当前位置:文档之家› chapter2-3(边值问题)

chapter2-3(边值问题)

三角形三边关系(带答案)

【考点训练】三角形三边关系-2 一、选择题(共10小题) 1.(2011?青海)某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形, 4.(2012?长沙)现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可 二、填空题(共10小题)(除非特别说明,请填准确值) 11.(2007?安顺)如果等腰三角形的两边长分别为4和7,则三角形的周长为_________.12.(2004?云南)已知三角形其中两边a=3,b=5,则第三边c的取值范围为_________.

13.(2007?柳州)如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为_________cm. 14.(2006?连云港)如图,∠BAC=30°,AB=10.现请你给定线段BC的长,使构成△ABC能惟一确定.你认为BC的长可以是_________. 15.(2005?泸州)一个等腰三角形的两边分别为8cm和6cm,则它的周长为_________cm. 16.(2007?贵阳)在△ABC中,若AB=8,BC=6,则第三边AC的长度m的取值范围是_________. 17.(2006?梧州)△ABC的边长均为整数,且最大边的边长为7,那么这样的三角形共有_________个. 18.(2004?芜湖)已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________. 19.(2004?玉溪)已知一个梯形的两底长分别是4和8,一腰长为5,若另一腰长为x,则x的取值范围是_________. 20.(2004?嘉兴)小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:_________,_________,_________(单位:cm). 三、解答题(共10小题)(选答题,不自动判卷) 21.已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数. (1)请写出一个三角形符合上述条件的第三边长. (2)若符合上述条件的三角形共有n个,求n的值. (3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例. 22.如果一个三角形的各边长均为整数,周长大于4且不大于10,请写出所有满足条件的三角形的三边长. 23.一个三角形的边长分别为x,x,24﹣2x, (1)求x可能的取值范围; (2)如果x是整数,那么x可取哪些值? 24.已知三角形的三边长分别为2,x﹣3,4,求x的取值范围. 25.三角形的三边长分别为(11﹣2x)m、(2x2﹣3x)cm、(﹣x2+6x﹣2)cm

有限差分法

利用有限差分法分析电磁场边界问题 在一个电磁系统中,电场和磁场的计算对于完成该系统的有效设计师极端重要的。例如,在系统中,用一种绝缘材料是导体相互隔离是,就要保证电场强度低于绝缘介质的击穿强度。在磁力开关中,所要求的磁场强弱,应能产生足够大的力来驱动开关。在发射系统中进行天线的有效设计时,关于天线周围介质中电磁场分布的知识显然有实质性的意义。 为了分析电磁场,我们可以从问题所涉及的数学公式入手。依据电磁系统的特性,拉普拉斯方程和泊松方程只能适合于描述静态和准静态(低频)运行条件下的情况。但是,在高频应用中,则必须在时域或频域中求解波动方程,以做到准确地预测电场和磁场,在任何情况下,满足边界条件的一个或多个偏微分方程的解,因此,计算电池系统内部和周围的电场和磁场都是必要的。 对电磁场理论而言,计算电磁场可以为其研究提供进行复杂的数值及解析运算的方法,手段和计算结果;而电磁场理论则为计算电磁场问题提供了电磁规律,数学方程,进而验证计算结果。常用的计算电磁场边值问题的方法主要有两大类,其每一类又包含若干种方法,第一类是解析法;第二类是数值法。对于那些具有最简单的边界条件和几何形状规则的(如矩形、圆形等)问题,可用分离变量法和镜像法求电磁场边值问题的解析解(精确解),但是在许多实际问题中往往由于边界条件过于复杂而无法求得解析解。在这种情况下,一般借助于数值法求解电磁场的数值解。 有限差分法,微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网络来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 差分运算的基本概念: 有限差分法是指用差分来近似取代微分,从而将微分方程离散成为差分方程组。于是求解边值问题即转换成为求解矩阵方程[5]。 对单元函数 ()x f而言,取变量x的一个增量x?=h,则函数()x f的增量可以表示为 ()x f? = ()h x f+-()x f 称为函数()x f 的差分或一阶差分。函数增量还经常表示为 ()x f? = ? ? ? ? ? + 2 h x f - ? ? ? ? ? - 2 h x f

