当前位置:文档之家› 混凝土有限元分析

混凝土有限元分析

混凝土有限元分析
混凝土有限元分析

混凝土非线性有限元分析

1、推导破坏面上任一点的直角坐标转化成圆柱坐标的换算关系,并进行经典理论验证。

静水压力轴为通过坐标原点且与各坐标轴的夹角相等的线,静水压力轴上任一点的应力状态满足321σσσ==,其单位向量为(31,31,31)。与静水压力轴垂直的平面称为偏平面,通过坐标原点的偏平面称为π平面。

坐标轴上一点至静水压力

轴的距离,称为偏应力r 。

ξ—静水压力轴

r —偏应力

θ—相似角

θ-偏平面上偏应力r 与

1σ轴在偏平面上的投影

之间的夹角,称为相似角。

设P 点坐标为),,(321σσσ,

N 点坐标为),,(m m m σσσ,则)(3

1321σσσσ++=m 。 oct I ON σσσσξ33

1)(311321==++==,其中,)(31321σσσσσ++==m oct ),,(),,(321321S S S NP m m m =---=→σσσσσσ,即o c t J S S S r τ3222322

21==++= 其中,2132322212)()()(3

132σσσσσστ-+-+-==J oct 1σ轴在π平面上的投影OC 的单位向量)1,1,2(6

1--=→e 则,r S S S S S S e r e r 62)2(6

1cos 321232221321σσσθ--=++--=??=→

即 oct m I σσξ333

11=== 22J r =

2

32132132262cos J r σσσσσσθ--=--=

拉压子午线为静水压力轴和一个主应力轴组成的平面,同时通过另两轴的等分线。拉压子午面与破坏曲面的交线分别称为拉、压子午线。

拉子午线:00=θ, 321σσσ=≥;静水压力与轴向拉应力组合,单轴受拉及二轴等压的应力状态位于拉子午线上。

拉子午线:060=θ, 321σσσ≥=;三轴受压,单轴受压及二轴等拉状态均位于压子午线上。

拉、压子午线与静水压力轴相交于同一点,即三轴等拉点。

混凝土破坏曲面的形状具有以下特点:

1、曲面连续、光滑、外凸

2、对静水压力轴三轴对称

3、曲面在静水压力轴拉端封闭,在压端开口

4、子午线的偏应力值随静水压力值的减小而单调增大

5、偏平面上的封闭包络线形状,随静水压力值的减小,由近似三角形渐变为外凸、饱满,过渡为一圆。

2、验证混凝土的强度准则,并绘制破坏曲面的偏平面与子午线图

(1)最大拉应力强度准则

当混凝土材料承受任一方向主拉应力达到混凝土轴心受压强度t f 时,混凝土破坏,其表达式为:t f =1σ,t f =2σ,t f =3σ

当o o 600≤≤θ,且321σσσ≥≥时,破坏准则为:t f =1σ

根据???????????????????+?????????+-=??????????+??????????=??????????1113)32cos()32cos(cos 3211112321321I J S S S m πθπθθσσσσ (o o 600≤≤θ)

则 3cos 3212

1I J +=θσ, 即 θcos 3

2321J I f t =- 由于:13

1I =ξ 22J r = 则 03cos 2),,(=-+=t f r r f ξθθξ

偏平面 拉压子午线

它适用于混凝土的单轴、二轴和三轴受拉应力状态,但不能解释二轴、三轴压/拉应力状态的强度降低。

(2)最大拉应变准则

当材料某方向的最大拉应变达到其极限拉应变tu ε时发生破坏。

tu t E εσσν

σε=+-=)](1[1321 则 t f =+-)(1

321σσν

σ

因:??????????????

