当前位置:文档之家› 高中物理竞赛全套教程讲座之一:4.动量 角动量和能量

高中物理竞赛全套教程讲座之一:4.动量 角动量和能量

高中物理竞赛全套教程讲座之一:4.动量 角动量和能量
高中物理竞赛全套教程讲座之一:4.动量 角动量和能量

第四讲 动量 角动量和能量

§4.1 动量与冲量 动量定理

4.1. 1.动量

在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。物体的质量和速度的乘积mv 遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。在这些事实基础上,人们就引用mv 来量度物体的“运动量”,称之为动量。 4.1.2.冲量

要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F 和力作用的时间t ?的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F t ?叫做冲量。 4.1.3.质点动量定理

由牛顿定律,容易得出它们的联系:对单个物体:

01mv mv v m t ma t F -=?=?=? p t F ?=?

即冲量等于动量的增量,这就是质点动量定理。

在应用动量定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,分量式为:

x tx x mv mv t F 0-=? y ty y mv mv t F 0-=? z tz z mv mv t F 0-=? 对于多个物体组成的物体系,按照力的作用者划分成内力和外力。对各个质点用动量定理:

第1个 1I 外+1I 内=10111v m v m t - 第2个 2I 外+2I 内=20222v m v m t -

第n 个 n I 外+n I 内=0n n nt n v m v m - 由牛顿第三定律: 1I 内+2I 内+……+n I 内=0 因此得到:

1I 外+2I 外+ ……+n I 外=(t v m 11+t v m 22+……+nt n v m )-(101v m +202v m +……0n n v m ) 即:质点系所有外力的冲量和等于物体系总动量的增量。

§4,2 角动量 角动量守恒定律

动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。 它的求法跟力矩完全一样,只要把力F 换成动量P 即可,故

B 点上的动量P 对原点O 的动量矩J 为

P r J

?= (r

=)

以下介绍两个定理: (1).角动量定理:

质点对某点或某轴线的动量矩对时间的微商,等于作用在该质点上的力对比同点或同轴的力矩,即

M dt dJ

= (M 为力矩)。

(2).角动量守恒定律

如果质点不受外力作用,或虽受外力作用,但诸外力对某点的合力矩为零,则对该点来讲,质点的动量矩J 为一恒矢量,这个关系叫做角动量守恒定律 即

r ×F=0,则J=r ×mv=r ×P=恒矢量

§4.3动量守恒定律

动量守恒定律是人们在长期实践的基础上建立的,首先在碰撞问题的研究中发现了它,随着实践范围的扩大,逐步认识到它具有普遍意义,

对于相互作用的系统,在合外力为零的情况下,由牛顿第二定律和牛顿第三定律可得出物体的总动量保持不变。

即: t v m 11+t v m 22+……+n n v m =+'+'221

1v m v m ……n n v m '

上式就是动量守恒定律的数学表达式。 应用动量守恒定律应注意以下几点:

(1)动量是矢量,相互作用的物体组成的系统的总动量是指组成物体系的所有物体的动量的矢量和,而不是代数和,在具体计算时,经常采用正交分解法,写出动量守恒定律的分量方程,这样可把矢量运算转化为代数运算,

(2)在合外力为零时,尽管系统的总动量恒定不变,但组成系统的各个物体的动量却可能不断变化,系统的内力只能改变系统内物体的动量,却不能改变系统的总动量。在合外力不为零时,系统的总动量就要发生改变,但在垂直于合外力方向上系统的动量应保持不变,即合外力的分量在某一方向上为零,则系统在该方向上动量分量守恒。

(3)动量守恒定律成立的条件是合外力为零,但在处理实际问题时,系统受到的合外力不为零,若内力远大于外力时,我们仍可以把它当作合外力为零进行处理,动量守恒定律成立。如遇到碰撞、爆炸等时间极短的问题时,可忽略外力的冲量,系统动量近似认为守恒。

(4)动量守恒定律是由牛顿定律导出的,牛顿定律对于分子、原子等微观粒子一般不适用,而动量守恒定律却仍适用。因此,动量守恒定律是一条基本规律,它比牛顿定律具有更大的普遍性。

动量守恒定律的推广 由于一个质点系在不受外力的作用时,它的总动量是守恒的,所以一个质点系的内力不能改变它质心的运动状态,这个讨论包含了三层含意:

(1)如果一个质点系的质心原来是不动的,那么在无外力作用的条件下,它的质心始终不动,即位置不变。

(2)如果一个质点系的质心原来是运动的,那么在无外力作用的条件下,这个质点系的质心将以原来的速度做匀速直线运动。

(3)如果一个质点系的质心在某一个外力作用下作某种运动,那么内力不能改变质心

的这种运动。比如某一物体原来做抛体运动,如果突然炸成两块,那么这两块物体的质心仍然继续做原来的抛体运动。

如果一个质量为A m 的半圆形槽A 原来静止在水平面上,原槽半径为R 。将一个质量为B m 的滑块B 由静止释放(图4-3-1),若不计一切摩擦,问A 的最大位移为多少?

由于A 做的是较复杂的变加速运动,因此很难用牛顿定律来解。由水平方向动量守恒和机械能守恒,可知B 一定能到达槽A

右边的最高端,而且这一瞬间

图4-3-1

A 、

B 相对静止。因为A 、B 组成的体系原来在水平方向的动量为零,所以它的质心位置应该不变,初始状态A 、B 的质心距离圆槽最低点的水平距离为:

R

m m m s B

A B

?+=

所以B 滑到槽A 的右边最高端时,A 的位移为(图4-3-2)

R

m m m s B

A B

?+=

22

如果原来A 、B 一起以速度v 向右运动,用胶水将B 粘在槽A 左上端,

某一时刻胶水突然失效,B 开始滑落,仍然忽略一切摩擦。设从B 脱落到B 再次与A 相对静止的时间是t ,那么这段时间内A 运动了多少距离?

