当前位置:文档之家› propanediol

propanediol

in mild conditions

Els D’Hondt

COK, KULeuven, Belgium

Poitiers, March 13, 2008

?Introduction

–Use of 1,2-propanediol

–Results with better literature catalysts

–Bifunctional mechanism

?New bifunctional catalyst

–Reaction conditions & Results

–Overall conversion results

–Stability 1,2-propanediol

–Hydrogenation of hydroxy acetone

–Effect of gaseous products: CO

2and H

2

–Origin of acidity in bifunctional pathway

?Reaction pathways with new bifunctional catalyst –Extended scheme for the bifunctional mechanism

–Suggested reforming mechanism

?Conclusions

?Introduction

–Use of 1,2-propanediol

–Results with better literature catalysts

–Bifunctional mechanism

?New bifunctional catalyst

–Reaction conditions & Results

–Overall conversion results

–Stability 1,2-propanediol

–Hydrogenation of hydroxy acetone

–Effect of gaseous products: CO

2and H

2

–Origin of acidity in bifunctional pathway

?Reaction pathways with new bifunctional catalyst –Extended scheme for the bifunctional mechanism

–Suggested reforming mechanism

?Conclusions

Introduction:

Use of 1,2-propanediol

OH

OH

1,2-Propanediol = bulk intermediate

–direct use as moistering or softening agent, as anti-freeze, solvent or conservative

–monomer for polyesters, polyurethanes and alkyd resins

–preparation of cyclic ethers and 1,3-dioxanes used in organic synthesis as solvents or intermediates

Introduction: Results with better

literature heterogeneous catalysts ?One step processes

Catalyst T (°C)p H2 (bar)Results Reference

CuCr270200Y = 85 %Adkins et al., Journal of the American Chemical Society, 54: 1138-1145, (1932) Cu/ZnO18080S = 100 %, X = 19 %Gallezot et al., Green Chemistry, 6: 359-361, (2004)

Raney Cu24030Y = 57 %Montassier et al., Heterogeneous Catalysis and Fine Chemicals: 165-170, (1988) CuZnO/Al2O3270100Y = 84 %Casale et al., US Patent 5 214 219, (1993)

CoCuMnMo + H3PO4230250Y = 96 % Schuster et al., US Patent 5 616 817, (1997)

Ru/C21060Y = 75 %Montassier et al., Journal of Molecular Catalysis, 70 (1), 99-110, (1991)

RuS/C240130Y = 75 %Casale et al., US patent 5 276 181, (1994)

Y = yield, S = selectivity, X = conversion

?Multiple step processes

–Three step proces [1]

?γ-Al2O3 at 300 °C + acid resin+ Ni/Al2O3/SiO2at 140 °C and 40 bar H2

Y = 60 %

–Two step proces [2]

?CuCr at 220 °C + CuCr at 300 °C and 14 bar H2

Y = 62 %

Introduction:

Bifunctional mechanism

Glycerol conversion scheme via dual function catalyst *

OH

iso-propanol

O

propanal

OH

n-propanol

OH

OH

1,2-propanediol O

acetone

O

H OH

OH

glycerol

OH

O

hydroxy acetone

acid

dehydration

hydrogenation

11

dehydration

acid

2

hydrogenation 2

propane

hydrogenation

propene

3

3acid dehydration

or

or

+ H 2

+ H 2

+ H 2

Content ?Introduction

–Use of 1,2-propanediol

–Results with better literature catalysts

–Bifunctional mechanism

?New bifunctional catalyst

–Reaction conditions & Results

–Overall conversion results

–Stability 1,2-propanediol

–Hydrogenation of hydroxy acetone

–Effect of gaseous products: CO

2and H

2

–Origin of acidity in bifunctional pathway

?Reaction pathways with new bifunctional catalyst –Extended scheme for the bifunctional mechanism

–Suggested reforming mechanism

?Conclusions

Reaction conditions & Results

?Mild conditions, no additives, heterogeneous catalyst, inert atmosphere

–100 ml batch reactor –230 °C, 15 h

–40 ml 20 wt% glycerol in H 2O –

4 wt% catalyst

S 1,2-propanediol = 64 %X glycerol = 85 %Y 1,2-propanediol = 55 %MB liquid C =

89 %

O

H O H

O H

+ 3 H 2O

8

O H O H

7

+ 3 CO 2

new catalyst

glycerol

1,2-propanediol

in situ H 2production

S = selectivity, X = conversion, Y = yield, MB = carbon mass balance of liquid products

Overall conversion results

100 ml batch reactor, 230 °C, 24 h, 40 ml 20 wt% gl ycerol in H2O, 4 wt% catalyst, X = conversion, S = selectivity, mb = mass balance of liquid products, EtOH = ethanol, n-propOL = n-propanol, OH-AcON = hydroxy acetone