?????+?????????+-=??????????+??????????=??????????1113)32cos()32cos(cos 3211112321321I J S S S m πθπθθσσσσ )600(o o ≤≤θ 代入整理得:

03)21(cos )1(3212=--++t f I J νθν 131I =

ξ 22J r = 得:03)21(3cos )1(6),,(=--++=t f r r f ξνθνθξ

当 0=ξ时,03cos )1(6=-+t f r θν,

则 )1(23cos νθ+=

t f r 当 r=0时,ν

ξ213-=t f 偏平面 拉压子午线

(3)最大剪应力强度准则

1)Tresca 强度准则

当混凝土材料中任一点的最大剪应力达到临界值K 时,混凝土材料屈服。 K =---)2

1,21,21max(133221σσσσσσ

K 表示纯剪时的屈服应力

当o o 600≤≤θ,且321σσσ≥≥时,最大剪应力为 )(2

121σσ- 即,K J =+-=-)32cos([cos 3

)(21231πθθσσ 02)3

sin(),(=-+=K r r f πθθ 当o 0=θ或60时, K r 3

22=

偏平面 拉压子午线

2)Von Mises 强度准则 当八面体剪应力达到临界值K 3

2时,材料屈服 K oct 3

2=τ K J 3

2322= 则,022=-K J 02)(=-=K r r f 其中,3

1cos =

α

偏平面 拉压子午线

(4)莫尔-库伦强度准则

Mohr 提出,当代表某点应力状态的最大应力圆恰好与包络线相切时,材料达到极限强度。 )(στf =

φστtan -=c

C 和φ分别代表材料的内聚力和内摩擦角。

切点位于破坏面上,其应力为:

φσστcos )(2

131-= φσσσσσsin )(21)(213131-++=

带入 φστ

tan -=c 得:

φ

φσφφσsin 1cos 2sin 1sin 131-=--+c 令:φφsin 1sin 1-+=m 则m =-φ

φsin 1cos 即 m c m 231=-σσ

根据321σσσ≥≥,当021==σσ,'-=c f 3σ(达到极限承载力)

'

=-c f m 31σσ 0cos sin )3

cos(3)3sin(sin 31),,(22121=-++++=φφπθπθφθc J J I J I f 0cos 6sin )3

cos()3sin(3sin 2),,(=-++++=φφπθπθφξθξc r r r f

(5)Drucker-Prager 强度准则

采用圆形偏平面代替六边形偏平面。

表达式为: 0),(2121=-+=K J I J I f α

其中 13

1I =ξ 22J r = 则: 026),(=-+=K r r f αξξ

当0=α时, 02),(=-=K r r f ξ,即 K r 2=变成Von Mises 强度准则

圆锥面的尺寸用参数α,K 来调整。

如果圆锥面与Mohr 受压子午线相外接,则 )sin 3(3sin 2φφα-=, )

sin 3(3cos 6φφ-=c K 如果圆锥面与Mohr 受拉子午线相吻合,则 )sin 3(3sin 2φφα+=, )

sin 3(3cos 6φφ+=c K

3、针对混凝土的破坏特点,提出一个符合实际的强度准则模型,并绘图描述。

混凝土的破坏特点:在复杂应力状态下混凝土的破坏较复杂,,从受力破坏机理来看,有两种最基本的破坏形态,及受拉型和受压型。受拉型破坏以直接产生横向拉断裂缝为特征,混凝土在裂缝的法向丧失强度而破坏。受压型破坏以混凝土中产生纵向劈裂裂缝、几乎在所有方向都丧失强度而破坏。无论何种破坏,均已混凝土单元达到极限承载力为标志。

破坏准则的表达式为:

0cos ),,(2=+++???? ??=d c f r b f r a r f c c ξθθξ

基于有限元法和极限平衡法的边坡稳定性分析

目录 摘要 (1) 1引言 (1) 2 简要介绍有限元和极限平衡方法 (1) 3影响边坡稳定性的因素 (2) 3.1水位下降速度的影响 (2) 3.2 不排水粘性土对边坡失稳的影响 (5) 3.3 裂缝位置的影响 (9) 4 总结和结论 (12)