B 脱落后,A 将开始做变加速运动,但A 、B 两物体的质心仍然以速度v 向右运动。所以在t 时间内A 运动的距离为:

R

m m m vt L B A B

+-

=2

§4.4 功和功率

4.4.1功的概念

力和力的方向上位移的乘积称为功。即θcos Fs W =

式中θ是力矢量F 与位移矢量s 之间的夹角。功是标量,有正、负。外力对物体的总功或合外力对物体所做

功等于各个力对物体所做功的代数和。

对于变力对物体所做功,则可用求和来表示力所做功,即

i si F W i θcos ?∑=

也可以用F=F (s )图象的“面积”来表示功的大小,如图4-4-1所示。

s

2F 1

F 12

图4-4-1

由于物体运动与参照系的选择有关,因此在不同的参照系中,功的大小可以有不同的数值,但是一对作用力与反作用力做功之和与参照系的选择无关。因为作用力反作用力做功之和取决于力和相对位移,相对位移是与参照系无关的。 值得注意的是,功的定义式中力F 应为恒力。如F 为变力中学阶段常用如下几种处理方法:(1)微元法;(2)图象法;(3)等效法。

4.4.2. 几种力的功

下面先介绍一下“保守力”与“耗散力”。

具有“做功与路径无关”这一特点的力称为保守力,如重力、弹力和万有引力都属于保守力。不具有这种特点的力称为非保守力,也叫耗散力,如摩擦力。 (1)重力的功

重力在地球附近一个小范围内我们认为是恒力,所以从高度1h 处将重力为mg 的物移到高2h 处。重力做功为:)(12h h mg W c -=,显然与运动路径无关。 (2)弹簧弹力的功

物体在弹簧弹力F=-kx 的作用下,从位置1x 运动至位置2x ,如图4-4-2(a )所示,其弹力变化F=F (x )如图4-4-2(b )所示则该过程中弹力的功W 可用图中斜线“面积”表示,功大小为

2

2112212

121)(2)1(kx kx x x x kx W -=-?+-=

(3)万有引力的功

质量m 的质点在另一质量M 的质点的作用下由相对距离1r 运动至相对距离2r 的过程中,引力所做功为

12

)

(a 图4-4-2

1221)11(r G M m

r G M m r r G M m W -

=--= 4.4.3.功率

作用于物体的力在单位时间内所做功称为功率,表达式为

t W P =

求瞬时功率,取时间0→?t 则为

θθ

cos cos 00

v F t s F Iim t W Iim P t t ?=??=??=

=→?→?

式中v 为某时刻的瞬时速度,θ为此刻v 与F 方向的夹角

§4.5 动能 动能定理

4.5.1. 质点动能定理

质量m 的质点以速度v 运动时,它所具有动能k E 为:

221

mv E k =

动能是质点动力学状态量,当质点动能发生变化时,是由于外力对质点做了功,其关系是:

W 外=21K K K E E E -=?

上式表明外力对质点所做功,等于质点动能的变化,这就是质点动能定理。

4.5.2.质点系动能定理

若质点系由n 个质点组成,质点系中任一质点都会受到来自于系统以外的作用力(外力)和系统内其它质点对它作用力(内力),在质点运动时,这些力都将做功。设质点系由N 个质点组成,选取适当的惯性系,对其中第i 个质点用质点动能定理

i W 外+i W 内=2

1

222121i i i i v m v m -

对所有n个质点的动能定理求和就有

∑i W外+∑i W内=

2

1

2

22

1

2

1

i

i

i

i

v

m

v

m∑

-

若用W外、W内、2K E、1K E分别表示∑i W外、∑i W内、

2

2

2

1

i

i

v

m

2

1

2

1

i

i

v

m

则上式可写成

W外+ W内=2K E-1K E

由此可见,对于质点系,外力做的功与内力做的功之和等于质点系动能的

增量,这就是质点系动能定理。和质点动能定理一样,质点系动能定理只适用于

惯性系,但质点系动能定理中的W

一项却是和所选的参照系无关的,因为内力做的功取决于相对位移,而相对位移和所选的参照系是无关的。这一点有时在解题时十分有效。

§4.6 势能

4.6.1 势能

若两质点间存在着相互作用的保守力作用,当两质点相对位置发生改变时,不管途径如何,只要相对位置的初态、终态确定,则保守力做功是确定的。存在于保守力相互作用质点之间的,由其相对位置所决定的能量称为质点的势

能。规定保守力所做功等于势能变化的负值,即W

保=P

E

?-。

(1)势能的相对性。

通常选定某一状态为系统势能的零值状态,则任何状态至零势能状态保守力所做功大小等于该状态下系统的势能值。原则上零势能状态可以任意选取,因而势能具有相对性。

(2)势能是属于保守力相互作用系统的,而不是某个质点独有的。

(3)只有保守力才有相应的势能,而非保守力没有与之相应的势能。

4.6.2 常见的几种势能

(1)重力势能

在地球表面附近小范围内,mg 重力可视为恒力,取地面为零势能面,则h 高处重物m 的重力势能为

m g h E p =

(2)弹簧的弹性势能

取弹簧处于原长时为弹性势能零点,当弹簧伸长(压缩)x 时,弹力F=-kx ,弹力做的功为

2

21

kx W -=

由前面保守力所做功与势能变化关系可知

)0(--=?-=P P E E W

2

21kx E P =

(3)引力势能

两个质点M 、m 相距无穷远处,规定00=P E ,设m 从无穷远处移近M ,引力

做功W ,由于F 引=2

r Mm

,大小随r 变化,可采用微元法分段求和方式。如图4-5-1,

取质点n 由A 到B ,位移为21r r r -=?,引力做功

r r Mm

W ?=

?2

r ? 很小,A r 、B r 差异很小,则

A B B A A

B A A r GMm r GMm r r r GMm r r r GMm W -=-=-=

?)()(2

2 由无穷远至距r 处,引力功W 为

)11()111(

初末r r GMm ri ri GMr W W i -=-+∑=∑?=

开始时∞→初r ,最后相对距离为末r =r

r GMm W =

又有

)

Pr (∞--=?-=E E E W P

r G M m E -

=Pr

质点与均匀球体间引力势能,在球体外,可认为球体质量集中于球心,所以引力势能为

r GMm

E P -

= r ≥R R 为球半径

质量M ,半径为R 的薄球壳,由于其内部引力合力为零,故任意两点间移动质点m ,引力均不做功,引力势能为恒量,所以质量m 质点在薄球壳附近引力势能为

P E =?????<≥R r R GMm R r r

GMm

§4.7 功能原理和机械能守恒定律

4.7.1 功能原理

根据质点系动能定理

12k k E E W W -=+内外

当质点系内有保守力作用和非保守力作用时,内力所做功又可分为

非保保内W W W +=

而由保守力做功特点知,保守力做功等于势能增量的负值,即

A

m

图4-6-1

21P P P E E E W -=?-=保

于是得到

1221K K P P E E E E W W -=-++非保外 )()1122P K P K E E E E W W +-+=+(非保外

用E 表示势能与动能之和,称为系统机械能,结果得到

12E E W W -=+非保外

外力的功和非保守力内力所做功之和等于系统机械能的增量,这就是质点系的功能原理。可以得到(外力做正功使物体系机械能增加,而内部的非保守力作负功会使物体系的机械能减少)。

功能原理适用于分析既有外力做功,又有内部非保守力做功的物体系,请看下题:

劲度系数为k 的轻质弹簧水平放置,左端固定,右端连接一个质量为m 的木块(图4-7-1)开始时木块静止平衡于某一位置,木块与水平面之间的动摩擦因数为μ。然后加一个水平向右的恒力作用于木块上。(1)要保证在任何情况下都能

拉动木块,此恒力F 不得小于多少?(2)用这个力F 拉木块,当木块的速度再次为零时,弹簧可能的伸长量是多少?