100 ml batch reactor, 230 °C, 15 h, 40 ml 20 wt% gl ycerol

in H 2O, 4 wt% catalyst, Yield based on mol/L

Selectivities and

MB liquid products rather constant

after initial period

P roduct

C arbon S electivity (%)

Y ield (%)methanol

0,9

2,4ethanol

9,512,2acetone + propanal 1,00,9iso-propanol 1,41,2n-propanol 7,56,4ethylene glycol 2,12,6hydroxy-acetone 3,02,61,2-propanediol 64,054,6

conversion (%)

85,4carbon mass balance of liquid products (%)

89,4

05

10

15

20

5

10

15

20

25

t (h)

S s i d e p r o d u c t s (%)

S E tOH

S n-propOL

S OH-A cON ±Plateau S

0204060801000

5

10

15

2025

t (h)X , S P D O , m b (%) .X

S 1,2-propanediol

mb

Stability of 1,2-propanediol

0510*******

5

10

15

20

25

t (h)c o n v e r s i o n , S s i d e p r o d u c t s (%)S ethanol

S n-propanol S hydroxy acetone conversion

?Via bifunctional pathway to n-propanol

?Via dehydrogenation and cracking to ethanol and CO

OH OH

O

OH

H +-H 2O

redox + H 2

redox OH

O

O

OH

OH + CO

OH OH

redox

-H 2

P roduct

C arbon S electivity (%)

ethanol

40,5

acetone + propanal 1,3iso-propanol 5,7n-propanol

18,6hydroxy-acetone 4,7conversion (%)

24,7carbon mass balance of liquid products (%)

70,7

Hydrogenation of hydroxy acetone

?

Equimolar amount of H 2

and hydroxy acetone

–Fast hydrogenation

–Low selectivity for CO, CO 2and CH 4–Enhanced selectivity for propane

no H 242 bar H 2methanol 0,00,0ethanol

5,01,4acetone + propanal 2,60,4iso-propanol 0,31,0n-propanol 2,01,8ethylene glycol 0,00,01,2-propanediol 65,691,3conversion (%)

77,998,7C arbon S electivity (%)P roduct carbon mass balance of liquid products (%)

75,4

95,9

OH

O

O

OH

OH + CO

redox

OH OH

O

O

or

OH or

OH

H +-H 2O

redox + H 2

redox + H 2

H +

-H 2O

Fast hydrogenation

or

cracking into ethanol and CO

Effect of gaseous products

P roduct no H2

24 h

5 bar C O2

24 h

20 bar C O2

24 h

5 bar H2

24 h

42 bar H2

72 h

methanol0,90,80,70,91,2 ethanol10,612,212,39,66,7 acetone + propanal0,91,02,20,50,2 iso-propanol1,91,90,01,31,4 n-propanol8,98,210,57,18,0 ethylene glycol1,00,80,42,02,0 hydroxy-acetone2,02,42,42,01,0 1,2-propanediol45,843,734,450,776,8 conversion (%)100,099,799,296,3100,0

carbon mass balance of liquid products (%)72,071,062,974,097,4

C arbon S electivity (%)

Effect of gaseous products

P roduct no H2

24 h

5 bar C O2

24 h

20 bar C O2

24 h

5 bar H2

24 h

42 bar H2

72 h

methanol0,90,80,70,91,2 ethanol10,612,212,39,66,7 acetone + propanal0,91,02,20,50,2 iso-propanol1,91,90,01,31,4 n-propanol8,98,210,57,18,0 ethylene glycol1,00,80,42,02,0 hydroxy-acetone2,02,42,42,01,0 1,2-propanediol45,843,734,450,776,8 conversion (%)100,099,799,296,3100,0

carbon mass balance of liquid products (%)72,071,062,974,097,4

C arbon S electivity (%)

?Equimolar amount of H

2

and glycerol –Decreased activity

72 h for full conversion Inhibition reforming

Increased S

1,2-propanediol 77 %

Increased MB

liquid C

97 %

Effect of gaseous products

? 5 bar CO 2: No effect

?

20 bar CO 2: Increased activity

–Decreased 1,2-propanediol selectivity

–Decreased carbon mass balance liquid products

P roduct

no H 2 24 h 5 bar C O 2 24 h 20 bar C O 2 24 h 5 bar H 2 24 h 42 bar H 2 72 h methanol 0,90,80,70,91,2ethanol

10,612,212,39,66,7acetone + propanal 0,91,02,20,50,2iso-propanol 1,91,90,01,31,4n-propanol 8,98,210,57,18,0ethylene glycol 1,00,80,42,02,0hydroxy-acetone 2,02,42,42,01,01,2-propanediol 45,843,734,450,776,8conversion (%)

100,099,799,296,3100,0carbon mass balance of liquid products (%)

72,0

71,0

62,9

74,0

97,4

C arbon S electivity (%)

Consecutive reactions

CO 2+ H 2O H 2CO 3

Origin of acidity in bifunctional mechanism

?