基于有限元法和极限平衡法的边坡稳定性分析 摘要:相较于有限元分析法,极限平衡法是一种常用的更为简单的边坡稳定性分析方法。这两种方法都可用于分析均质和不均质的边坡,同时考虑了水位骤降,饱和粘土和存在张力裂缝的条件。使用PLAXIS8.0(有限元法)和SAS-MCT4.0(极限平衡方法)进行了分析,并对两种方法获得的临界滑动面的安全系数和位置进行了比较。 关键词:边坡稳定;极限平衡法;有限元法;PLAXIS;SAS-MCT 1.引言 近年来,计算方法,软件设计和高速低耗硬件领域都得到快速发展,特别是相关的边坡稳定性分析的极限平衡法和有限元方法。但是,使用极限平衡方法来分析边坡,可能会在定位临界滑动面(取决于地质)时出现几个计算困难和前后数值不一致,因此要建立一个安全系数。尽管极限平衡法存在这些固有的局限性,但由于其简单,它仍然是最常用的方法。然而,由于个人电脑变得更容易获得,有限元方法已越来越多地应用于边坡稳定性分析。有限元法的优势之一是,不需要假设临界破坏面的形状或位置。此外,该方法可以很容易地用于计算压力,位移,路堤空隙压力,渗水引起的故障,以及监测渐进破坏。 邓肯(1996年)介绍了一个综合观点,用极限平衡和有限元两种方法对边坡进行分析。他比较了实地测量和有限元分析的结果,并且发现一种倾向,即计算变形大于实测变形。Yu 等人(1998年)比较了极限平衡法和严格的上、下界限法对于简单土质边坡的稳定性分析的结果,同时,他们也将采用毕肖普法和利用塑性力学上、下限原理的界限法得到的结果进行了比较。Kim等人(1999年)同时使用极限平衡法和极限分析法对边坡进行分析,发现对于均质土边坡,得自两种方法的结果大体是一致的,但是对于非均质土边坡还需要进行进一步分析工作。Zaki(1999年)认为有限元相对于极限平衡法更显优势。Lane和Griffiths (2000年) 提出一个看法,用有限元方法在水位骤降条件下评价边坡的稳定性,应绘制出适用于实际结构的操作图表。Rocscience有限公司(2001年)提出了一个文件,概述了有限元分析方法的能力,并通过与各种极限平衡方法的结果比较,提出了有限元方法更为实用。Kim等人(2002年)用上、下界限法和极限平衡法分析了几处非均质土体且几何不规则边坡的剖面。这两种方法给出了类似有限元分析法产生的安全系数,临界滑动面位置。 2.简要介绍有限元和极限平衡方法 有限元法(FEM)是一个应用于科学和工程中,求解微分方程和边值问题的数值方法。进一步的细节,读者可参考Clough和Woodward(1967年),Strang和Fix(1973年),Hughes(1987年),Zienkiewicz和Taylor(1989年)所做的研究工作。 PLAXIS 8版(Brinkgreve 2002年)是一个有限元软件包,应用于岩土工程二维的变形和 折稳定性分析。该程序可以分析自然成型或人为制造的斜坡问题。安全系数的确定使用c

有限元分析及应用大课后复习

有限元分析及应用作业报告

目录 有限元分析及应用作业报告....................................... I 目录 ........................................................ II 试题1 . (1) 一、问题描述 (1) 二、几何建模与分析 (2) 三、第1问的有限元建模及计算结果 (2) 四、第2问的有限元建模及计算结果 (7) 五、第3问的有限元建模及计算结果 (13) 六、总结和建议 (16) 试题5 (17) 一、问题的描述 (17) 二、几何建模与分析 (18) 三、有限元建模及计算结果分析 (18) 四、总结和建议 (26) 试题6 (27) 一、问题的描述 (27) 二、几何建模与分析 (27) 三、有限元建模及计算结果分析 (27) 五、总结和建议 (35)

试题1 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 图1-1模型示意图及划分方案

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数:按以上假设大坝材料为钢,设定:ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 → OK 4)生成几何模型: a. 生成特征点:ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS→依次输入三个点的坐标:

有限元分析及优化设计

《有限元分析及优化设计》实验指导书 桂林电子科技大学机电工程学院 庄未编 2012年05月

实验一:平面问题的结构分析计算 1.实验目的 ?了解ANSYS软件的基本功能与应用范围; ?熟悉在计算机上运用ANSYS软件的基本步骤和方法; ?结合具体平面问题实例,利用ANSYS软件进行计算分析; ?时间许可,可对上述实例利用有限元方法进行计算,并与ANSYS计算结 果进行分析比较. 2.实验内容 1. 结合具体平面问题实例,利用ANSYS软件进行计算分析; 2. 利用ANSYS软件进行建模,并施加约束和载荷; 3 对计算结果进行比较分析与讨论; 4. 时间许可,可对上述实例利用ANSYS的非交互模式(Batch Mode/命令流 的方式)再进行一次计算,并与用ANSYS交互模式的计算结果进行分 析比较. 3.实验预习报告内容要求 实验预习报告在实验前写好,其主要内容应包括: 复习有限元法基本原理、解题方法与步骤等,建立有限元模型应包含的内容; 提供具体平面问题的结构简图,画出计算模型; 对给定的平面问题实例的结果进行预估,以供计算后进行比较讨论用; 4.上机实践举例 一)如图1所示的6结点4单元平面应力平板问题.各三角形单元的直角边的长度为α=10mm,假设平板的厚度t=5mm,材料均匀,其弹性模量E=200GPa, 泊 松比μ=0.3.今在结点1处,竖直向下作用一个力P=1,若不计平板重量( 即设容重γ=0 ).利用ANSYS软件进行分析。

图1 二)、求解下图所示的平面问题。 图2 实验二:轴对称实体结构静力有限元分析 1. 实验目的 ? 了解ANSYS 软件的基本功能与应用范围; ? 熟悉在计算机上运用ANSYS 软件的基本步骤和方法; ? 结合具体实体问题实例,利用ANSYS 软件进行计算分析; ? 时间许可,可对上述实例利用有限元方法进行计算,并与ANSYS 计算结 果进行分析比较.

基于ansys的连杆机构的有限元分析

目录 摘要 ............................................................................................ 错误!未定义书签。Abstract (2) 第一章分析方法和研究对象 ........................................... 错误!未定义书签。 1.1 有限单元法的概述....................................................... 错误!未定义书签。 1.1.1 有限单元法的历史 (4) 1.1.2 有限单元法的基本概念 (4) 1.2 ANSYS软件简介 (4) 1.2.1 ANSYS主要应用领域 (4) 1.2.2 ANSYS操作界面 (5) 1.2.3 ANSYS的主要功能 (6) 1.2.4 ANSYS主要特点 (7) 1.3 曲柄滑块机构简介 (7) 1.3.1 曲柄滑块定义 (8) 1.3.2 曲柄滑块机构特性应用以及分类 (8) 第二章曲柄滑块机构的求解 (10) 2.1 曲柄滑块机构的问题描述 (10) 2.2 曲柄滑块机构问题的图解法 (10) 2.2.1 图解法准备工作 (11) 2.2.2 图解法操作步骤 (11) 第三章有限元瞬态动力学概述 (14) 3.1 有限元瞬态动力学定义 (14) 3.2 瞬态动力学问题求解方法........................................... 错误!未定义书签。 3.2.1 完全法 (14) 3.2.2 模态分析法 (14) 3.2.2 缩减法 (15) 3.1 有限元结构静力学分析基本概念 (15) 3.1 有限元结构静力学分析步骤 (16) 第四章曲柄滑块的有限元瞬态动力学分析 (17) 4.1 曲柄滑块机构瞬态简要概述 (17) 4.2曲柄滑块有限元瞬态动力学分析步骤 (18)