题目告知“开始时木块静止平衡于某一位置”,并未指明确切的位置,也就是说木块在该位置时所受的静摩擦力和弹簧的形变量都不清楚,因此要考虑各种情况。如果弹簧自然伸展时,木块在O 点,那么当木块在O 点右方时,所受的弹簧的作用力向右。因为木块初始状态是静止的,所以弹簧的拉力不能大于木块所受的最大静摩擦力μmg 。要将木块向右拉动,还需要克服一个向左的静摩擦

F

图4-7-1

力μmg ,所以只要F ≥2μmg ,即可保证在任何情况下都能拉动木块。 设物体的初始位置为0x ,在向右的恒力F 作用下,物体到x 处的速度再次为零,在此过程中,外部有力F 做功,内部有非保守力f 做功,木块的动能增量为零,所以根据物体系的功能原理有

)(2

1

2

121)()(020200x x k m g F kx kx x x m g x x F +=

--=---μμ

可得

)(2x k mg F x --=

μ

因为木块一开始静止,所以要求

k mg μ-

≤0x ≤k mg μ

可见,当木块再次静止时,弹簧可能的伸长是

k mg μ≤x ≤k mg μ3

4.7.2 机械能守恒定律

若外力的与非保守内力的功之和为零时,0=+非保外W W 则系统机械能守恒,这就是机械能守恒定律。

注意:该定律只适用于惯性系,它同时必须是选择同一惯性参照系。在机械能守恒系统中,由于保守内力做功,动能和势能相互转化,而总的机械能则保持不变。

下面介绍一例由机械能守恒推出的重要定理:伯努利方程 理想流体 不可压缩的、没有粘滞性的流体,称为理想流体。

定常流动 观察一段河床比较平缓的河水的流动,你可以看到河水平静地流

着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化。河水不断地流走,可是这段河水的流动状态没有改变。河水的这种流动就是定常流动。流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫做定常流动。自来水管中的水流,石油管道中石油的流动,都可以看做定常流动。

流体的流动可以用流线形象地表示。在定常流动中,流线表示流体质点的运动轨迹。图4-7-2是液体流过圆柱体时流线的分布。A 、B 处液体流过的横截面积大,CD 处液体流过

的横截面积小。液体在CD 处流得急,流速大。AB 处的流线疏,CD 处的流线密,这样,从流线的分布可以知道流速的大小。流线疏的地方,流速小;流线密的地方,流速大。

伯努利方程 现在研究理想流体做定常流动时流体中压强和流速的关系。 图4-7-3表示一个细管,其中流体由左向右流动。在管的1a 处和2a 处用横截面截出一段流体,即1a 处和2a 处之间的流体,作为研究对象。 1a 处的横截面积为1S ,流速为1v ,高度为1h ,

1a 处左边的流体对研究对象的压强为1p ,方向垂直于1S 向右。

2a 处的横截面积为2S ,流速为2v ,高度为2h ,2a 处左边的流体对研究对象的压强为2p ,方向垂直于2S 向左。

经过很短的时间间隔t ,这段流体的左端1S 由1a 移到1b 。右端2S 由2a

图4-7-2

b 图4-7-3

到2b 。两端移动的距离分别为1l ?和2l ?。左端流入的流体体积为111l S V ?=?,右端流出的流体体积为222l S V ?=?,理想流体是不可压缩的,流入和流出的体积相等,21V V ?=?,记为V ?。

现在考虑左右两端的力对这段流体所做的功。

作用在液体左端的力111S p F =,所做的功

V p l S p l F W ?=?=?=1111111。

作用在右端的力222S p F =,所做的功

V p l S p l F W ?-=?-=?-=2222222。

外力所做的总功

V p p W W W ?-=+=)(2121 (1)

外力做功使这段流体的机械能发生改变。初状态的机械能是1a 到2a 这段流体的机械能1E ,末状态的机械能是1b 到2b 这段流体的机械能2E 。由1b 到2a 这一段,经过时间t ?,虽然流体有所更换,但由于我们研究的是理想流体的定常流动,流体的密度ρ和各点的流速v 没有改变,动能和重力势能都没有改变,所以这一段的机械能没有改变,这样机械能的改变12E E -就等于流出的那部分流体的机械能减去流入的那部分流体的机械能。

由于V m ?=ρ,所以流入的那部分流体的动能为

V

v mv ?=2

1212121ρ

重力势能为

V gh mgh ?=11ρ

流出流体的动能为

V v mv ?=2

2222121ρ

重力势能为

V gh mgh ?=22ρ

机械能的改变为

V h h g V v v E E ?-+?-=

-)()(2112212

212ρρ (2)

理想流体没有粘滞性,流体在流动中机械能不会转化为内能,所以这段流体两端受的力所做的总功W 等于机械能的改变

1

2E E -,即 W=

12E E -

(3)

将(1)式和(2)式代入(3)式,得

V h h g V v v V p p ?-+?-=

?-)()(21)(12212

221ρρ

整理后得

22

2212112121gh v p gh v p ρρρρ++=++

(4)

1a 和2a 是在流体中任意取的,所以上式可表示为对管中流体的任意处:

=++

gh v p ρρ2

21常量 (5)

(4)式和(5)式称为伯努利方程。

流体水平流动时,或者高度差的影响不显著时(如气体的流动),伯努利方程可表达为

=+

2

21v p ρ常量 (6)

从(6)式可知,在流动的流体中,压强跟流速有关,流速v 大的地方要强

p

图4-7-4

小,流速v 小的地方压强p 大。

知道压强和流速的关系,就可以解释本节开始所做的实验了。经过漏斗吹乒乓球时,乒乓球上方空气的流速大,压强小,下方空气的压强大,乒乓球受到向

上的力,所以会贴在漏斗上不会掉下来。向两张纸中间吹气,两张纸中间空气的流速大,压强小,外边空气的压强大,所以两张纸将互相贴近。同样的道理,两艘并排的船同向行驶时(图4-7-4)如果速度较大,两船会互相靠近,有相撞的危险。历史上就曾经发生

过这类事故。在航海中。对并排同向行驶的船舶,要限制航速和两船的距离。 伯努利方程的应用:

球类比赛中的旋转球和不转球的飞行轨迹不同,是因为球周围空气流动情况不同造成的。图4-7-5甲表示不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,致使球的下方空气的流速增大,上方流速减小,周围空气流线如图乙所示。球的下方流速大,压强小,上方流速小,压强大。跟不转球相比,图4-1-6乙所示旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

例:如图4-7-6所示,用一弹簧把两物块A 和B 连接起来后,置于水平地面上。已知A 和B 的质量分别为1m 和2m 。问应给物块A 上加多大的压力F ,才可能在撤去力F 后,A 向上跳起后会出现B 对地无压力的情况?弹簧的质量略去不计。