三角形三条边长度关系

《三角形三条边长度关系》导学案 班级:姓名:设计人:王钰娜 教学目标: 通过直观操作活动和计算观察,让学生探索并发现三角形任意两边长度的和大于第三边。引导学生参与探究和发现活动,经历操作、发现、验证的探究过程,培养学生自主探究、合作交流的能力。 一、诱思导学 1.举例:生活中哪些物体的面是三角形的? 2.复习三角形的各部分名称。 提问:我们已经初步认识了三角形,关于三角形你已经知道了什么? 引导学生回忆三角形的特点:有()条边、()个角、()个顶点、()条高…… 二、质疑研学 1.课件出示教材第77页例题3:任意选三根小棒,能围成一个三角形吗? 2.操作交流。 (1)从自己准备的四根小棒中选出三根小棒来围一围,看看能不能围成三角形。 (2)小组交流。将各自的操作情况在四人小组内进

行交流。 (3)全班交流:你选择的是哪三根小棒,是否能围成一个三角形? ①选择8cm、5cm、4cm三根小棒,能吗? ②选择5cm、4cm、2cm三根小棒,能吗? ③选择8cm、4cm、2cm三根小棒,能吗? ④选择8cm、5cm、2cm三根小棒,能吗? 追问:第③种情况和第④种情况为什么不能围成三角形? 小结:因为4cm+2cm<8cm,5cm+2cm<8cm,所以不能围成三角形。 3.探索规律。 师:我们已经知道了当两根小棒长度相加比第三根小棒短时,不能围成三角形。那能围成三角形的三根小棒的长度又有什么特点呢? (1)从围成三角形的三根小棒中任意选出两根,将它们的长度和与第三根比较,结果怎样? 小结:任意两根小棒长度的和一定()第三根小棒。 4.验证规律。 提问:三角形任意两边长度的和一定大于第三边吗?(1)画一画:用三角尺画一个三角形。

第二章计算流体力学的基本知识

第二章计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。 2.1计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20 世纪30~40 年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943 年一直算到1947 年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学" 。 从20 世纪60 年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力

三角形三条边的关系(融合版)

课题:三角形三边的关系 教学内容 人教版小学数学四年级下册第62页例3、例4。 教学目标 1.知识与技能 (1)通过创设问题情境,让学生在操作中感知三角形三边的关系。 (2) 通过拼、摆、议、算等学习活动,让学生在动手实验是探索数学规律的途径和方法。 (3)运用“三角形任意两边的和大于第三边”的性质,培养学生应用数学知识解决实际问题的能力。 2.过程与方法 (1)通过实验、观察、交流、发现等活动,发展平面几何观念、推理能力和条理表达的能力; (2)通过实践去感受三角形的三边关系,体会数学知识在实际生活中的应用。 (3)利用“问卷星”程序进行练习,提高学生的学习效率。 3.情感态度与价值观 (1)培养学生的探索精神、实践精神; (2)在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离; (3)联系学生的生活环境,使学生通过实验、观察、交流、归纳,获得必需的数学知识,品尝发现带来的快乐,激发学生的学习兴趣。 教学重难点及突破关键 重点:在观察、操作、比较、分析中发现三角形三边的关系。 难点:三角形三边关系的发现及应用。 突破关键:通过学生自己动手操作发现三角形三边关系,帮助学生用所学生的知识去解决实际问题。 教学准备 教具:多媒体课件,不同长度的小棒 学具:ipad,不同长度的小棒,试验表格