有限元分析在钢筋混凝土结构中的应用

论文题目:钢筋混凝土有限元分析技术在结构工程中的应用 学生姓名:刘畅 学号:2014105110 学院:建筑与工程学院 2015年06月30日

有限元分析在钢筋混凝土结构中的应用【摘要】在国内外的土木工程中,钢筋混凝土结构因具有普遍性、可靠性良好、操作简单等优点,而得到了广泛的应用。钢筋混凝土结构是钢筋与混凝土两种性质截然不同的材料组合而成,由于其组合材料的性质较为复杂,同时存在非线性与几何线形的特征,应用传统的解析方法进行材料的分析与描述在受力复杂、外形复杂等情况下较为困难,往往不能得到准确的数据,给工程安全带来隐患。而有限元分析方法则充分利用现代电子计算机技术,借助有限元模型有效解决了各种实际问题。 【关键词】有限元分析;钢筋混凝土结构;应用 随着计算机在工程设计领域中的广泛应用,以及非线性有限元理论研究的不断深入,有限元作为一个具有较强能力的专业数据分析工具,在钢筋混凝土结构中得到了广泛的应用。在现代建筑钢筋混凝土结构的分析中,有限元分析方法展现了较强的可行性、实用性与精确性。例如:在计算机上应用有限元分析法,对形状复杂、柱网复杂的基础筏板,转换厚板,体型复杂高层建筑侧向构件、楼盖,钢-混凝土组合构件等进行应力,应变分析,使设计人员更准确的掌握构件各部分内力与变形,进而进行设计,有效解决传统分析方法的不足,满足当前建筑体型日益复杂,工程材料多样化的实际情况。但是在有限元分析方法的应用中,必须结合钢筋混凝土结构工程的实际情况,选取作为合理的有限元模型,才能保证模拟与分析结果的真实性、精确性与可靠性。 在钢筋混凝土结构工程中,非线性有限元分析的基本理论可以概括为:1)通过分离钢筋混凝土结构中的钢筋、混凝土,使其成为有限单位、二维三角形单元,钢箍离散为一维杆单元,以利于分析模型的构建;2)为了合理模拟钢筋、混凝土之间的粘结滑移关系,以及

优化设计有限元分析总结

目录 目录 (1) 1. 优化设计基础 (2) 1.1 优化设计概述 (2) 1.2 优化设计作用 (3) 1.3 优化设计流程 (3) 2. 问题描述 (4) 3. 问题分析 (5) 4. 结构静力学分析 (6) 4.1 创建有限元模型 (6) 4.2 创建仿真模型并修改理想化模型 (7) 4.3 定义约束及载荷 (7) 4.4 求解 (8) 5. 结构优化分析 (9) 5.1 建立优化解算方案 (9) 5.2 优化求解及其结果查看 (11) 6. 结果分析 (13) 7. 案例小结 (14)

1.优化设计基础 1.1优化设计概述 优化设计是将产品/零部件设计问题的物理模型转化为数学模型,运用最优化数学规划理论,采用适当的优化算法,并借助计算机和运用软件求解该数学

模型,从而得出最佳设计方案的一种先进设计方法,有限元被广泛应用于结构设计中,采用这种方法任意复杂工程问题,都可以通过它们的响应进行分析。 如何将实际的工程问题转化为数学模型,这是优化设计首先要解决的关键问题,解决这个问题必须要考虑哪些是设计变量,这些设计变量是否受到约束,这个问题所追求的结果是在优化设计过程要确定目标函数或者设计目标,因此,设计变量、约束条件和目标函数是优化设计的3个基本要素。 因此概括来说,优化设计就是:在满足设计要求的前提下,自动修正被分析模型的有关参数,以到达期望的目标。 1.2优化设计作用 以有限元法为基础的结构优化设计方法在产品设计和开发中的主要作用如下: 1)对结构设计进行改进,包括尺寸优化、形状优化和几何拓扑优化。2)从不合理的设计方案中产生出优化、合理的设计方案,包括静力响应优化、正则模态优化、屈曲响应优化和其他动力响应优化等。 3)进行模型匹配,产生相似的结构响应。 4)对系统参数进行设别,还可以保证分析模型与试验结果相关联。 5)灵敏度分析,求解设计目标对每个设计变量的灵敏度大小。 1.3优化设计流程 不同的优化软件其操作要求及操作步骤大同小异。一般为开始、创建有限元模型、创建仿真模型、定义约束及载荷,然后进行结构分析,判断是否收