设弹簧原长为0l ,建立如图4-7-7所示的坐标,以k

表示弹簧的

甲:不转球

乙:旋转球

图4-7-5

劲度系数,则有 01kx g m = ①

取图中O 点处为重力势能零点,当A 受力F 由O 点再被压缩了x 时,系统的机械能为

)()(21

02201gl m x x k gx m E x -+++

-= ②

撤去F 当A 上升到最高处即弹簧较其自然长度再伸长x '时,系统的机械能为

2

1)(2

01x k x x g m E x '+

'+=' ③

A 在x 处时,其受力满足

0)(01='+-+x x k g m F ,

以①式的01kx g m =代入上式,乃有

kx F = ④

当F 撤去A 上升到x x '+0处时,弹簧的弹力大小为x k ',设此时B 受到地面的支持力为N ,则对于B 应有

02=-'+g m x k N

要B 对地无压力,即N=0,则上式变为

g m x k 2=' ⑤

因为A 由x 处上升至x x '+0处的过程中,对此系统无外力和耗散力作功,则其机械能守恒,即

x E '=x E ⑥

联立解②~⑥式,可得

图4-7-7

g m g m F 21+=。

显然,要出现B 对地无压力的情况,应为F ≥(g m m )21+。当F=(g m m )21+时,刚好能出现B 对地无压力的情况,但B 不会离开地面;当F >(g m m )21+时,B 将出现离开地面向上跳起的情况。

§4.8 碰撞

质量1m 和2m 的两个物块,在直线上发生对心碰撞,碰撞前后速度分别为10v 和

20v 及1v 和2v ,碰撞前后速度在一条直线上,由动量守恒定律得到2211202101v m v m v m v m +=+

根据两物块在碰撞过程中的恢复情况,碰撞又可分类为下列几种

(1)弹性碰撞

在碰撞过程中没有机械能损失的碰撞称为弹性碰撞,由动能守恒有

2

222112202210121212121v m v m v m v m +=+

结合动量守恒解得

20

2

12

10212112v m m m v m m m m v +++-=

20

2

11

21021222v m m m m v m m m v +-++=

对上述结果可作如下讨论

①21m m =,则201v v =,102v v =,即21m m 交换速度。

②若1m >>2m ,且有20v =0,则101v v ≈,1022v v ≈即质量大物速度几乎不变,小物以二倍于大物速度运动。

③若1m <<2m ,且20v =0,则101v v -=,02≈v ,则质量大物几乎不动,而质量小物原速率反弹。

(2) 完全非弹性碰撞

两物相碰粘合在一起或具有相同速度,被称为完全非弹性碰撞,在完全非弹性碰撞中,系统动量守恒,损失机械能最大。

v m m v m v m )(21202101+=+

2

120

2101m m v m v m v ++=

碰撞过程中损失的机械能为

2

20102

1212212

2022101))((21)(212121v v m m m

m v m m v m v m E -+=+-+=

? (3 )一般非弹性碰撞,恢复系数

一般非弹性碰撞是指碰撞后两物分开,速度21v v ≠,且碰撞过程中有机械损失,但比完全非弹性碰撞损失机械能要小。物理学中用恢复系数来表征碰撞性质。恢复系数e 定义为

20101

2v v v v e --=

①弹性碰撞, e=1。 ②完全非弹性碰撞 12v v =,e=0。 ③一般非弹性碰撞 0<e <1。 (4) 斜碰

两物碰撞前后不在一条直线上,属于斜碰,如图4-9-1所示

设两物间的恢复系数为e ,设碰撞前1m 、2m 速度为10v 、20v ,

其法向、切向分量分别为n v 10、n v 20、τ10v 、τ20v ,碰后分离速度1v 、2v

,法向、

2图4-9-1

切向速度分量n v 1、n v 2、t v 1、t v 2,则有

n n n n v v v v e 201012--=

若两物接触处光滑,则应有1m 、2m 切向速度分量不变 t t v v 101=、τ202v v t = 若两物接触处有切向摩擦,这一摩擦力大小正比于法向正碰力,也是很大的力,它提供的切向冲量便不可忽略。

§4.9 质心及质心运动

4.9.1 质心及质心位置

任何一个质点系中都存在着一个称为质心的特殊点,它的运动与内力无关,只取决于外力。当需要将质点组处理成一个质点时,它的质量就是质点组的总质量。当需要确定质心的运动时,就设想把质点组所受的全部外力集中作用在质心上。 注意:质心是一个假想的质点。

设空间有N 个质点,其质量、位置分别记作i m 、n ,质量组质心记为C ,则

质量、位置。

i C m m ∑=

在x 、y 、z 直角坐标系中,记录质心的坐标位置为

i i

i C m x m x ∑∑=

i i i C m y m y ∑∑=

i i i C m z m z ∑∑=

4.9.2、质心的速度、加速度、动量

物理竞赛角动量

物理竞赛角动量文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

第一节力矩和角动量 【知识要点】 一、力矩的定义 1.对轴的力矩 对轴的力矩可推动物体绕轴转动或改变物体绕轴转动的角速度.力矩的大小不仅与力的大小和方向有关,而且与力的作用点有关.当力的作用线在垂直于轴的平面(π)上时(图5-1-1),力矩τ的大小与力的作用点P和轴的距离ρ成正比,与力在垂直于ρ方向上的分量Fφ成正比,因为力在ρ方向上的分量Fρ对物体的绕轴转动无作用,于是有 τ=ρFφ=Fρsinθ(5. 1-1) 式中θ是F与ρ的夹角,ρ就是从轴与平面π的交点O'指向P点的矢量,由于在力矩作用下引起的转动有两个可能的方向,力矩也有正、负两种取向.例如,先任意规定轴的正方向,当逆着轴的正方向去看力矩作用下所引起的物体的转动时,若物体沿逆时针方向转动,对应的力矩就取为正,反之为负.由于ρsinθ=d就是力的作用线与轴的距离,(5. 1-1)式又可写成 τ = Fd (5. 1-1a) d常称为力臂,这正是大家所熟知的力矩表达式. 当力的作用线不在垂直于轴的平面(π)上时,可将力F 分解为平行于轴的分量F∥和垂直于轴的分量F⊥两部 分,其中F1-1b) 这里的θ是F⊥与ρ的夹角(图5-1-2). 2.对参考点的力矩 可将上述对轴的力矩的概念推广到对点的力矩.在选定的 参照系中,从参考点0 指向力的作用点P的矢量r与作 用力F的矢积称为作用力对于参考点0的力矩,即 Τ=r×F(5-1-2) r也可称为作用点相对参考点的位矢.当参考点是坐标原点时,r就是力的作用点的位矢. 根据矢积的意义,力矩的大小等于以r和F两矢量为邻边所构成的平行四边形的面积,方向与r、F所在平面垂直并与r、F成右手螺旋。 二、作用于质点的力矩和作用于质点系的力矩 1.作用于质点的力矩 当质点m受力F作用时,F对参考点〇的力矩即为质点受到的力矩,这时力矩表达式中的r就是参考点指质点的矢量,当参考点为坐标原点时,r就是质点的位矢.当质点受 F1、F2、…、F N N个力同时作用时,诸力对某参考点的力矩的矢量和等 于合力F=F1+F2+…+F N对同一参考点的力矩,即 r×F1+r×F2+…+r×F N=r×(F1+F2+…+F N)=r×F (5. 1-3) 2. 作用于质点系的力矩

