当前位置:文档之家› 北邮大三下学期电磁场与电磁波实验

北邮大三下学期电磁场与电磁波实验

北邮大三下学期电磁场与电磁波实验
北邮大三下学期电磁场与电磁波实验

电磁场与电磁波·实

验报告

信息与通信工程学院

电磁场与电磁波实验报告

题目:校医院4G信号场强特性的研究

指导老师:

日期:2015年6月

目录

一、实验目的 (1)

二、实验原理 (1)

三、实验内容 (3)

四、实验步骤 (3)

1、实验地点 (3)

2、数据采集 (4)

3、数据录入 (4)

4、数据处理流程 (4)

五、实验结果与分析 (4)

1、磁场强度地理分布 (4)

2、磁场强度统计分布 (4)

3、建筑物的穿透损耗 (5)

六、问题分析与解决 (5)

1、测量误差分析 (5)

2、场强分布的研究 (6)

七、分工安排 (6)

八、心得体会 (6)

九、附录 (8)

十、网络参量测量演示实验问卷 (19)

一、实验目的

1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;

2.研究校园内各种不同环境下阴影衰落的分布规律;

3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;

4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;

5.研究建筑物穿透损耗与建筑材料的关系。

二、实验原理

无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。因此基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。

电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。当电磁波传播遇到比波长大很多的物体时,发生反射。当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。

在移动通信系统中,路径损耗是影响通信质量的一个重要因素。大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的( dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。对任意的传播距离,大尺度平均路径损耗表示为:

()[]()()

=+(式1)PL d dB PL d n d d

010log/0

即平均接收功率为:

(式2)其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d 为发射机与接收机之间的距离。公式中的横杠表示给定值d的所有可能路径损耗的综合平均。坐标为对数-对数时,平均路径损耗或平均接收功率可以表示为斜率10ndB /10 倍程的直线。n依赖于特定的传播环境,例如在自由空间,n为2;当有阻挡物时,n比2大。

决定路径损耗大小的首要因素是距离,此外,它与接受点的电波传播条件密切相关。为此,我们引进路径损耗中值的概念,中值是使实验数据中一半大于它而另一半小于它的一个数值(对于正态分布中值就是均值)。

人们根据不同放入地形地貌条件,归纳总结出各种电波传播模型。下边介绍几种常用的描述大尺度衰落的模型。常用的电波传播模型:

1) 自由空间模型 2) 布灵顿模型 3) EgLi 模型 4) Hata-Okumura 模型

在无线信道里,造成慢衰落的最主要原因是建筑物或其它物体对电波的遮挡。在测量过程中,不同位置遇到的建筑物遮挡情况不同,因此接收功率也不同,这样就会观察到衰落现象。由于这种原因造成的衰落也叫“阴影效应”或“阴影衰落”。在阴影衰落的情况下,移动台被建筑物所遮挡,它收到的信号是各种绕射反射,散射波的合成。所以,在距基站距离相同的地方,由于阴影效应的不同,它们收到的信号功率有可能相差很大,理论和测试表明,对任意的d 值,特定位置的接受功率为随机对数正态分布即:

()[]()[][]Pr Pr s Pr(0)10log(/0)d dBm d dBm X d dBm n d d X σ

=+=-+ (式3)

其中,X σ 为0 均值的高斯分布随机变量,单位dB ;标准偏差σ ,单位dB 。

对数正态分布描述了在传播路径上,具有相同T-R 距离时,不同的随机阴影效应。这样利用高斯分布可以方便地分析阴影的随机效应。正态分布,也叫高斯分布,概率密度函数为:

2

2()

())2x f x μσ-=- (式4) 应用于阴影衰落时,上式中的x 表示某一次测量得到的接收功率,μ表示以dB 表示的接收功率的均值或中值,表示接收功率的标准差,单位是dB 。阴影衰落的标准差同地形,建筑物类型,建筑物密度等有关,在市区的150MHz 频段其典型值是5dB 。

除了阴影效应外,大气变化也会导致阴影衰落。比如一天中的白天,夜晚,一年中的春夏秋冬,天晴时,下雨时,即使在同一个地点上,也会观察到路径损耗的变化。但在测量的无线信道中,大气变化造成的影响要比阴影效应小的多。

下面是阴影衰落分布的标准差,其中s σ(dB)是阴影效应的标准差。

表1. 阴影衰落分布的标准差s (dB )

建筑物穿透损耗的大小对于研究室内无线信道具有重要意义。穿透损耗又称大楼效应,一般指建筑物一楼内的中值电场强度和室外附近街道上中值电场强度dB 之差。

发射机位于室外,接收机位于室内,电波从室外进入到室内,产生建筑物的穿透损耗,由于建筑物存在屏蔽和吸收作用,室内场强一定小于室外的场强,造成传输损耗。室外至室内建筑物的穿透损耗定义为:室外测量的信号平均场强减去同一位置室内测量的信号平均场强。用公式表示为:

()

()1

1

1

1N

M

outside inside i

j i j P P P N

M

==?=

-∑∑ (式5) P 是穿透损耗,单位是dB ;

j P 是在室内所测的每一点的功率,单位是dB v μ,共M 个点; i P 是在室外所测的每一点的功率,单位是dB v μ,共N 个点。

三、实验内容

利用E8000手持频谱分析仪,实地测量校医院4G 信号场强。

四、实验步骤

1、实验地点

校医院一到四楼及一楼外一周

2、数据采集

利用E8000手持频谱分析仪测量联通4G无线信号(频率2555~2575MHz)的强度(单位:dBmw),分别对一到四楼以及一楼外进行测量,以半个波长(约0.68米,大约一步)为测量周期,记录该点读数。实验中,我们在校医院内外采集数据的走向如下:

由于校医院内部很多房间我们不方便进去,所以我们一到四楼我们就只在我们能活动的走廊里沿着走廊两边进行了测量,在校医院外部我们从校医院西北角开始,依次走了西侧、南侧、东侧、北侧。