教学设计: 一、讨论交流,回忆旧知 (一)交流讨论,回忆三角形的概念 1、师:你们已经认识了哪些平面图形? (课件出示)师:这些是什么图形?——三角形(板书课题) 2、师:谁能说说,什么样的图形是三角形? 由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。 3、师:怎么理解这个“围”字?(每相邻两条线段的端点相连) (二)动手操作,深入理解三角形的意义 1、师:你们对这个“围”理解的非常准确,围就是把每相邻两条线段的端点相连。老师这里有三根小棒,我们把它们看作三条线段,谁愿意到黑板上来用这三根小棒围一个三角形。其他同学仔细看,待会儿请你来评价她的作品。 还有谁想来围一围?(发现不能围成三角形。) 师:如果说给你三条线段你一定能围成三角形吗?那你们觉得能不能围成三角形跟三角形的什么有关呢?(跟线段的长短有关)今天我们就要来研究“三角形三边的关系”。你们想不想自己动手来探究这个问题? 二、动手操作,探索发现 1、实验操作 师:4人为一组,老师为每组准备了学具袋,学具袋里有4根标好了长度的小棒:4厘米、5厘米、6厘米、10厘米和一张实验记录表。 师:这个实验的要求我们一起来读一读: (1)、每次任选3根围一围,组长在实验记录表中记录每次选择的小棒长度和试验结果。(2)、组长负责将每次围的结果用ipad拍照记录下来。 2、小组活动,教师参与并适当指导。 3、汇报交流 师:哪个组的同学愿意把你们实验的结果与大家分享? 学生汇报,同时请这组的组长用ipad传照片。别的组如果有一样的也同时上传。 (师根据学生的回答板贴三角形) 4、分析数据发现规律 (1)师:我们先来研究一下在什么情况下三条线段不能围成三角形。 ①三条线段分别是4㎝,5㎝,10㎝。这三根小棒围三角形,我们发现,无论怎样围总有缺口,不能首尾相连,所以这组小棒不能围成三角形。能用一个数学关系式表示它们之间的关系吗?引导学生得出4+5<10,所以围不成。 ②三条线段分别是4㎝,6㎝,10㎝的也围不成,看电脑演示。它为什么也围不成?能用一个数学关系式表示它们之间的关系吗?引导学生得出4+6=10,所以围不成。

传热学导热问题的数值解法

导热问题的数值解法 1 、重点内容:① 掌握导热问题数值解法的基本思路; ② 利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 由前述3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种:(1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 分析解法与数值解法的异同点: 相同点:根本目的是相同的,即确定① t=f(x ,y ,z) ;②。不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。§4-1 导热问题数值求解的基本思想及内节点离散方程的建立 实质

对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 一数值求解的步骤 如图4-2 (a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下: 1 建立控制方程及定解条件 控制方程:是指描写物理问题的微分方程 针对图示的导热问题,它的控制方程(即导热微分方程)为:(a )边界条件:x=0 时, x=H 时, 当y=0 时, 当y=W 时, 区域离散化(确立节点)

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

数学实验“微分方程组边值问题数值算法(打靶法,有限差分法)”实验报告(内含matlab程序)

西京学数学软件实验任务书

实验二十七实验报告 一、实验名称:微分方程组边值问题数值算法(打靶法,有限差分法)。 二、实验目的:进一步熟悉微分方程组边值问题数值算法(打靶法,有限差分法)。 三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。 四、实验原理: 1.打靶法: 对于线性边值问题 ?? ?==∈=+'+''β α)(,)(] ,[) ()()(b y a y b a x x f y x q y x p y (1) 假设L 是一个微分算子使:()()Ly y p x y q x y '''=++ 则可得到两个微分方程: )(1x f Ly =,α=)(1a y ,0)(1 ='a y ?)()()(111 x f y x q y x p y =+'+'',α=)(1a y ,0)(1='a y (2) 02=Ly ,0)(2=a y ,1)(2 ='a y ?0)()(222 =+'+''y x q y x p y ,0)(2=a y ,1)(2='a y (3) 方程(2),(3)是两个二阶初值问题.假设1y 是问题(2)