高中物理-动量守恒与能量守恒经典题目资料

专题四 动能定理与能量守恒 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个, 功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常与牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功与否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力与速度间的夹角。一般用于求某一时刻的瞬时功率。 (4)一对作用力和反作用力做功的关系问题:①一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。1 (5)了解常见力做功的特点:①重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh ,当末位置低于初位置时,W >0,即重力做正功;反之重力做负功。②滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路

物理竞赛 角动量

第一节力矩和角动量 【知识要点】 一、力矩的定义 1.对轴的力矩 对轴的力矩可推动物体绕轴转动或改变物体绕轴转动的角速度.力矩的大小不仅 与力的大小和方向有关,而且与力的作用点有关.当力的作用线在垂直于轴的平面(π)上时(图5-1-1),力矩τ的大小与力的作用点P和轴的距离ρ成正比,与力在垂直于ρ方向上的分量Fφ成正比,因为力在ρ方向上的分量Fρ对物体的绕轴转动无作用,于是有 τ=ρFφ=Fρsinθ(5. 1-1) 式中θ是F与ρ的夹角,ρ就是从轴与平面π的交点O'指向P点的矢量,由于在力矩作用下引起的转动有两个可能的方向,力矩也有正、负两种取向.例如,先任意规定轴的正方向,当逆着轴的正方向去看力矩作用下所引起的物体的转动时,若物体沿逆时针方向转动,对应的力矩就取为正,反之为负.由于ρsinθ=d就是力的作用线与轴的距离,(5. 1-1)式又可写成 τ = Fd (5. 1-1a) d常称为力臂,这正是大家所熟知的力矩表达式. 当力的作用线不在垂直于轴的平面(π)上时,可将力 F分解为平行于轴的分量F ∥ 和垂直于轴的分量F⊥两 部分,其中F // 对物体绕轴转动不起作用,而F⊥就是 在垂直于轴的平面(π)上的投影,故这时F对轴的 力矩可写成 τ=ρF⊥sinθ(5. 1-1b) 这里的θ是F⊥与ρ的夹角(图5-1-2). 2.对参考点的力矩 可将上述对轴的力矩的概念推广到对点的力矩.在选 定的参照系中,从参考点0 指向力的作用点P的矢量r与作用力F的矢积称为作用力对于参考点0的力矩,即 Τ=r×F(5-1-2) r也可称为作用点相对参考点的位矢.当参考点是坐标原点时,r就是力的作用点的位矢.根据矢积的意义,力矩的大小等于以r和F两矢量为邻边所构成的平行四边形的面积,方向与r、F所在平面垂直并与r、F成右手螺旋。 二、作用于质点的力矩和作用于质点系的力矩 1.作用于质点的力矩 当质点m受力F作用时,F对参考点〇的力矩即为质点受到的力矩,这时力矩表达式(5.1-2)中的r就是参考点指质点的矢量,当参考点为坐标原点时,r就是质点 的位矢.当质点受F 1、F 2 、…、F N N个力同时作用时,诸力对某参考点的力矩的

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

高中物理竞赛讲义-角动量

角动量 一、力矩(对比力) 1、质点对轴的力矩可以使物体绕轴转动或改变物体的角速度 2、力矩可以用M 或τ表示 3、力矩是矢量 4、力矩的大小和方向 (1)二维问题 sin rF τθ= 注意,式中的角度θ为F 、r 两个矢量方向的夹角。 求力矩的两种方法:(类比求功的两种方法) (sin )r F τθ= (sin )r F τθ= 二维问题中,力矩的方向可以简单地用顺时针、逆时针表示。 (2)三维问题 r F τ=?r r r 力矩的大小为 sin rF τθ= 力矩的方向与r 和F 构成的平面垂直,遵循右手螺 旋法则 5、质点系统受到的力矩 只需要考虑外力的力矩,一对内力的力矩之和一定为0. 二、冲量矩(对比冲量) 1、冲量矩反映了冲量改变物体转动的效果,是一个过程量 2、冲量矩用L 表示 3、冲量矩的大小 L r I r Ft t τ=?=?=r r u r r r r 4、冲量矩是矢量,方向与r 和F 构成的平面垂直,遵循右手螺旋法则,即方向和力矩的方向相同 5、经常需用微元法(类比功和冲量这两个过程量的计算) 三、动量矩(即角动量)(对比动量) 1、角动量反映了物体转动的状态,是一个状态量 2、角动量用l 表示 3、角动量的大小 l r p r vm =?=?u r r r r r 4、角动量是矢量,方向与r 和v 构成的平面垂直,遵循右手螺旋法则 四、角动量定理(对比动量定理) 冲量矩等于角动量的变化量 L t l τ==?r r r

五、角动量守恒定律(对比动量守恒定律) 角动量守恒的条件:(满足下列任意一个即可) 1、合外力为0 2、合外力不为0,但合力矩为0 例如:地球绕太阳公转 此类问题常叫做“有心力”模型 3、合外力不为0,每个瞬时合力矩也不为0,但全过程总的冲量矩为0 例如:单摆从某位置摆动到对称位置的过程 注意:讨论转动问题一定要规定转轴,转轴不同结果也不同 六、转动惯量(对比质量) 1、转动惯量反映了转动中惯性 2、转动惯量用I 或J 表示 3、质点的转动惯量等于质量乘以和转轴距离的平方 2I mr = 4、转动惯量是标量 5、由于实际物体经常不能看作质点,转动惯量的计算需要用微元法或微积分 2 i i I m r =∑ 6、引入转动惯量后,角动量也可以表示为(类比动量的定义) l I ω=r r 七、转动问题中的牛顿第二定律(即转动定理)(对比牛顿第二定律) 合力矩等于转动惯量乘以角加速度 I τβ=r r 八、动能的另一种表示方式 221122 k E mv I ω= =

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

高中物理竞赛辅导讲义-5.3角动量例题

5.3角动量例题 例1、在一根长为3l的轻杆上打一个小孔,孔离一端的距离为l,再在杆 的两端以及距另一端为l处各固定一个质量为M的小球。然后通过此孔将杆悬挂于一光滑固定水平细轴O上。开始时,轻杆静止,一质量为m 的铅粒以v0的水平速度射入中间的小球,并留在其中。求杆摆动的最大高度。

例2、质量m=1.1 kg的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动.圆盘边缘绕有绳子,绳子下端挂一质量m1=1.0 kg的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动. 例3、两个质量均为m的质点,用一根长为2L的轻杆相连。两质点 以角速度ω绕轴转动,轴线通过杆的中点O与杆的夹角为θ。试求以 O为参考点的质点组的角动量和所受的外力矩。

例4、小滑块A位于光滑的水平桌面上,小滑块B位于桌 面上的小槽中,两滑块的质量均为m,并用长为L、不可 伸长、无弹性的轻绳相连。开始时,A、B之间的距离为 L/2,A、B间的连线与小槽垂直。突然给滑块A一个冲 击,使其获得平行与槽的速度v0,求滑块B开始运动时 的速度 例5、有一半径为R的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?

