应按规定穿戴好劳动保护用品。 3.2.3化验员应观察周边环境和设备运行状况,在确保安全的情况下进行化验操作。 3.3仪器与材料 3.3.1称量工具: 1g~2000g与0.1g~600g电子天平两台,或满足量程的其他天平。天平需定期检定,鉴定周期为一年,如有明显偏差应及时鉴定; 3.3.2蒸馏烧瓶:1000mL,磨口圆底玻璃蒸馏烧瓶; 3.3.3冷凝管:400mm长的直管式冷凝管; 3.3.4接收器:15mL刻度接收器,1.0mL以下20等分刻度,1.0mL~15mL之间每分度0.2mL,接收器需定期检定,鉴定周期为36个月;

常用原油含水率测试方法

常用原油含水率测试方法 1、原油含水率静态测试方法分析 原油含水率静态测试方法是通过人工取样后运用物理或化学方法实现油水分离后计算原油含水率。目前主要的静态测试方法有蒸馏法、电脱法、卡尔·费休法。 1.1、蒸馏法 蒸馏法的测试原理是通过加热原油将油和水分离,分别测试原油质量以及蒸发出的水分质量,并计算出水分的质量分数。蒸馏法的测试过程是在原油中加入与水不相溶的溶剂,在原油与溶剂混合以后并开始回流的条件下加热,此时原油、水分和溶剂在沸腾状态时会一起蒸发出来,溶剂因沸点最低第一个被气化,之后水分通过冷凝管进入水分接收器中,通过水分接收器的刻度读出水分的含量,从而计算出原油含水率。图1为实验装置的示意图。

图1 实验装置示意图 最初实验室通常采用蒸馏法测试原油含水率,但石油生产行业主要根据《原油水含量测定法一蒸馏法》(GB/T8929-1988)来测试,石油加工行业则按《石油产品水含量测定法一蒸馏法》(GB/T260-1988)测试。GB/T8929-1988使用有较大毒性的二甲苯做溶剂,对操作人员危害大,同时也污染样品和环境;GB/T260-1988则以直馏汽油80℃以上的馏分做溶剂,尽管毒性不大,但是测试的结果误差太大。 1.2电脱法 电脱法的测试原理是通过高压电场,利用电破乳技术使油水分离,来测试原油的含水率。这种方法适合一些仪器的设计开发,例如Dst-III石油含水电脱分析仪。电脱法的分析液量大、分析速度快,操

作简单、无“二次采样”误差以及安全可靠等优点使其备受青睐。但是电脱法同样存在着一些缺点,如在脱水过程中,油样需要加温,易使原油剧烈沸腾而外溢,与带电的内、外电极裸露的金属部分触碰,易引起电击危险。图2为原油含水电脱分析仪结构示意图。 图2 原油含水电脱分析仪结构示意图 1.3卡尔·费休法 卡尔·费休法是实验室中标准的微量水分测试方法,对于有机液体,是国际国标方法《原油水含量测定卡尔费休库仑滴定法(GB/T 11146-2009 )。它的测试原理是利用含碘、二氧化硫、吡啶及无水甲醇溶液(通常称为卡尔·费休溶液)与试样中的水进行定量反应,根据滴定过程中消耗的卡氏试剂的量,计算原油的含水率。卡尔·费休法是有水

土壤容重孔隙度含水率等测定方法

土壤容重孔隙度含水率等 测定方法 Newly compiled on November 23, 2020

1.土壤含水量(含水率)测定 采用酒精燃烧法测定。 操作步聚: (1)取小铝盒若干,洗净后烘干,用天平称出每—铝盒重量(逐一标量记录) (2)在标准地内挖土壤剖面,分20cm 一层。在分层的土壤剖面上用铝盒自下而上刮一层土(约半盒、注意避开根系和石砾等杂物),马上称重(得出湿土重十铝盒重) (3)倒入酒精8-12ml ,振荡铝盒使与土壤混合均匀(如土壤很湿要用小刀拌匀成泥 浆),点燃酒精,在火焰将熄灭时,用小刀轻拔土壤,使其充分燃烧,烧完后再加入3~4ml 进行第二次燃烧(如土壤粘重、含水量较大,再加入2~3ml 酒精进行第三次燃烧)。 冷却后,马上称出重量(得干土重十盒重)。每层重复三次。 (4)土壤含水量及现有贮水量计算 ①土壤含水量(重量)=%重 (干土重+盒重)-盒干土重+盒重)(湿土重+盒重)-(100? =水分重/干土重×l00% ②土壤含水量(体积)=)()容重(土壤含水量(重量%)33 g/cm 1g/cm ? =%土壤体积 水分体积100? (注:水的容重一般取lg /cm 3) 2.土壤物理性质测定 采用环刀法 操作步聚: (1)首先量取环刀的高度和内径,计算出其容积(标记、做好记录): V =πr 2H 式中:V —环刀体积(cm 3)