3、数据录入

将测量得到的数据录入Excel表格,一个地点用一列,在用matlab处理时我是每次处理一楼,然后把相应的列贴进a.xlsx文件(自己的MATLAB的导入文件),具体数据见附件1. 4、数据处理流程

采集到的数据有600多组,需要对数据进行细致的处理以便得到明确的结论。下图所示为数据处理的流程图。具体的Matlab代码和拟合方法在附录中进行了详细叙述。

五、实验结果与分析

1、磁场强度地理分布

在这儿只对各个地点的平均功率进行分析,从上图可以看出在一楼外与一楼楼道之间的穿透损耗还是很明显的,大约有5.87dBmw,(其实这里说是穿透损耗不是很准确,因为校医院南侧东侧外有花坛植物,有的地方还停的有车,东侧有很多小棚子,在楼内的话我们也不是在靠近墙壁内一周,而是在楼道里面,这样算下来平均得有10~20米的距离,所以这个值应该还包含一定的衰落值,包括阴影衰落和距离衰落)。从一楼到四楼,随着楼层的升高可以看出信号强度是有缓慢升高的,但幅度不大,一共升高了0.62dBmw,一楼到二楼升高的幅度最大为

0.33dBm,之上每层的升高就不是很明显了。

2、磁场强度统计分布

起初我以为信号分布应该为正态分布,但是画完条形分布图之后发现怎么看都像瑞利分布,所以就画了条瑞利分布的曲线,果然感觉比正态分布好看多了(虽然我用KSTEST2函数检验出来结果在0.95的置信区间内既不是正态分布也不是瑞利分布,但我还是觉得应该是瑞利分布)

累计概率分布图

上图中蓝色是实际的累计概率图,红色的是B=1的瑞利分布概率累计曲线

一楼的概率分布和累计概率分布

一楼的数据到是挺符合正态分布的,基本都集中在-67.4附近,累计概率分布也拟合的挺好可以出二楼的数据更集中,基本所有数据都集中在67.2附近,基本就是均匀分布了,从右侧的概率累计分布曲线可以看出来,在-67.5~-67之间的斜率非常大,几乎就是垂直的无穷大,所以我估计二楼应该是有吸顶天线的(但是后来我专门跑去校医院看了一下,没有发现楼道里有吸顶天线)。

三楼的分布跟二楼差不多,标准差还要小一些,也是主要集中在-67.2一点,但是这个用正态拟合的图就要比二楼好看一些

四楼的实验数据是看起来最不像正态分布的,主要集中在-67.2和-66.3两个地方,其实老师应该能看出来,除了一楼,其余的额二楼三楼四楼的数据都有两个峰,起初我也想不明白为什么会这样,就猜测应该是吸顶天线的位置可能和其他楼层不太一样,然后我就专门又跑校医院看了一下,楼道里居然没有吸顶天线,一楼到四楼都没有(也可能是有但我没有看到,毕竟我只在楼道里看了一下,没有到各个房间里去看),但是也有其他的发现,四楼长楼道里大部分是玻璃墙,短楼道是混凝土墙,导致这一段的数据会偏大而集中在-66.3附近。而其他楼层都是混凝土墙,所以我觉得应该是这个原因才导致了四楼的分布会有两个峰,而不是呈现出一个峰的正态分布。具体看下图。

由于一楼的测量路线和其他楼层不一样,这个相对来说比较均匀,所以应该是正态分布,而其他楼层基本都是小楼道加大楼道,所以基本都是两个峰。

3、建筑物的穿透损耗

由室外磁场强度分布值,由磁场强度均值定义

可求得室外磁场强度均值为P1= -61.54dBmw,其标准差为。σ=3.26。

同理可求得室内一层的磁场强度均值为P2= -67.41dBmw,标准差σ=0.44。根据穿透损耗的定义可求穿透损耗P

?:

?=P1-P2=5.87dBmw.

P

六、问题分析与解决

1、测量误差分析

低频段的电磁波传播特性较好,绕射能力强,穿透性好,研究起来相对容易。移动通信频段呈现的趋势是不断提升,4G已经在2000MHz左右了,此频段信号呈现出的地理位置的依赖性增强,通信的复杂性增加,可研究的点很多,但高频设备较为昂贵。我们有幸能在本实验中使用能够测量高频的设备,选取的频段是信号强度相对较高的联通4G 2555~2575MHz频段。中心频率2565MHz。

高频的测量需要密集踩点,记录的数据量需要很大,步长是需要人为控制的,可能会出现误差。读数时,由于数值一直在跳动,所以读数也会产生一些误差。

2、场强分布的研究

场强的分布研究可从两方面着手,一是地理位置分布,二是统计值分布。

场强的地理位置分布

从几何的角度反映场强的分布,可以被工程借鉴,为统计做铺垫。

场强的统计值分布

场强的统计分布主要从微积分、概率的角度反映了场强的自然规律,可以被实际的应用设计做参考和模拟,尤其对于通信系统的设计有很大的帮助。

从我们实验整理的情况看,地理位置分布总体呈现出掩蔽效应,即场强和遮挡物的多少成反比,这与理论值一致,但分布值中存在的诸多的突发变动点,为位置预测带来了困难。一方面由于现有测量数据拟合效果有偏差,另一方面是由于要求的测量数据不够(不到1000组),结论的可信度不够。解决的最好方法不是自己再去测量更多的数据,而是和其他组同学联合各自的数据进行统一分析,结论就具有很高的可靠性了。

七、分工安排

xx:测量读取、MATLAB编程、数据处理、图片处理、数据分析、报告撰写

xx:测量记录、数据录入、图片处理、报告撰写。

八、心得体会

xxxx:

这次电磁场与电磁波实验,实于实用的考虑,我们选的是离我们生活比较紧密的手机信号的测量,测的是校医院4G信号的覆盖情况,用的仪器是E8000手持频谱分析仪,选的是联通2555~2575MHz频段,其实刚开始我们选的不是这个频段的,而是移动的另一个频段,但是在四楼和三楼测了两层的数据之后发现并没有什么不同,当时吓坏我们了,都以为这楼里面没有信号覆盖吧,然后就用看了一下频谱分布,发现在2.4G附近有一个很强的信号,当我们满心欢喜准备测这个的时候我留了个心眼,先百度一下这个频段是什么信号,结果一看是WIFI.。当时就觉得心累,万一没4G信号那我们测什么,然后我们就背着仪器到二层一层以及楼外看看有没有变化,结果和四层的一样,基本就没有变化,然后就在楼外看看其他频段的4G信号,就发现2555~2575MHz的这一段上信号很好,能到-50dBm,然后我们就重新回去测了室内和室外的信号,

之前测的那个就算是白测了。这次经历给我最大的教训就是,干什么都要提前有个规划,我们起初就不应该直接找个频率就跑四楼开始测了,而是应该先大概看看各个地点各个频段的分布情况,找个分布最好的频段然后再开始正式测量。我觉得不仅仅是在做实验的实验这样,干什么事都应该是这样的,都应该先选出个最合适的方向之后再开始认真完成。

然后就是在数据处理时候的问题了,因为我们和其他人做得不太一样,所以刚开始我也以为我们的数据都应该是正态分布的,但是用M ATLAB画出图像之后明显不是额,特别是在一楼外的那组数据,我感觉就应该是瑞利分布,所以在拟合的时候我就画了个瑞利分布的图,尽管另一组做3G信号测量的同学说包络是瑞利分布但是统计概率还应该是正态分布,但是画完图之后我们那个明显和正态分布扯不上边,所以我觉得一楼外应该是有4G的直射信号的。还有在处理到楼内信号的数据时,按理说楼内的信号分布应该是呈现出正态分布的特征,实测的数据大部分是这样的,但是总会在右边出现一个小峰,起初我以为应该是数据少导致的,但是处理到四楼的时候明显不对,因为四楼的信号呈现双峰特性,很明显就已经不是正态分布了,这让我不得不重新考虑原因,甚至还亲自又跑到校医院实地又看了一下环境,觉得应该是在楼道里拐的那个弯,形成了东西走向的长楼道和南北走向的短楼道,造成了两个峰的情况。起初我以为是吸顶天线的位置不同造成的,实地走了一圈之后并没有发现吸顶天线,所以从这儿可以看出,做实验不能瞎猜,还是要实地走一走的。

总之,通过这次实验我们不仅学会了具体仪器E8000的使用方法,加强了MATLAB的使用技巧,更是对做事方法,做事态度上有了更进一步的认识,很感谢老师能给我们这样的机会。

xxx

本实验是大学以来第一次实地测量性实验。与其他大部分同学不同,我们组选择了老师给的另一个实验机会,用E8000频谱分析仪测量校医院各层的信号分布。选择这个实验的原因也是想接触一些更前端的东西,实地测量和分析目前正在大力推广的4G信号。

测量的过程是比较枯燥的,通过网上搜索,我们确定了4G信号的频率范围,开始测量的时候,我们将这好几个不同的范围都简单测量了一下,最终确定联通4G 2555~2575MHz这个信号较强的频段;测量过程也感觉是机械性的重复读数、记录这个过程。最终,经过不懈努力,660多组数据也是采集完毕。

将采集的数据录入EXCEL表格也是一件比较考验耐心的工作,但是打字对我来说不是什么难事,对数字小键盘的熟练使用,录入速度也算比较快,基本上是眼看数据盲打就可以了。录入结束之后,由同组的小伙伴进行MATLAB分析,看到最终结果出来的时候,终于感觉自己这些枯燥无味的工作没有白做。

通过对实验结果的分析和讨论,我对信号强度和地形、遮蔽物的关系有了进一步的认识,希望我们这次的测量能对校医院的人们带来帮助。

本次实验结束后,我对电磁场与电磁波的特性以及移动通信的相关理论有了更为直观的认识,同时也在实践中复习了有关的知识,提高了自己的动手和数据分析处理能力。

九、附录

1、代码

一楼外的代码

num= xlsread('exl.xlsx',’a’)

[n,xout]=hist(num);

x=0:0.25:5;

c=raylpdf(x,1);

plot(c)

plot(-68:-48,c)

hold on;

bar(xout,n/70)

>> grid on;

title('一楼外概率分布');

xlabel('电平值(dBmw)');

ylabel('样本数量(个)');

legend('理想概率分布线','实际样本分布');

[h1,s1]=cdfplot(num); %画累积概率分布图

axis([-75,-50,0,1]);

hold on;

text(-65,0.23,['最小值= ',num2str(s1.min)]);

text(-65,0.18,['最大值= ',num2str(s1.max)]);

text(-65,0.13,['均值= ',num2str(s1.mean)]);

text(-65,0.08,['中值= ',num2str(s1.median)]);

text(-65,0.03,['标准差= ',num2str(s1.std)]);

title('对应累积概率分布');

xlabel('电平值(dBmw)');

ylabel('累积概率');

legend('实际分布','理想正态分布');

x=0:0.25:5;

c=raylpdf(x,1);

plot(-68:-48,c)

一楼实现代码

num= xlsread('a.xlsx');

figure(1);

subplot(1,2,1);

histfit(num);

grid on;

title('一楼概率分布');

xlabel('电平值(dBmw)');

ylabel('样本数量(个)');

legend('理想概率分布线','实际样本分布');

subplot(1,2,2);

[h1,s1]=cdfplot(num); %画累积概率分布图

axis([-70,-65,0,1]);

hold on;

text(-67,0.23,['最小值= ',num2str(s1.min)]);

text(-67,0.18,['最大值= ',num2str(s1.max)]);

text(-67,0.13,['均值= ',num2str(s1.mean)]);

text(-67,0.08,['中值= ',num2str(s1.median)]);

text(-67,0.03,['标准差= ',num2str(s1.std)]);

title('对应累积概率分布');

xlabel('电平值(dBmw)');

ylabel('累积概率');

legend('实际分布','理想正态分布');

x1=-70:0.25:-65;

wavg=mean(num)

wstd=std(num)

f1=normcdf(x1,-67.4147,0.4426);

plot(x1,f1,'r')