的解,2y 是问题(3)的解,且2()0y b ≠,则线性边值问题(1)的解为:1122() ()()()() y b y x y x y x y b β-=+ 。 2.有限差分法: 基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 五、实验内容: %线性打靶法 function [k,X,Y,wucha,P]=xxdb(dydx1,dydx2,a,b,alpha,beta,h) n=fix((b-a)/h); X=zeros(n+1,1); CT1=[alpha,0]; Y=zeros(n+1,length(CT1)); Y1=zeros(n+1,length(CT1)); Y2=zeros(n+1,length(CT1)); X=a:h:b; Y1(1,:)= CT1; CT2=[0,1];Y2(1,:)= CT2; for k=1:n k1=feval(dydx1,X(k),Y1(k,:)) x2=X(k)+h/2;y2=Y1(k,:)'+k1*h/2;

三角形三边关系归纳

三角形三边关系的考点问题 三角形的三条边之间主要有这样的关系:三角形的两边的和大于第三边,三角形的两边的差小于第三边.利用这两个关系可以解决许多典型的几何题目.现举例说明. 一、确定三角形某一边的取值范围问题 根据三角形三边之间关系定理和推论可得结论:已知三角形的两边为a、b,则第三边c 满足|a-b|<c<a+b. 例1 用三条绳子打结成三角形(不考虑结头长),已知其中两条长分别是3m和7m,问第三条绳子的长有什么限制. 简析设第三条绳子的长为x m,则7-3<x<7+3,即4<x<10.故第三条绳子的长应大于4m且小于10m。 二、判定三条线段能否组成三角形问题 根据三角形的三边关系,只需判断最小的两边之和是否大于第三边即可. 例2(1)下列长度的三根木棒首尾相接,不能做成三角形框架的是() A,5cm、7cm、10cm B,7cm、10cm、13cm C,5cm、7cm、13cm D,5cm、10cm、13cm (2)(2004年哈尔滨市中考试题)以下列各组线段为边,能组成三角形的是()A,1cm,2cm,4cm B,8cm,6cm,4cm C,12cm,5cm,6cm D,2cm,3cm,6cm 简析由三角形的三边关系可知:(1)5+7<13,故应选C;(2)6+4>8,故应选B. 例3 有下列长度的三条线段能否组成三角形? (1)a-3,a,3(其中a>3); (2)a,a+4,a+6(其中a>0); (3)a+1,a+1,2a(其中a>0). 简析(1)因为(a-3)+3=a,所以以线段a-3,a,3为边的三条线段不能组成三角形. (2)因为(a+6)-a =6,而6与a+4的大小关系不能确定,所以以线段a,a+4,a+6为边的三条线段不一定能组成三角形. (3)因为(a+1)+(a+1)=2a+2>2,(a+1)+2a=3a+1>(a+1),所以以线段a +1,a+1,2a为边的三条线段一定能组成三角形. 三、求三角形某一边的长度问题 此类问题往往有陷阱,即在根据题设条件求得结论时,其中可能有一个答案是错误的,需要我们去鉴别,而鉴别的依据就是这里的定理及推论. 例4 已知等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个三角形的腰长. 简析如图1,设腰AB=x cm,底BC=y cm,D为AC边的中点.根据题意,得x+1 2 x= 12,且y+1 2 x=21;或x+ 1 2 x=21,且y+ 1 2 x=12.解得x=8,y=17;或x=14,y =5.显然当x=8,y=17时,8+8<17不符合定理,应舍去.故此三角形的腰长是14cm. 例5一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长为______. 简析设第三边长为x厘米,因为9-2