例6、一质量为M a,半径为a的圆筒A,被另一质量为M b,半 径为b的圆筒B同轴套在其外,均可绕轴自由旋转。在圆筒A 的内表面上散布了薄薄的一层质量为M o的沙子,并在壁上开了许多小孔。在t=0时,圆筒A以角速度ω0绕轴匀速转动,而圆筒B静止。打开小孔,沙子向外飞出并附着于B筒的内壁上。设单位时间内喷出的沙子质量为k,若忽略沙子从A筒飞到B筒的时间,求t时刻两筒旋转的角速度。 *例7、如图,CD、EF均为长为2L的轻杆,四个端点各有 一个质量为m的质点,CE、DF为不可伸长的轻绳,CD的 中点B处用一细线悬于天花板A点。突然剪断DF,求剪断 后瞬间,CE、AB上的张力分别是多少?

第33届全国中学生物理竞赛决赛试题

第33届全国中学生物理竞赛决赛理论考试试题 可能用到的物理常量和公式: 真空中的光速82.99810/c m s =?; 地球表面重力加速度大小为g ; 普朗克常量为h ,2h π=; 2111ln ,1121x dx C x x x +=+<--?。 1、(15分)山西大同某煤矿相对于秦皇岛的高度为c h 。质量为t m 的火车载有质量为c m 的煤,从大同沿大秦铁路行驶路程l 后到达秦皇岛,卸载后空车返回。从大同到秦皇岛的过程中,火车和煤总势能的一部分克服铁轨和空气做功,其余部分由发电机转换成电能,平均转换效率为1η,电能被全部存储于蓄电池中以用于返程。空车在返程中由储存的电能驱动电动机克服重力和阻力做功,储存的电能转化为对外做功的平均转换效率为2η。假设大秦线轨道上火车平均每运行单位距离克服阻力需要做的功与运行时(火车或火车和煤)总重量成正比,比例系数为常数μ,火车由大同出发时携带的电能为零。 (1)若空车返回大同时还有剩余的电能,求该电能E 。 (2)问火车至少装载质量为多少的煤,才能在不另外提供能量的条件下刚好返回大同? (3)已知火车在从大同到达秦皇岛的铁轨上运行的平均速率为v ,请给出发电机的平均输出功率P 与题给的其它物理量的关系。 2、(15分)如图a ,AB 为一根均质细杆,质量为m ,长度为2l ;杆上端B 通过一不可伸长的软轻绳悬挂到固定点O ,绳长为1l 。开始时绳和杆均静止下垂,此后所有运动均在同一竖 直面内。 (1)现对杆上的D 点沿水平方向施加一瞬时冲量I ,若 在施加冲量后的瞬间,B 点绕悬点O 转动的角速度和杆 绕其质心转动的角速度相同,求D 点到B 点的距离和B 点绕悬点O 转动的初始角速度0ω。

高中物理动量大题(含答案)

高中物理动量大题与解析1.(2017?平顶山模拟)如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b 两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求: (1)物块a与b碰后的速度大小; (2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.解:(1)对物块a,由动能定理得:,代入数据解得a与b碰前速度:v1=2m/s; ^ a、b 碰撞过程系统动量守恒,以a的初速度方向为正方向, 由动量守恒定律得:mv1=2mv2,代入数据解得:v2=1m/s; (2)当弹簧恢复到原长时两物块分离,a以v2=1m/s在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:mv2=(M+m)v3,代入数据解得:v3=s, 对小车,由动能定理得:, 代入数据解得,同速时车B端距挡板的距离:=; (3)由能量守恒得:, 解得滑块a与车相对静止时与O点距离:; ) 答:(1))物块a与b碰后的速度大小为1m/s; (2)当物块a相对小车静止时小车右端B到挡板的距离为 (3)当物块a相对小车静止时在小车上的位置到O点的距离为.

2.(2017?肇庆二模)如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V0滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求: (1)木板B上表面的动摩擦因素μ; (2)圆弧槽C的半径R ; (3)当A滑离C时,C的速度. > 解:(1)当A在B上滑动时,A与BC整体发生作用,规定向左为正方向,由于水平面光滑,A与BC组成的系统动量守恒,有:mv0=m×v0+2mv1 得:v 1=v0 由能量守恒得知系统动能的减小量等于滑动过程中产生的内能,有: Q=μmgL=m﹣m﹣×2m 得:μ= (2)当A滑上C,B与C分离,A 与C发生作用,设到达最高点时速度相等为V2,规定向左为正方向,由于水平面光滑,A与C 组成的系统动量守恒,有: m×v0+mv1=(m+m)V2, ^ 得:V 2= A与C组成的系统机械能守恒,有: m+m=×(2m)+mgR 得:R= (3)当A滑下C时,设A的速度为V A,C的速度为V C,规定向

高中物理-动量和能量的综合

动量和能量的综合 一、大纲解读 动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查. 二、重点剖析 1.独立理清两条线:一是力的时间积累——冲量——动量定理——动量守恒;二是力的空间移位积累——功——动能定理——机械能守恒——能的转化与守恒.把握这两条主线的结合部:系统.. 。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。 2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统弹力做 功就看是否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律. 3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加. 三、考点透视 考点1、碰撞作用 碰撞类问题应注意:⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,碰后系统总动能小于或等于碰前总动能,即1212k k k k E '+E 'E +E ≤;⑶速度要符合物理情景:如果碰前两物体同向运动,则后面的物体速度一定大于前面物体的速度,即v v 后前>,碰撞后,原来在前面的物体速度一定增大,且≥v v 后前;如果两物体碰前是相向运动,则碰撞后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。

高中物理竞赛角动量

3v m 角动量定理 角动量守恒习题 1.如本题图,一质量为m 的质点自由降落,在某时刻具有速度v 。此时它相对于A 、B 、C 三参考点的距离分别为d 1、d 2、d 3。求 (1)质点对三个点的角动量; (2)作用在质点上的重力对三个点的力矩。 2.两个质量都是m 的滑雪者,在冰场两条相距为L 0的平直跑道上均以速度V 0迎面匀速滑行,当两者之间的距离等于L 0时,分别抓住一根长为L 0的轻绳两端,而后每个人用力对等的力缓慢向自己一边拉绳子,知道二者相距L (小于L 0)时为止,求这一过程中,两位滑冰者动能总增量。 111222l v l v θθ3.如本题图,圆锥摆的中央支柱是一个中空的管子,系摆锤的线穿过它, 我们可将它逐渐拉短。设摆长为时摆锤的线速度为,且与竖直方向的夹角为 摆长拉倒时,与竖直方向的夹角为,求摆锤的速度为多少