二楼实现代码

num= xlsread('a.xlsx');

figure(1);

subplot(1,2,1);

histfit(num);

grid on;

title('二楼概率分布');

xlabel('电平值(dBmw)');

ylabel('样本数量(个)');

legend('理想概率分布线','实际样本分布');

subplot(1,2,2);

[h1,s1]=cdfplot(num); %画累积概率分布图

axis([-70,-65,0,1]);

hold on;

text(-67,0.23,['最小值= ',num2str(s1.min)]);

text(-67,0.18,['最大值= ',num2str(s1.max)]);

text(-67,0.13,['均值= ',num2str(s1.mean)]);

text(-67,0.08,['中值= ',num2str(s1.median)]);

text(-67,0.03,['标准差= ',num2str(s1.std)]);

title('对应累积概率分布');

xlabel('电平值(dBmw)');

ylabel('累积概率');

legend('实际分布','理想正态分布');

x1=-70:0.025:-65;

wavg=mean(num)

wstd=std(num)

f1=normcdf(x1,-67.0817,0.4182);

plot(x1,f1,'r')

三楼的代码实现

num= xlsread('a.xlsx');

figure(1);

subplot(1,2,1);

histfit(num);

grid on;

title('三楼概率分布');

xlabel('电平值(dBmw)');

ylabel('样本数量(个)');

legend('理想概率分布线','实际样本分布');

subplot(1,2,2);

[h1,s1]=cdfplot(num); %画累积概率分布图

axis([-70,-65,0,1]);

hold on;

text(-67,0.23,['最小值= ',num2str(s1.min)]);

text(-67,0.18,['最大值= ',num2str(s1.max)]);

text(-67,0.13,['均值= ',num2str(s1.mean)]);

text(-67,0.08,['中值= ',num2str(s1.median)]);

text(-67,0.03,['标准差= ',num2str(s1.std)]);

title('对应累积概率分布');

xlabel('电平值(dBmw)');

ylabel('累积概率');

legend('实际分布','理想正态分布');

x1=-70:0.025:-65;

wavg=mean(num)

wstd=std(num)

f1=normcdf(x1,-67.0730,0.3338);

plot(x1,f1,'r')

四楼的代码实现

num= xlsread('a.xlsx');

figure(1);

subplot(1,2,1);

histfit(num);

grid on;

title('四楼概率分布');

xlabel('电平值(dBmw)');

ylabel('样本数量(个)');

legend('理想概率分布线','实际样本分布');

subplot(1,2,2);

[h1,s1]=cdfplot(num); %画累积概率分布图

axis([-70,-65,0,1]);

hold on;

text(-67,0.23,['最小值= ',num2str(s1.min)]);

text(-67,0.18,['最大值= ',num2str(s1.max)]);

text(-67,0.13,['均值= ',num2str(s1.mean)]);

text(-67,0.08,['中值= ',num2str(s1.median)]);

text(-67,0.03,['标准差= ',num2str(s1.std)]);

title('对应累积概率分布');

xlabel('电平值(dBmw)');

ylabel('累积概率');

legend('实际分布','理想正态分布');

x1=-70:0.025:-65;

wavg=mean(num)

wstd=std(num)

f1=normcdf(x1,-66.7942, 0.4491);

plot(x1,f1,'r')

2、原始数据

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

北邮2016电磁场与电磁波实验报告

电磁场与电磁波实验报告 题目:校园无线信号场强特性的研究 姓名班级学号序号

目录 一、实验目的 (2) 二、实验内容 (2) 三、实验原理 (5) 四、实验步骤 (5) 1、实验对象选取 (5) 2、数据采集 (5) 五、实验数据 (2) 1、原始数据录入 (7) 2、数据处理流程 (7) 六、实验结果与分析 (8) 1、主楼周边电磁场信号强度分析 8 2、主楼室内不同楼层楼道信号强度分析 11 七、问题分析与解决 (15) 1、Matlab 仿真问题研究与解决 (23) 2、场强分布的研究 (23)

3、模型拟合........................................................ . (24) 八、分工安排及心得体会 (25) 附录I:原始数据 (26) 附录II:源代码 (30) 一.实验目的 1.掌握在室内环境下场强的正确测试方法,理解建筑物穿透损耗 的概念; 2.通过实地测量,分析建筑物穿透损耗随频率的变化关系; 3.研究建筑物穿透损耗与建筑材料的关系。 4.掌握在移动环境下阴影衰落的概念以及正确测试方法。二.实验内容 利用DS1131场强仪和拉杆天线,实地测量信号场强。

1.研究具体现实环境下阴影衰落分布规律,以及具体的分布参数 如何; 2.研究在校园内电波传播规律与现有模型的吻合程度,测试值与 模型预测值的预测误差如何; 3.研究建筑物穿透损耗的变化规律 三.实验原理 无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。对于接收者,只有处在发射信号覆盖的区域内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。因此,基站的覆盖区的大小,是无线工程师所关心的。决定覆盖区大小的因素主要有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑物的穿透损耗、同播、同频干扰。 【阴影衰落】 阴影衰落是电磁波在空间传播时受到地形起伏、高达建筑物群的阻挡,在这些障碍物后面会产生电磁场的阴影,造成场强中值的变化,从而引起信号衰减。阴影衰落的信号电平起伏是相对缓慢的,又称为慢衰落,其特点是衰落与无线电传播地形和地物的分布、高度有关。在无线信道里,造成慢衰落的最主要原因是建筑物或其他物体对电波的遮挡。在测量过程中,不同测量位置遇到的建筑物遮挡情况不同,