偏微分方程边值问题的数值解法论文

求解偏微分方程的边值问题 本实验学习使用MATLAB 的图形用户命令pdetool 来求解偏微分方程的边值问题。这个工具是用有限元方法来求解的,而且采用三角元。我们用个例题来说明它的用法。 一、MATLAB 支持的偏微分方程类型 考虑平面有界区域D 上的二阶椭圆型PDE 边值问题: ()c u u f α-??+=g (1.1) 其中 (1) , (2) a,f D c x y ?????=? ????? 是上的已知函数(3)是标量或22的函数方阵 未知函数为(,) (,)u x y x y D ∈。它的边界条件分为三类: (1)Direchlet 条件: hu f = (1.2) (2)Neumann 条件: ()n c u qu g ?+=g (1.3) (3)混合边界条件:在边界D ?上部分为Direchlet 条件,另外部分为Neumann 条件。 其中,,,,h r q g c 是定义在边界D ?的已知函数,另外c 也可以是一个2*2的函数矩阵,n 是沿边界的外法线的单位向量。 在使用pdetool 时要向它提供这些已知参数。 二、例题 例题1 用pdetool 求解 22D 1 D: 10u x y u ??-?=+≤??=?? (1.4)

解:首先在MATLAB 的工作命令行中键入pdetool ,按回牟键确定,于是出现PDE Toolbox 窗口,选Genenic Scalar模式. ( l )画区域圆 单击椭圆工具按钮,大致在(0,0)位置单击鼠标右键,拖拉鼠标到适当位置松开。为了保证所绘制的圆是标准的单位园,在所绘园上双击,打开 Object Dialog 对话框,精确地输入

两点边值问题的有限差分法

学生实验报告 实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计2班学生姓名学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年月日

[]0max N i i c i N e u u <<=-,[]1 2 1 N N i i i e h u u -== -∑及收敛阶 ( )2ln ln 2 N N e e ,将计算结果填入 第五部分的表格,并对表格中的结果进行解释? 4. 将数值解和精确解画图显示,每种网格上的解画在一张图。 三.实验原理、方法(算法)、步骤 1. 差分格式: =-1/h^2(-( ) + )+ ( )/2h+ = A, 2. 局部阶段误差: (u)=O(h^2) 3.程序 clear all N=10; a=0;b=1; p=@(x) 1; r=@(x) 2; q=@(x) 3; alpha=0;beta=1; f=@(x) (4*x^2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); H(i,i+1)=-(2*p(a+(i+1/2)*h)/h-r(a+i*h)); g(i)=2*h*f(a+i*h)+(2*p(a+(i-1/2)*h)/h+r(a+i*h))*alpha; end

五.实验结果及实例分析 N N c e 收敛阶 N e 收敛阶 10 0.00104256 …… 0.00073524 …… 20 0.00026168 1.9341 0.00018348 1.4530 40 0.00006541 2.0001 0.00004585 2.0000 80 0.00001636 1.9993 0.00001146 2.0000 160 0.00000409 2.0000 0.00000287 2.0000 N 越大 只会使绝对误差变小,方法没变,所以收敛阶一致。 图示为:(绿线为解析解,蓝线为计算解) N=10 N=20

三角形特性与三条边之间的关系

三角形特性与三条边之间的关系 教学内容: 青岛版小学数学四年级下册第39页信息窗2红点问题和40页第一个红点问题,自主练习相关题目。 教学目标: 1.结合现实情境,让学生了解三角形的特性,并且知道三角形各个部分的名称是什么;让学生弄清三角形三边之间的关系,并能运用它判断给定长度的三条线段能否围成三角形,和解决生活中的简单的实际问题。 2.在实验过程中提高学生的合作探究能力,动手操作能力,总结概括能力。 3.在学习过程中让学生体验到成功的喜悦,感受到生活中处处有数学,激发他们学习数学的兴趣。 4.在学习的过程中,培养学生良好的学习习惯。 教学重难点: 教学重点:体会三角形的稳定性,初步认识三角形的各个部分;理解三角形三边之间的关系。 教学难点:理解三边关系中的“任意两边”。 教具、学具: 多媒体课件,实物投影仪,用小木条做就的三角形、四边形、五边形(学生课前准备好的,每人一套)、不同长度的小木棒。 教学过程: 一、拟定导学提纲,自主预习 (一)创情板题示标导学 1、创情板题 谈话:星期天,笑笑和淘气来到了施工现场,我们也去看一看吧。请看大屏幕(播放20秒录像),【录像内容包括:现实的施工场面,工地上塔吊机在繁忙的工作。】录像后出示信息窗2:

师:仔细观察信息窗里的信息,想一想,你能提出什么数学问题? 预设问题: 问题1:建筑工地上的塔吊为什么设计成三角形? 问题2:这些三角形的大小和形状都不一样,三角形有多少种类型的? 问题3:什么样的三条边才能够组成三角形呢? 过渡语:今天这节课我们就借助这些问题的解决,来认识三角形和三角形的三边关系。(板书课题:认识三角形及三边关系) 2.出示学习目标 本节课要达到以下学习目标: 【(1)了解三角形的特性和定义,三角形各个部分的名称;弄清三角形三边之间的关系,并能判断给定长度的三条线段能否围成三角形,和解决生活中的简单的实际问题。 (2)在实验过程中要积极动手操作参与合作探究。 (3)在学习过程中要按照自学指导的要求操作学习,并积极动脑思考指导中的问题。】 3.自学指导

有限差分法解微分方程两点边值问题

使用有限差分方法解边值问题: 由两点边值问题的一般形式: 根据差分方程: 当网格划分均匀,即有,化简差分方程: 代入再次化简: 用方程组展开写成矩阵形式: MATLAB编程:

运行后算出的结果:0 0.00376645934479969 0.00752341210586145 0.0112613555020809 0.0149707943560995 0.0186422448923756 0.0222662385306948 0.0258333256736017 0.0293340794862392 0.0327590996670822 0.0360990162080584 0.0393444931425513 0.0424862322797872 0.0455149769241112 0.0484215155776656 0.0511966856249889 0.0538313769980622 0.0563165358203363 0.0586431680282822 0.0608023429690169

0.0627851969725639 0.0645829368973219 0.0661868436473210 0.0675882756598612 0.0687786723621374 0.0697495575954688 0.0704925430057619 0.0709993313988528 0.0712617200593841 0.0712716040318917 0.0710209793627865 0.0705019463019362 0.0697067124625652 0.0686275959382091 0.0672570283754778 0.0655875580013963 0.0636118526041142 0.0613227024657904 0.0587130232464804 0.0557758588178718 0.0525043840457360 0.0488919075199819 0.0449318742312199 0.0406178681927653 0.0359436150070336 0.0309029843752992 0.0254899925498146 0.0196988047273101 0.0135237373829146 0.00695926054356603 0 与精确解比较:

三角形三条边的关系教案

三角形三条边的关系 1、教材分析 (1)知识结构 (2)重点、难点分析 本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系, 更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学 严谨性的一个体现;同时也有助于提高学生全面思考数 学问题的能力;它还将在以后的学习中起着重要作用. 本节内容的难点一是三角形按边分类,很多学生常 常把等腰三角形与等边三角形看成独立的两类,而在解 题中产生错误.二是利用三角形三边之间的关系解题,在学习和应用这个定理时,“两边之和大于第三边”指的 是“任何两边的和”都“大于第三边”而学生的错误就 在于以偏概全;分类讨论在解题中也是学生感到困难的 一个地方. 2、教法建议 没有学生参与的教学是不成功的教学,教师为了充 分调动主体参与,必须在为学生提供必要的背景知识的 前提下,与学生一道探索定理在结构上、应用上留给我 们的启示.具体说明如下: (1)强化能力

新课引入,先让学生阅读教材第一部分,然后通过 回答教师设计的几个问题,使学生明确对三角形按边分类,做到不重不漏,其中等腰三角形包括等边三角形, 反过来等边三角形是等腰三角形的一种特例. 通过阅读,使学生初步认识数学概念的含义,发现 疑难;理解领会数学语言(文字语言、符号语言、图形语言),促进数学语言内化,从而提高学生的数学语言水平、自学能力及交流能力 (2)主动获取 在得出三角形三条边关系定理过程中,针对基础比 较好的学生,让学生考虑回忆第 一册第一章中学过的这条公理并给出证明,在这个 基础上,让学生把定理的内容叙述出来.(3)激荡思维由定理获得了:判断三条线段构成一个三角形的一 种方法,除了这一种方法外,是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最 初可能很快得到“推论”,此时瓜熟蒂落,顺理成章地 引出教材中的推论.在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法.这里,学生若感到困难,教师可适当做提示.方法3:已知线段,(),若第三条线段c满足-ca+,则线段,,c可组成一个三角形. 方法4:已知线段,,c且,若+c则线段,,c可组成一个三角