R —环刀内半径(cm) H —环刀高度(cm) 将环刀在天平上称重(做好标记、记录)。 (2)选择标准地,在测定地点做一平台(山地),挖土壤剖面,分层取样测定(按20cm —层),每层设三个重复。 (3)打入环刀(一定要垂直打入,且不能晃动),待土壤至环刀下沿齐平时,在环刀上垫—滤纸层后把盖盖好,挖出环刀,用刀削平底部土壤,垫好滤纸,盖好下盖。迅速称重(得:自然土重十环刀重) (注:第(3)步测完后马上测定该层土壤含水量,见土壤含水量测定)可测出土壤容重。 (4) 将环刀样品带回室内,拿掉上盖(保留滤纸)。将环刀放入盛水的容器中(2—3mm 水层,随水减少,逐渐加水,保持此水层)。大约2小时左右(人不能离开)至土层滤纸一湿,取出环刀(用滤纸吸干)盖好上盖马上称重(得:经浸水2小时左右带土环刀重)。然后放回原处,每隔l 小时取出反复称重,直到恒重,可测出土壤毛管孔隙度。 (5)将环刀土样继续放入盛水容器中,往容器加水至水面与环刀上层齐平。净置6小时后取出环刀。稍置10秒钟。使多余水流出,用干布将环刀擦干后称重。(得:浸水6小时带土环刀重),然后再将环刀放回容器中,放置4~5小时后,再次称重,直到恒重。可测得土壤总孔隙度。 (6)土壤物理性质指标的计算 ①环刀内干土重(g)=1 g +土壤含水量(重量%))-环刀重((自然土重+环刀重) ②土壤容重(g/cm 3)=) 环刀容积()环刀内干土重( 3cm g ③土壤毛管孔隙度(容积) =%)环刀容积())-环刀内干土重()-环刀重(小时左右带土环刀重(吸水100cm g g g 23

土的干密度、湿密度、含水率、压实系数计算方法

土的干密度、湿密度、含水率、最大干密度、压实系数 1、实际含水率计算公式:称湿土,记录数据,然后把土样烘干,记录数据。湿土质量-干土质量的=水质量,水质量/干土质量*100%=含水率。 2、实际湿密度计算公式:环刀与土总质量-环刀质量=环刀内湿土质量,湿土质量/环刀内体积=湿土密度。环刀体积计算方法:要用尺子测量环刀内径及内高,底面圆的面积*环刀高=环刀内体积。 3、实际干密度计算公式:干密度=湿密度/(1+含水率)。 4、压实度计算公式:压实度=实际干密度/该土样最大干密度*100% 该土样最大干密度是试验室通过对该土样进行击实试验得出的。要想求压实度,首先要做该土样的击实试验。否则,想知道压实情况如何,就只能规定一个最小干密度,小于该最小干密度,为压实不合格。 ①以重量百分数表示土壤含水量 土壤含水量以土壤中所含水分重量占烘干土重的百分数表示,计算公式如下: 土壤含水量(重量%)=(原土重-烘干土重)/烘干土重×100%=水重/烘干土重×100%②以容积百分数表示土壤含水量 土壤含水量以土壤水分容积占单位土壤容积的百分数表示,计算公式如下: 土壤含水量(体积%)=水分容积/土壤容积×100%=土壤含水量(重量%)×土壤容重 ③以水层厚度表示土壤含水量 将一定深度土层中的含水量换算成水层深度的mm表示,计算公式如下: 水层厚度(mm)=土层厚度(mm)×土壤含水量(容积%) ④相对含水量

将土壤含水量换算成占田间持水量或全蓄水量的百分数,以表示土壤水的相对含量,计算公式如下: 旱地土壤相对含水量(%)=土壤含水量/田间持水量×100% 水田土壤相对含水量(%)=土壤含水量/全蓄水量×100%

相关主题
文本预览
相关文档 最新文档