数据库实验3答案

实验三:交互式SQL语句的使用 1、实验目的 (1)掌握数据库对象的操作过程,包括创建、修改、删除 (2)熟悉表的各种操作,包括插入、修改、删除、查询 (3)熟练掌握常用SQL语句的基本语法 2、实验平台 使用SQL Server提供的Microsoft SQL Server Management Studio工具,交互式使用SQL语句。 3 实验容及要求 选择如下一个应用背景之一: ●学生选课系统 ●习题3、4、和5中使用的数据库 ●其它你熟悉的应用 (1)建立一个数据库和相关的表、索引、视图等数据库对象,练习对表、索引和视图的各种操作。 (2)要求认真进行实验,记录各实验用例及执行结果。 (3)深入了解各个操作的功能。 实验要求包括如下方面的容: 3.1 数据定义 1.基本表的创建、修改及删除 2.索引的创建 3.视图的创建 3.2 数据操作 完成各类更新操作包括: 1.插入数据

2.修改数据 3. 删除数据 3.3 数据查询操作 完成各类查询操作 1.单表查询 2.分组统计 3. 连接查询 4. 嵌套查询 5. 集合查询 3.4 数据操作 1.创建视图 2.视图查询 参考示例: 建立一个学生选课数据库,练习对表、视图和索引等数据库对象的各种操作。 一、数据定义 创建学生选课数据库ST,包括三个基本表,其中Student表保存学生基本信息,Course表保存课程信息,SC表保存学生选课信息,其结构如下表: 表1. Student表结构 表2. Course表结构

表3. SC表结构 1.创建、修改及删除基本表 (1)创建Student表 CREATE TABLE Student (Sno CHAR(8)PRIMARY KEY, Sname CHAR(8), Ssex CHAR(2)NOT NULL, Sage INT, Sdept CHAR(20) ); (2)创建Course表 CREATE TABLE Course (Cno CHAR(4)PRIMARY KEY, Cname CHAR(40)NOT NULL, Cpno CHAR(4), Ccredit SMALLINT, ); (3)创建SC表 CREATE TABLE SC (Sno CHAR(8)FOREIGN KEY (Sno)REFERENCES Student(Sno), Cno CHAR(4), Grade SMALLINT, ); (4)创建员工表Employee

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

北邮2015电磁场与电磁波期末试题,感谢电子院17级fx学长

北京邮电大学2014—2015学年第 2 学期 《电磁场与电磁波》期末考试试题(A 卷) 一、 (10分,每空1分) 填空题 1. 设J 为电流密度矢量,则(',',')x y z ??=J 。 2. 描述了电磁场的变化规律,以及场与源的关系。 3. 根据麦克斯韦方程组,时变电场 旋 散,电场线可以闭合,也可以不闭合;时变磁场 旋 散,磁感线总是闭合的。(注:可选择填写“有”或者“无”) 4. 分离变量法可应用于直角坐标、圆柱坐标、球坐标等坐标系下。同一个问题,在不同的坐标系里求解会导致一般解的形式不同,但其解是 。 5. 在相对介电常数为4,相对磁导率为1的理想介质中,电磁波的波阻抗为 。 6. 平面波()() sin 2cos z m y m E t kx E t kx ωω=-+-E e e v v v 的传播方向为: ;其极化形式为: 。 答案: 1. 0; 2. 麦克斯韦方程组; 3. 有,有,有,无; 4. 唯一的; 5. 60π 377/2Ω或者 6. x 方向传播,右旋椭圆极化波; 二、(14分)如图1所示,一半径为R 的导体球上带有电量为Q 的电荷,在距离球心D (D > R )处有一点电荷q ,求: (1)导体球外空间的电位分布; (2)导体球对点电荷q 的力。 q (,) p r θ A

图1 题二图 解:(1)导体电位不为零,球外任一点P (到球心O 距离为r )的电位?可分解为一个电位为V 的导体产生的电位?1,以及电位为零的导体的感应电荷q ′与点电荷q 共同产生的电位?2。? = ?1+?2。q ′与可用镜像电荷代替,电位?1由放在球心的-q ′与Q 产生。 利用球面镜像得 2 ',R R q q d D D =-=…………………………3分 1200102 00102 ,4π4π4π4π4π4πQ q q q r r r Q q q q r r r ??εεε?εεε''-==+ ''-=++ ……………………5分 因此,导体球外任一点的电位为 42 221/2 2 1/2 021(4π(2cos )(2cos )DQ Rq qR q R R Dr r D rD D r r D D ?εθθ+= -+ +-+- …………………………8分 导体球的电位为 004πDQ Rq RD ?ε+= ……… …………………10分 (2)点电荷q 所受到的力为'Q q -和'q 对点电荷q 的力,即 ''322222222 00(2) [][]4π()4π()Q q q q q R q R D f Q D D d D D D R εε--=+=+-- …………………………14分 三、(14分)相对磁导率为r 1μ=的理想介质中传播电场瞬时值为 :8(,)30)cos[3π10π()]x z r t t x =+?-E e V/m 。试求:

北邮大三数据库实验六数据查询分析实验

实验六数据查询分析实验 实验目的 通过对不同情况下查询语句的执行分析,巩固和加深对查询和查询优化相关理论知识的理解,提高优化数据库系统的实践能力,熟悉了解Sybase中查询分析器的使用,并进一步提高编写复杂查询的SQL 程序的能力。 实验内容 1.索引对查询的影响 (1)对结果集只有一个元组的查询分三种情况进行执行(必如查询一个具体学生的信息):不建立索引,(学号上)建立非聚集索引,(学号上)建立聚集索引。 建立聚集索引: create clustered index student on student(student_id) go 建立非聚集索引: create nonclustered index student_index on student(student_id) go 用查询分析器的执行步骤和结果对执行进行分析比较。 select*from student where student_id='30201' 不建立索引 建立聚集索引

建立非聚集索引 (2)对结果集中有多个元组的查询(例如查看某门成绩的成绩表)分类似(1)的三种情况进行执行比较。 select*from student where student_id>'30401' 不建立索引:

建立聚集索引: 建立非聚集索引: (3)对查询条件为一个连续的范围的查询(例如查看学号在某个范围内的学生的选课情况)分类似(1)的三种情况进行执行比较,注意系统处理的选择。 select*from student where student_id between'31201'and'31415' 不建立索引:

课程设计实验报告 北邮

课程设计实验报告 -----物联网实验 学院:电子工程学院班级:2011211204 指导老师:赵同刚

一.物联网概念 物联网是新一代信息技术的重要组成部分。物联网的英文名称叫“The Internet of things”。顾名思义,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网的基础上延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物体与物体之间,进行信息交换和通信。因此,物联网的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。 二.物联网作用 现有成熟的主要应用包括: —检测、捕捉和识别人脸,感知人的身份; —分析运动目标(人和物)的行为,防范周界入侵; —感知人的流动,用于客流统计和分析、娱乐场所等公共场合逗留人数预警; —感知人或者物的消失、出现,用于财产保全、可疑遗留物识别等; —感知和捕捉运动中的车牌,用于非法占用公交车道的车辆车牌捕捉; —感知人群聚集状态、驾驶疲劳状态、烟雾现象等各类信息。 三.物联网无线传感(ZigBee)感知系统 ZigBee是一种新兴的短距离、低功耗、低数据速率、低成本、低复杂度的无线网络技术。ZigBee在整个协议栈中处于网络层的位置,其下是由IEEE 802.15.4规范实现PHY(物理层)和MAC(媒体访问控制层),对上ZigBee提供了应用层接口。 ZigBee可以组成星形、网状、树形的网络拓扑,可用于无线传感器网络(WSN)的组网以及其他无线应用。ZigBee工作于2.4 GHz的免执照频段,可以容纳高达65 000个节点。这些节点的功耗很低,单靠2节5号电池就可以维持工作6~24个月。除此之外,它还具有很高的可靠性和安全性。这些优点使基于ZigBee的WSN广泛应用于工业控制、消费性电子设备、汽车自动化、家庭和楼宇自动化、医用设备控制等。 ZigBee的基础是IEEE802.15.4,这是IEEE无线个人区域网工作组的一项标准,被称作IEEE802.15.4(ZigBee)技术标准。ZigBee不仅只是802.15.4的名字。IEEE仅处理低级MAC

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

北邮2020春电磁场与电磁波期末试题

北京邮电大学2019-2020年第二学期期末考试 电磁场与电磁波试题(开卷,A ) 已知:-12091= =8.8510(/)3610 F m επ??,70=410(/)H m μπ-? 一、(15分) 相距无穷远的不带电孤立导体球壳A 与孤立导体球B ,其中球壳A 的内径为b ,外径为a ,内外径之间为理想导体,r b <及r a >处为真空;导体球B 半径为与球壳A 的外径相同。在球壳A 中,距离中心c (c b <)处存在一电量为Q 的点电荷。将导体球B 从无穷远处移动到球壳A 处,并与球壳A 充分接触后再移动到无穷远处,试求:在整个移动导体球B 的过程中外力所作的功。(提示:可考虑功能原理) 二(10分)、太阳能电池板的能量转化效率为30%,一个2.5平方米的太阳能电池板供一个1000瓦的灯泡照明,假设太阳光是线偏振的单色平面波,试估计太阳光的电场与磁场的振幅。 三(15分)、设一平行大地的双导体传输线, 距地面高度为h, 导体半径为a, 二轴线间的距离为d (a<

四(15分)、一个长方形导体盒,各边尺寸分别是a ,b ,c ,各周界之间相互绝缘,每个面的电位函数如题四图所示,试求导体盒内部的电位函数。。 题四图 五(10分)、证明:对于良导体导体内单位宽度断面的表面电流:J s =H 0,期中H 0为导体表面的切向磁场强度。 六、(15分)一右旋圆极化波垂直入射到位于z=0的理想导体板上,其电场强度的复数表示式为0()j z x y i E E e j e e β→→ -=- 求:(1) 确定反射波的极化方式,说明原因; (2) 求导体板上的感应电流; (3) 求总电场的瞬时表达式。 七(10分)、设在波导中沿z 轴传播的电磁波的形式为: 022c c πππcos sin e j z z x E m m n E E x y k x k a a b βγγ-?-??????==- ? ? ???????? 试以此分析并说明相移常数β和波数k 之间的关系。 八、(10分)为什么说电偶极子的近区场为准静态场?是不是在近区场绝对没有能量的辐射?电偶极子的辐射效率如何?

北邮数据库实验报告

数据库实验报告(四) 姓名:学号:班级: 1.简单查询: (1) 查询“数据库开发技术”课程的学分; SQL语句: select credit from course where course_name='SQL Server数据库开发技术'; 或者模糊查询: select credit from course where course_name like'%数据库开发技术'; 执行结果: (2) 查询选修了课程编号为“dep04_s004”的学生的学号和成绩,并将成绩按降序输出; SQL语句: select student_id,grade from student_course where course_id='dep04_s003' order by grade desc; 执行结果:

(3) 查询学号为“g9940205”的学生选修的课程编号和成绩; SQL语句: select course_id,grade from student_course where student_id='g9940205'; 执行结果: (4) 查询选修了课程编号为“dep04_s001”且成绩高于85分的学生的学号和成绩。 SQL语句: select student_id,grade from student_course where course_id='dep04_s001'and grade>'85'; 执行结果:

2.在多表连接的查询实验中,用Transact SQL语句完成以下查询操作: (1)查询选修了课程编号为“dep04_s002”且成绩高于85分的学生的学号、姓名和成绩; SQL语句: select student.student_id,student_name,grade from student,student_course where student.student_id=student_course.student_id and student_course.course_id='dep04_s002' and student_course.grade>'85'; 执行结果: (2)查询所有学生的学号、姓名、选修的课程名称和成绩; SQL语句: select student.student_id,student_name,course_name,grade from student,course,student_course where student.student_id=student_course.student_id and student_course.course_id=course.course_id; 执行结果:

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

北邮2013年电磁场与电磁波期末试卷

北京邮电大学2012—2013学年第 2 学期 《电磁场与电磁波》期末考试试题(A 卷) 试题中需要用到的介质常数:0913610 επ=?F/m,70410μπ-=?H/m 一 填空题(每个空1分,共10分) (1) 截面为矩形(a ×b )的无限长金属槽, 各面的电位如图所示,使用分离变量法求解电位 (,)()()x y X x Y y φ=所满足的拉普拉斯方程,X (x )的通 解为 函数,Y (y )的通解为 函数。(无需写 出具体的解函数,仅指出函数类型即可) (2) 时变电磁场磁场强度的切向边界条件为 ,电场强度的切向边界条件为 。 (3)平行极化波从空气中斜入射到理想导体的表面,合成波在分界面法线方向上属于 波,在平行于分界面方向上属于 波。 (4) 极化波以布儒斯特角入射时会发生全折射现象,当平面波从折射率较高的介质入射到折射率较低的介质,当入射角 临界角时发生全反射现象。 (5)在电偶极子激发的电磁场中,近区场为 场,远区场为 场。 二 在接地的导体平面上有一半径为a 的半球凸部,半球的球心在导体平面上,若在半球对称轴上离球心h (h>a )处放一点电荷q , (1)确定镜像电荷的个数、大小与位置(10分); (2)求导体外任一点P 处的电位(5分)。 x

三 给出麦克斯韦方程组的微分形式、物质的本构方程(辅助方程)及用复数表示的麦克斯韦方程组的微分形式(10分) 四 真空中一均匀平面电磁波的磁场强度矢量为 63110()cos[()](/)22 x y z H a a a t x y z A m ωπ-=+++--r r r r ,求 (1) 波的传播方向的单位矢量,波长与频率(5分); (2) 电场强度矢量的瞬时值表达式(5分); (3) 波印廷矢量的平均值(5分)。 五 频率100MHz 的平面波在金属铜中传播,已知铜的电导率为75.810(/)S m σ=?,相对介电常数1r ε=,相对磁导率1r μ=,某处磁场强度的幅度为00.1(/)y H A m =,求 (1) 铜内平面波传播的衰减常数、相移常数及相速度(5分); (2) 波阻抗ηe 及磁场对应处的电场幅度E x 0(5分)。 (注意:解题过程可能会用到需要以下公式,大家可根据需要选择使用: 2111,281,2e e j σασβαβωεσηηωε???≈≈+≈≈? ??????= +=?? ) 六 均匀平面波(电场在x 方向,磁场在y 方向,向z 方向传播)由空气垂直入射到位于z=0处理想介质平面,已知入射波电场强度的幅度30 1.510(/)E V m +-=?,初相位?=0,介质的相对电导率4r ε=,相对磁导率1r μ=,8310(/)rad s ω=?,求 (1) 电场反射系数与透射系数(5分); (2) 反射波的电场强度与磁场强度的复数表达式(5分); (3) 透射波的电场强度与磁场强度的复数表达式(5分)。 七 证明题 (1) 证明任一线极化波总可以分解为两个振幅相等旋向相反的圆极化波的叠 加(5分);

北邮大数据库实验三

实验三完整性及视图、索引 视图是基于某个查询结果的一个虚拟表,只是用来查看数据的窗口而已。索引能够提供一种以一列或多列的值为基础迅速查找数据表(或视图)中行的能力,用来快速访问数据表(或视图)中的数据。触发器是一种特殊的存储过程,它在特定语言事件发生时自动执行,通常用于实现强制业务规则和数据完整性。 【实验目的】 掌握MySQL视图、索引的使用,理解什么是数据库的完整性。 【实验要求】 1、每完成一个任务,截取全屏幕快照1~3作为中间步骤和结果的贴图,粘贴在最后的实验报告中。 2、除了使用我们提供的数据外还要自己向表中添加些新数据,以保证每个查询结果不为空集,或计数结果不为0。 3、思考题可以选做,作为优秀加分的依据。 【实验任务】 1、创建一个视图,该视图为每门课程的平均成绩,视图包括的列有课程号 及平均成绩,并用利用该视图查询所有课程的平均成绩,要求给出课程号、课程名及平均成绩。

2、创建一个视图,该视图为每门课程的平均成绩,视图包括的列有课程号、 课程名及平均成绩,并用利用该视图查询所有课程的平均成绩,要求给出课程号、课程名及平均成绩。

3、为院系代码表(dept_code)创建基于“院系代码”列的索引。 4、为教室信息表(classroom_info)创建基于room_id列的惟一索引并插入一 条room_id列与表中已有的值重复的数据,观察系统的反馈。

5、重新修改表stud_info、lesson_info及stud_grade,修改的容为: ①为三表增加主码约束,stud_info的主码为stud_id,lesson_info的主码为 course_id,stud_grade的主码为stud_id、course_id。