两点边值问题的有限差分法

盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 学生实验报告 实验课程名称偏微分方程数值解 _________________ 开课实验室___________ 数统学院 ____________________ 学院数统年级2013专业班信计2班 学生姓名_________ 学号________ 开课时间2015至2016学年第2 学期

数学与统计学院制 .实验内容 考虑如下的初值问题: 定常数。 部分。 0, b 1 , p 3,r 1,q 2 , 0 , 1,问题(1)的精确解 ux x 2e x 1 , 及p 1,r 2,q 3带入方程(1)可得f x 。分别取 并能通过计算机语言编程实现。 .实验目的 通过该实验,要求学生掌握求解两点问题的有限差分法, 开课学院、实验室: 数统学院 实验时间:2016年 月 日 Lu d du x —p x ------------ dx dx du x dx q f x , x a, b (1) 其中 p x C 1 a,b , x ,q a,b P min 0 , q x 0 ,,是给 将区间N 等分, 网点x 1.在第三部分写出问题( 1)和 (2)的差分格式,并给出该格式的局部截断 2.根据你写出的差分格式, 编写一个有限差分法程序。将所写程序放到第四 3.给定参数a 其中将u x

N 10,20,40,80,160 ,用所编写的程序计算问题 (1)和⑵。将数值解记为 5 , i 1,...,N 1,网点处精确解记为i 1,…,N 1。然后计算相应的误差 1 l N /I 2 Nil h u i U i 2及收敛阶 n e : e 11,将计算结果填入 I i In 2 第五部分的表格,并对表格中的结果进行解释? 4.将数值解和精确解画图显示,每种网格上的解画在一张图。 三?实验原理、方法(算法)、步骤 1. 差分格式: L L .i=-1/h A 2O |] (% 曲汀—):i.「)/2h+w = 応=A,匕 2. 局部阶段误差: n (u)=O(hA2) 3. 程序 clear all N=10; a=0;b=1; P=@(x) 1; r=@(x) 2; q=@(x) 3; aIpha=0;beta=1; f=@(x) (4*xA2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); max u i c 0 i N i i U i N e

三角形三条边长度的关系

三角形三条边长度的关系 一教学内容: 三角形任意两边的和大于第三边 教材第82页的例3。 二教学目标: 1、探究三角形三条边的关系,知道三角形任意两条边的和大于第 三边。 2、根据三角形三条边的关系解释生活中的现象,提高运用数学知 识解决实际问题的能力;提高观察、思考、抽象、概括能力和动手操作能力。 3、积极参与探究活动,在活动中获得成功的体验,产生学习的兴 趣。 三重点、难点 探究三角形三条边的关系。 四教具准备 教学图片、不同长度的木棒。 五教学过程 (一)情境导入出示图片 你看到了什么?

如果现在把图上两棵树锯倒,你同意吗?为什么? 假如两棵树都倒向中间,在倒地之前它们会碰到一起吗? 学生思考后发现条件不够。 老师补充: 1、两树相距9米,高度分别为5米和2米 2、两树相距9米,高度分别为5米和4米 3、两树相距9米,高度分别为5米和6米 分别探究这三种情况下,它们会不会碰到一起。 第几种情况下两棵树碰到了一起,在它们相碰的瞬间,它们和地面组成了什么图形? 引入新课:板书三角形三条边长度的关系。 (二)探究发现。 1、用三根小棒摆一个三角形。 每个小组分配5-7根长短不同的木棒,请大家随意取出三根来摆三角形,并对出现的情况进行分析。 动手操作后,发现并不是随便取三根木棒就可以摆成三角形。 思考:符合什么条件的三根木棒才能摆成三角形? 2、第二次实验。 进一步探究三根木棒符合什么样的条件才能摆成三角形。 每个小组用以下几组木棒来摆三角形,并认真做好记录。 A组:4cm 5cm 6cm B组:4cm 4cm 6cm C组:3cm 3cm 6cm D组:3cm 2cm 6cm