20 bar CO 2as acid catalyst, no catalyst

?Only the metal as catalyst, no carrier

010*********

1

2345678

t (h)X , S e t h a n o l , S h y r o x y a c e t o n e (%)

S ethanol S hydroxy acetone X

100 ml batch reactor, 230 °C, 7 h, 40 ml 20 wt% gly cerol

in H 2O, 20 bars CO 2 , X = conversion, S = selectivity

20

40608010005101520

25t (h)X , S , Y , m b (%)X no carrie r S P D O no carrie r mb no carrie r X

S P D O

mb

0510152025303540450

5

10

15

20

25

t (h)S s i d e p r o d u c t s (%)S n-propO L no carrie r

S O H -A cO N no carrie r

S n-propO L

S O H -A cO N

100 ml batch reactor, 230 °C, 24 h, 40 ml 20 wt% gl ycerol in H 2O, 0,26 mmol metal (…) or patented catalyst (―),X = conversion, S = selectivity, Y = yield, mb = carbon mass balance of liquid products, PDO = 1,2-propanediol, n-propOL = n-propanol, OH-AcON = hydroxy acetone

–Low conversion –Higher S side products –High MB liquids

CO 2as

acid catalyst

–Hydroxy acetone is formed in presence of 20 bar CO 2

–Versus thermostability of glycerol (X = 0 %) without catalyst

Content ?Introduction

–Use of 1,2-propanediol

–Results with better literature catalysts

–Bifunctional mechanism

?New bifunctional catalyst

–Reaction conditions & Results

–Overall conversion results

–Stability 1,2-propanediol

–Hydrogenation of hydroxy acetone

–Effect of gaseous products: CO

2and H

2

–Origin of acidity in bifunctional pathway

?Reaction pathways with new bifunctional catalyst –Extended scheme for the bifunctional mechanism

–Suggested reforming mechanism

?Conclusions

Bifunctional mechanism:

Extended scheme

propane

OH

iso-propanol

O

propanal OH

n-propanol

OH

ethanol OH OH

1,2-propanediol O

acetone

O

H OH

OH

glycerol OH

O

hydroxy acetone

O

OH

2-hydroxy propanal acid dehydration

isomerisation

ethane

+ CO

isomerisation

isomerisation

ethene

hydrogenation

hydrogenation

hydrogenation

propene

acid

dehydration

dehydration

acid

dehydration

acid

hydrogenation

C-CO cracking

1

1

22

3

3

Suggested reforming mechanism:

Based on experimental data

O

H OH

ethylene glycol

O

H OH

OH

glycerol

methanol

H

H

OH

H

O

OH

O

H glyceraldehyde O H OH

O

dihydroxy acetone

O

H H

O

hydroxy ethanal H

H

O formaldehyde

+ CO + H 2

+ H 2H 2+

+ CO + H 2

CO + H 2

(de)hydrogenation

redox

(de)hydrogenation

(de)hydrogenation

redox

redox

Equilibrated via water gas shift reaction:CO + H 2O CO 2+ H 2

Content ?Introduction

–Use of 1,2-propanediol

–Results with better literature catalysts

–Bifunctional mechanism

?New bifunctional catalyst

–Reaction conditions & Results

–Overall conversion results

–Stability 1,2-propanediol

–Hydrogenation of hydroxy acetone

–Effect of gaseous products: CO

2and H

2

–Origin of acidity in bifunctional pathway

?Reaction pathways with new bifunctional catalyst –Extended scheme for the bifunctional mechanism

–Suggested reforming mechanism

?Conclusions

Conclusions

C 3H 8O 3 3 CO + 4 H 2

8 C 3H 8O 3+ 3 H 2O 7 C 3H 8O 2+ 3 CO 2

3 CO + 3 H 2O 3 CO 2+ 3 H 27 C 3H 8O 3+ 7 H 2 7 C 3H 8O 2

X glycerol = 85 %

S 1,2-propanediol = 64 %MB liquid C = 89 %

?

Characteristics of the proces

–in situ H 2production: reforming + water gas shift reaction

Inhibition reforming by biogenic H 2 pressure

?Specific carrier

–Good stability of 1,2-propanediol Affinity glycerol > affinity 1,2-propanediol

–Fine tuned acidity

Minor consecutive reactions

–Quenching carbon acid acidity –Isomerisation

Provides more substrates for reforming

相关主题
文本预览
相关文档 最新文档