北京邮电大学大学物理实验试题打包

大学物理实验模拟试题一 一、填空题(总分42分,每空1分) 1. 测量结果的有效数字的位数由 和 共同决定。 2. 50分度的游标卡尺,其仪器误差为 。 3. 量程为10mA 电流表,其等级为1.0,当读数为6. 5mA 时,它的最大误差为 。 4. 不确定度表示 。 5. lg35.4= 。 6. 在分光计实验中,望远镜的调节用的是 法。 7. S 是表示多次测量中每次测量值的 程度,它随测量次数n 的增加变化很 , 表示 偏离真值的多少,它随测量次数n 的增加变化很 。 8. 在杨氏模量实验中,若望远镜的叉丝不清楚,应调节望远镜 的焦距,若 观察到的标尺像不清楚则应调节望远镜 的焦距。钢丝的伸长量用 法来测定。 9. 计算标准偏差我们用 法,其计算公式为 。 10.表示测量数据离散程度的是 精密度 ,它属于 偶然 误差,用 误差(偏差)来描述它比较合适。 11.用20分度的游标卡尺测长度,刚好为15mm,应记为 mm 。 12.根据获得测量结果的不同方法,测量可分为 测量和 测量;根据 测量的条件不同,可分为 测量和 测量。 13.电势差计实验中,热电偶的电动势与温差的关系为 关系,可用 法、 法和 法来求得经验方程。 14.789.30×50÷0.100= 。 15.10.1÷4.178= 。 16.2252= 。 17.用分光仪测得一角度为300,分光仪的最小分度为1, ,测量的结果为 。 18.对于连续读数的仪器,如米尺、螺旋测微计等,就以 作为仪器误差。 19.分光计测角度时由于度盘偏心引起的测量角度误差按正弦规律变化,这是 误差。 20.在示波器内部,同步、扫描系统的功能是获得 电压信号,这种电压信号加 在 偏转板上,可使光点匀速地沿X 方向从左向右作周期性运动。 21.系统误差有 确定性 的特点,偶然误差有 随机性 的特点。 22.在测量结果的数字表示中,由若干位可靠数字加上 位可疑数字,便组成了有效数 字。 23.在进行十进制单位换算时,有效数字的位数 。 24.静电场模拟实验应用了 法,它利用了静电场和 的相似性。 二、单项和多项选择题(总分30分,每题3分) 1. 下列测量结果正确的表达式是: A .L=23.68+0.03m B .I=4.091+0.100mA C .T=12.563+0.01s D .Y=(1.67+0.15)×1011P a σN S

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

北邮电磁场与电磁波演示实验

频谱特性测量演示实验 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口 最大射频信号: +30dbm,最大直流:50v 3.是否直观的观测到电磁波的存在?(回答是/否) 否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图: GSM900上行:

GSM900下行:

CDMA下行: 3G下行:

7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请 分别说明,并指出其频率) 可以 该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G 电磁炉:20KHz—30KHz 蓝牙:2.4G 网络参量测量演示实验 1矢量网络分析仪所测频段:300KHz—3GHz 2端口最大射频信号: 10DBM 3矢量网络分析仪为何要校准: 首先,仪器的硬件电路需要校正,即消除仪器分析的系统误差;其次,分析仪的测量精度很大程度上受分析仪外部附件的影响,测试的组成部分如连接电缆和适配器幅度和相位的变化会掩盖被测件的真实响应,必须通过用户校准去除这些附件的影响。 4默认校准和用户校准的区别: 默认校准通过网络分析仪的套包的一系列校准标准来完成,对系统误差进行校准;用户校准时校准标准由用户制定,由用户定义的标准来完成,用于对参考面等进行精确校准。 5使用矢量网络分析仪的注意事项: 1、检查电源: 分析仪加电前,必须确认供电电源插座的保护地线已经可靠接地; 2、供电电源要求: 为防止或减少由于多台设备通过电源产生的相互干扰,特别是大功率设备产生的尖峰脉冲干扰可能造成分析仪硬件的毁坏,最好用220V交流稳压电源为分析仪供电; 3、电源线的选择: 使用随机携带的电源线,更换电源线时,最好使用同类型的电源线;

北邮数据库实验三-实验报告

题目:数据库实验三:嵌入式SQL 完成日期:2014.5.22 操作环境:Microsoft Visual C++ 6.0 SQL server 2008 R2 1 实验目的 1、熟悉在Visual Studio C++环境中通过ODBC实现数据库互连; 2、熟悉通过嵌入式SQL对数据库进行操作; 3、掌握数据库应用程序界面开发基本流程。 2 实验内容及要求 1、在Visual Studio C++环境中通过ODBC实现与实验1建立的数据库StuManagement的互联,进行实验要求的各种操作,关系模式和数据的操作均通过应用程序界面完成; 2、根据以下要求认真进行实验,记录所有的实验用例,填写实验报告。 2.1 数据库连接 2.1.1 通过ODBC实现与实验1数据库互连; 2.2 关系模式定义 2.2.1创建1个基本表,并插入2行数据; 2.2.2修改及删除基本表; 2.3 数据操作 2.3.1 数据查询操作; 2.3.2 数据删除操作;( 2.3.3 界面执行SQL语句操作 2.4 界面要求: 2.4.1 查询结果的多行显示(至少支持5行以上查询结果的显示) ;(2分) 2.4.2 界面美观,操作简单。 3 操作环境 Microsoft Visual C++ 6.0 Sql server 2008 R2 4 实验步骤 (1)ODBC与数据库互联

找到控制面板——管理工具 打开数据源(ODBC) 点击【添加】,选择SQL server

填写名称和描述,选择自己机器的服务器 按照默认就可以

点击【完成】,数据源就创建好了 5 实验内容与完成情况 (1)整体外观 本次实验,完成了记录的查询(按主键、按内容),记录的添加与删除,新建表,删除表,添加数据,修改表;执行SQL语句,并将查询结果显示出来。 (2)添加记录

大学物理(北邮大)答案习题6

习题六 6-1 气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同? 答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化. 力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零. 6-2 气体动理论的研究对象是什么?理想气体的宏观模型和微观模型各如何? 答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法. 从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点. 6-3 何谓微观量?何谓宏观量?它们之间有什么联系? 答:用来描述个别微观粒子特征的物理量称为微观量.如微观粒子(原子、分子等)的大小、质量、速度、能量等.描述大量微观粒子(分子或原子)的集体的物理量叫宏观量,如实验中观测得到的气体体积、压强、温度、热容量等都是宏观量. 气体宏观量是微观量统计平均的结果. 2 8642150 24083062041021++++?+?+?+?+?= =∑∑i i i N V N V 7.2141 890== 1s m -? 方均根速率 2 8642150240810620410212 23222 2 ++++?+?+?+?+?= =∑∑i i i N V N V 6.25= 1s m -? 6-5 速率分布函数)(v f 的物理意义是什么?试说明下列各量的物理意义(n 为分子数密度, N 为系统总分子数).

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

相关主题
文本预览
相关文档 最新文档