第十一章 常微分方程边值问题的数值解法汇总

第十一章 常微分方程边值问题的数值解法 工程技术与科学实验中提出的大量问题是常微分方程边值问题.本章将研究常微分方程边值问题的数值求解方法.主要介绍三种边界条件下的定解问题和两大类求解边值问题的数值方法,打靶法算法和有限差分方法. 11.1 引言 在很多实际问题中都会遇到求解常微分方程边值问题. 考虑如下形式的二阶常微分方程 ),,(y y x f y '='', b x a <<, (11.1.1) 在如下三种边界条件下的定解问题: 第一种边界条件: α=)(a y , β=)(b y (11.1.2) 第二种边界条件: α=')(a y , β=')(b y (11.1.2) 第三种边界条件: ? ? ?=-'=-'101 0)()()()(b b y b y a a y a y βα, (11.1.13) 其中0 0, ,00000>+≥≥b a b a . 常微分方程边值问题有很多不同解法, 本书仅介绍打靶方法和有限差分方法. 11.2 打靶法 对于二阶非线性边值问题 ()()().,,βα==≤≤'=''b y a y b x a y y x f y ,,, (11.2.1) 打靶法近似于使用初值求解的情况. 我们需要利用一个如下形式问题初值解的序列: ()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α, (11.2.2) 引进参数v 以近似原边界值问题的解.选择参数k v v =,以使: ()()β==∞ →b y v b w k k ,lim , (11.2.3)

其中),(k v x w 定义为初值问题(11.2.2)在k v v =时的解,同时()x y 定义为边值问题(11.2.1)的解. 首先定义参数0v ,沿着如下初值问题解的曲线,可以求出点),(αa 对应的初始正视图 ()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α. (11.2.4) 如果),(0v b w 不严格收敛于β,那么我们选择1v 等值以修正近似值,直到),(0v b w 严格逼近β. 为了取得合适的参数k v ,现在假定边值问题(11.2.1)有唯一解,如果),(v x w 定义为初始问题(11.2.2)的解,那么v 可由下式确定: 0),(=-βv b w . (11.2.5) 由于这是一个非线性方程,我们可以利用Newton 法求解.首先选择初始值0v ,然后由下式生成序列 ),)(()),((111----- =k k k k v b dv dw v b w v v β,此处),(),)(( 11--=k k v b dv dw v b dv dw , (11.2.6) 同时要求求得),)(( 1-k v b dv dw ,因为),(v b w 的表达式未知,所以求解这个有一点难度;我们只能得到这么一系列的值。 ,,,),(),(),(),(1210-??k v b w v b w v b w v b w 假如我们如下改写初值问题(11.2.2),使其强调解对x 和v 的依赖性 ()()v v a w v a w b x a v x w v x w x f w ='=≤≤'=''),(,),(),,(,,,,α,(11.2.7) 保留初始记号以显式与x 的微分相关.既然要求当k v v =时),)((v b dv dw 的值,那么我们需要求出表达式(11.2.7)关于v 的偏导数.过程如下: )),(),,(,(),(v x w v x w x v f v x v w '??=?''? ),()),(),,(,()),(),,(,(v x v w v x w v x w x w f v x v x w v x w x x f ??'??+??'??= ) ,()),(),,(,(v x v w v x w v x w x w f ?'?''??+ 又因为x 跟v 相互独立,所以当b x a ≤≤上式如下;

相关主题
文本预览
相关文档 最新文档