4.在光滑的水平面上,有一根原长Lo=0.6m、劲度系数k=8N/m的弹性绳,绳的一端系着一个质量m=0.2kg 的小球B,另一端固定在水平面上的A点.最初弹性绳是松弛的,小球B的位置及速度,AB的间距d=0.4m。如图所示,在以后的运动中当小球B的速率为v时,它与A点的距离最大,且弹性绳长L=0.8m,求B的速率v及初速率v0 5.在半顶角为α的圆锥面内壁离锥顶h高处以一定初速度沿内壁水平射出一质量为m的小球,设锥面内壁是光滑的,求: 1、为使小球在h高度的水平面上做匀速圆周运动,其初速度V0为多少? 2、若初速度V1=2V0,求小球在运动过程中的最大高度和最小高度。 6.小滑块A位于光滑的水平桌面上,小滑块B位于桌面上的光滑小槽中,两滑块的质量都是m,并用长为L,不可伸长的、无弹性的轻绳相连,如图所示,开始时,A,B的间距为L/2,A,B间的连线与小槽垂直,今给滑块A一冲击,使其获得平行于槽的速度V0,求滑块B开始运动时的速度。

高中物理《动量能量》专题复习

《动量、能量》二轮复习方案 一、命题趋向及热点情景 从04到08高考题演变来看,动量、能量知识在09高考中应表现为选择题一道,实验题无,25题为动量与能量的压轴题,这种布局可能性很高. 因为压轴情形大增故此板块我市二轮备考应有重点突破. 选择题通常借助一幅不太复杂的情景考查学生对动量能量主要知识初步理解能力,特别地近些年来能图像式的选项来影响考生的判断…… 计算题则以生活中或从实际中抽象出来的理想的相对复杂情景,考查学生物理理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 通常考查对象通常两个或以上,考查情景中的全程或局部,对象的全部或局部含有能量和动量变化或守恒.考查的情形有关碰撞的问题、滑块问题、传送带、绳杆管轨道类等问题…… 二、重难点突破意义及对策 得综合者得高考,得物理者得理综,物理中有关热点主干知识重难点突破者得物理.物理题目是否顺手关键在于选择中一两道、设计型实验、压轴题的突破.这几个方面解决得好会对理综成绩提升会有乘数效应,相反就会是一种伤心的痛. 通常一道题学生做得如何在于对题的情景感知程度和对情景的把握.这里面有属于学生层面的千差万别的个体因素,还有属于教师层面的引导传授的群体因素.前者我们很多时候无法把握,后者正要我们作为教者对症下药. 【对策1】创设丰富的情景引导学生分析研究 老师应手头上必备近些年来高考和模拟题库,最好是分成板快的,还要借助学校及本组教师的资源优势从网上、从来往学校组织题源,老师多做多探索结合本校学生过去和现在的训练,把那些学生没有经历的相对新颖有代表性最能本板块新题型、新情景及时补充到课堂、训练和考试中.除此外在二轮复习中还应把学生过去分散感受过经典爱错的老情景集中呈现,增强学生实考中快速切入的能力. 【对策2】形成分类专题突破 要精讲一道题要像学生刚做该题那样,分析题目已知条件,建立此情景全局画面,寻找连结各画面的逻辑连结关系,建立学生最熟悉的模型,用最恰当定理公式建立物理量的关系. 一类题要精讲一道,学生最需要的是如何切入,整体把握以及提醒关键细节的易错点. 做好这方面的事老教师往往在自己头脑里有一套成熟的题集,但也要结合集体智慧不断结合高考和学生实际推陈出新. 专题目标形成一类题的解题方法和套路,进一步提高学生理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 【对策3】强化必要的物理思维定势 动量和能量的综合题注定要呈现两个及以上物体分析的优势;相对复杂的情景也注定有大过程中包含许多子过程,大过程和子过程有着复杂的连接关系;相对复杂的情景也注定耗时较多,解这类题很注重效率. A. 用动量、能量观解题优先级别高于牛顿运动定律。 B.尽可能列出动量、能量转化始末的全程方程。 列方程中,要关注公式定理及守恒条件,做到粗中有细. 特别是涉及有碰撞或爆炸类动能定理方程时类情形时则应在撞前撞后分别列方程而不应该列出贯穿大过程始末的方程,这并不是全程方程有什么问题而是像碰撞中能量转化涉及作用力,作用时间位移小,这些力的作功在方程中无法呈现的缘故。 C. 两个及以上物体系的优先系统分析法 系统分析法在牛顿运动定律和动量定理中获取了极大的成功,但在动能定理中却受到了极大的压制,但系统分析法从来就是一种优化的解题观念。这里最难办的就是系统内力作功问题,关于内力作功大量的选择题来强化学生的认识,不是无的放矢。系统动能定理不是不能用,但不可滥用。系统动能定量完全可表述为:多物体构成的系统中所有系统外力作功和所有系统内力作功的代数和等于系统内各物体动能变化的总和。但这样一个结论下了和没下没什么差别,因为它在很多时候不能给我们带来便利。

高中物理运用动量和能量观点解题的思路

运用动量和能量观点解题的思路 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。 2.若是多个物体组成的系统,优先考虑两个守恒定律。 3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。 例1图1中轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处于原长状态。另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行。当A 滑过距离时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好回到出发点P并停止。滑块A和B与导轨的摩擦因数都为,运动过程中弹簧最大形变量为,重力加速度为。求A从P点出发时的初速度。 解析:首先要将整个物理过程分析清楚,弄清不同阶段相互作用的物体和运动性质,从而为正确划分成若干阶段进行研究铺平道路。即A先从P点向左滑行过程,受摩擦力作用做 匀减速运动。设A刚接触B时的速度为,对A根据动能定理,有

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离, 弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹 性碰撞。由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:12 11 2 12 12 112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能, 部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 , ⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 11 21v m m m v v += '='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 2121212 2121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运动。 / ~

高中物理竞赛辅导 动量 角动量和能量

动量 角动量和能量 §4.1 动量与冲量 动量定理 4.1. 1.动量 在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。物体的质量和速度的乘积mv 遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。在这些事实基础上,人们就引用mv 来量度物体的“运动量”,称之为动量。 4.1.2.冲量 要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F 和力作用的时间t ?的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F t ?叫做冲量。 4.1.3.质点动量定理 由牛顿定律,容易得出它们的联系:对单个物体: 01mv mv v m t ma t F -=?=?=? p t F ?=? 即冲量等于动量的增量,这就是质点动量定理。 在应用动量定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,分量式为: x tx x mv mv t F 0-=? y ty y mv mv t F 0-=? z tz z mv mv t F 0-=? 对于多个物体组成的物体系,按照力的作用者划分成内力和外力。对各个质点用动量定理: 第1个 1I 外+1I 内=10111v m v m t - 第2个 2I 外+2I 内=20222v m v m t - 第n 个 n I 外+n I 内=0n n nt n v m v m - 由牛顿第三定律: 1I 内+2I 内+……+n I 内=0 因此得到: 1I 外+2I 外+ ……+n I 外=(t v m 11+t v m 22+……+nt n v m )-(101v m +202v m +……0n n v m ) 即:质点系所有外力的冲量和等于物体系总动量的增量。 §4,2 角动量 角动量守恒定律 动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。 它的求法跟力矩完全一样,只要把力F 换成动量P 即可,故B 点上的动量P 对原点O 的动量矩J 为 P r J ?= (r =) 以下介绍两个定理:

高中物理动量和能量知识归纳

高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a )F=ma 、?运动状态发生变化?牛顿第二定律 时间积累效应(冲量)I=Ft 、?动量发生变化?动量定理 空间积累效应(做功)w=Fs ?动能发生变化?动能定理 2.动量观点:动量:p=mv= K mE 2 冲量:I = F t 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’ 一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=? P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP ' (两物体动量变化大小相等、方向相反) 实际中应用有:m 1v 1+m 2v 2=' 22' 11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算 简化为代数运算。 相对性:所有速度必须是相对同一惯性参照系。 同时性:表达式中v 1 和v 2 必须是相互作用前同一时刻的瞬时速度,v 1 ’和v 2’ 必须是相互作用后同一时刻的瞬时 速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos ? (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t (?p= t w =t FS =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = F v

高考物理——动能与动量

动量与能量 测试时间:90分钟 满分:110分 第Ⅰ卷 (选择题,共48分) 一、选择题(本题共12小题,共48分。在每小题给出的四个选项中,第1~8小题只有一个选项正确,第9~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分) 1.[2017·河北冀州月考]在光滑的水平桌面上有两个在同一直线上运动的小球a 和b ,正碰前后两小球的位移随时间变化的关系如图所示,则小球a 和b 的质量之比为 ( ) A .2∶7 B .1∶4 C .3∶8 D .4∶1 答案 B 解析 由位移—时间图象的斜率表示速度可得,正碰前,小球a 的速度v 1= 1-41-0 m/s =-3 m/s ,小球b 的速度v 2=1-01-0 m/s =1 m/s ;正碰后,小球a 、b 的共同速度v =2-16-1 m/s =0.2 m/s 。设小球a 、b 的质量分别为m 1、m 2,正碰过程,根据动量守恒定律有m 1v 1+m 2v 2=(m 1+m 2)v ,得m 1m 2=v -v 2v 1-v =14 ,选项B 正确。 2.[2017·江西检测]如图所示,左端固定着轻弹簧的物块A 静止在光滑的水平面上,物块B 以速度v 向右运动,通过弹簧与物块A 发生正碰。已知物块A 、B 的质量相等。当弹簧压缩到最短时,下列说法正确的是( )

A.两物块的速度不同 B.两物块的动量变化等值反向 C.物块B的速度方向与原方向相反 D.物块A的动量不为零,物块B的动量为零 答案 B 解析物块B接触弹簧时的速度大于物块A的速度,弹簧逐渐被压缩,当两物块的速度相同时,弹簧压缩到最短,选项A、D均错误;根据动量守恒定律有Δp A+Δp B =0,得Δp A=-Δp B,选项B正确;当弹簧压缩到最短时,物块B的速度方向与原方向相同,选项C错误。 3.[2017·黑龙江模拟] 如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块。今让一质量为m的小球自左侧槽口A的正上方h 高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是() A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒 B.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量不守恒 C.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒 D.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动 答案 B 解析当小球在槽内由A到B的过程中,墙壁对槽有力的作用,小球与半圆槽组成的系统水平方向动量不守恒,故A、C错误,B正确。当小球运动到C点时,它的两个分运动的合速度方向是右上方,所以此后小球将做斜上抛运动,即C错误。 4.[2017·辽师大附中质检]质量相同的子弹a、橡皮泥b和钢球c以相同的初速度水平射向竖直墙,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被以原速率反向弹回。关于它们对墙的水平冲量的大小,下列说法中正确的是() A.子弹、橡皮泥和钢球对墙的冲量大小相等 B.子弹对墙的冲量最小 C.橡皮泥对墙的冲量最小 D.钢球对墙的冲量最小 答案 B

江苏省南京物理竞赛讲义-5.3角动量例题

5.3角动量例题 例1、在一根长为3l 的轻杆上打一个小孔,孔离一端的距离为l ,再在杆 的两端以及距另一端为l 处各固定一个质量为M 的小球。然后通过此孔 将杆悬挂于一光滑固定水平细轴O 上。开始时,轻杆静止,一质量为m 的铅粒以v 0的水平速度射入中间的小球,并留在其中。求杆摆动的最大 高度。 例2、质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平 光滑固定轴转动.圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动. 例3、两个质量均为m 的质点,用一根长为2L 的轻杆相连。两质点 以角速度ω绕轴转动,轴线通过杆的中点O 与杆的夹角为θ。试求 以O 为参考点的质点组的角动量和所受的外力矩。 例4、小滑块A 位于光滑的水平桌面上,小滑块B 位于 桌面上的小槽中,两滑块的质量均为m ,并用长为L 、不 可伸长、无弹性的轻绳相连。开始时,A 、B 之间的距离 为L/2, A 、B 间的连线与小槽垂直。突然给滑块A 一个冲击,使其获得平行与槽的速度v 0,求滑块B 开始运动时的速度 例5、有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止? 例6、一质量为M a ,半径为a 的圆筒A ,被另一质量为M b ,半 径为b 的圆筒B 同轴套在其外,均可绕轴自由旋转。在圆筒A

的内表面上散布了薄薄的一层质量为M o的沙子,并在壁上开了许多小孔。在t=0时,圆筒A以角速度ω0绕轴匀速转动,而圆筒B静止。打开小孔,沙子向外飞出并附着于B筒的内壁上。设单位时间内喷出的沙子质量为k,若忽略沙子从A筒飞到B筒的时间,求t时刻两筒旋转的角速度。 *例7、如图,CD、EF均为长为2L的轻杆,四个端点各有 一个质量为m的质点,CE、DF为不可伸长的轻绳,CD 的中点B处用一细线悬于天花板A点。突然剪断DF,求剪 断后瞬间,CE、AB上的张力分别是多少?

相关主题
文本预览
相关文档 最新文档