MD Nastran突破有限元分析的极限

MD Nastran突破有限元分析的极限 作者:MSC.Software公司来源:汽车制造业 有限元法FEM分析变得日益复杂,同时有限元分析模型的大小和细节设计要求也在不断增加。尤其是在汽车行业,这一趋势尤其明显。 项目背景 由数百万个单元和数百万的自由度组成的有限元网格的模型已经变得司空见惯,然而模型的尺寸仍在不断地增加。由于数学方法和软件工程学技术的改进,有限元法程序的工作效率和计算能力也在不断提升,同时构建模型和网格划分软件技术的飞速进步使模型的生成变得更加方便快捷。数年前,发动机引擎气缸体的网格划分需要几个月的时间,而现在只是几个小时的问题。 德国汽车制造商宝马公司是大范围使用虚拟仿真技术的公司之一。在宝马公司和其他一些制造商中,为了缩短研发周期,减少物理样机和物理试验的次数,完整的汽车模型得到了最优化的使用,其基础便是日益复杂的有限元仿真模型,包括对噪音和舒适度的刚性评定、乘客安全性和空气动力学仿真等。在数值计算方法方面,使用了隐式线性分析和显式非线性瞬态分析。 图1 “后天之模型”的基础是宝马X3汽车的车体 早在2007年初,宝马公司便对计算机辅助工程CAE的流程重新进行了检测,以便发现将来可能由仿真模型尺寸增加引起的瓶颈问题。宝马公司的车体和零部件设计小组开发了迄今为止最大的有限元法模型作为基准测试的考题模型,被冠以“后天之模型(Model of the

Day After Tomorrow)”的名称。小组成员丹尼尔·海泽尔博士表示,“对我们来说,在标准的硬件和软件设备上进行此次基准测试是非常重要的,使用当前的基础设施解决基准模型问题的目的,并不是为了要减少计算时间,而是为了识别理论极限和当前方法的瓶颈。” 基准考题的目的是为了寻找标准分析(双载荷工况条件下的线性静态分析)中进行有限元法分析基本步骤的极限和时间: 1. 读取输入数据,对它们进行分类、制成表格,并进行一致性检查; 2. 计算单元刚体矩阵,并集成一个整体刚体矩阵; 3. 计算位移和应力数据; 4. 输出结果。 宝马公司提出的问题是有限元分析还能应对这一增长趋势多长时间?用“后天之模型”作为考题的目的是如何突破近10年间所要面临的硬件和软件极限问题。MSC.Software公司同美国国际商用机器IBM公司合作,能够在短短的几个月的时间内解决这一问题。在一份用该模型分析的详细报告中,项目成员彼得·沙尔茨和杰拉德·希姆莱(MSC.Software公司),丹尼尔·海泽尔(宝马汽车制造公司)和D·皮特施(IBM公司)详细介绍了他们实现宝马公司苛刻要求的方法。 图2 BMW X3减振器支座外壳模型(蓝色),MODAW部分描绘图(黄色) 软、硬件的发展 大多数有限元法分析程序都存在计算能力不在最佳状态的情形。1957年,雷W克拉夫和他的学生在一台内存只有16位的IBM701计算机上开发出了后来成为有限元法的程序。方程式大约在40个以上的问题需要out of core(即数据不全部存储在内存中,而是存储在硬盘的临时文件夹中)求解逻辑,这意味着要借助二级存储介质。10年之后,Nastran软件被开发出来之后,要求条件也非常类似。软件客户美国国家航空航天局(NASA)要求开

ABAQUS钢筋混凝土损饬塑性模型有限元分析

ABAQUS钢筋混凝土损饬塑性模型有限元分析 发表时间:2009-10-12 刘劲松刘红军来源:万方数据 钢筋混凝土材料,是一种非匀质的力学性能复杂的建筑材料。随着计算机和有限元方法的发展,有限元法已经成为研究混凝土结构的一个重要的手段。由于数值计算具有快速、代价低和易于实现等诸多优点,这种分析方法已经广泛用于实际工程中。然而,要在有限元软件中尽可能准确地模拟混凝土这种材料,是不容易的,国内外学者提出了基于各种理论的混凝土本构模型。但是迄今为止,还没有一种理论被公认为可以完全描述混凝土的本构关系。 ABAQUS是大型通用的有限元分析软件,其在非线性分析方面的巨大优势,获得了广大用户的认可,在结构分析领域的应用趋于广泛。本文把规范建议的混凝土本构关系,应用到损伤塑性模型,对一悬臂梁进行了精细的有限元建模计算和探讨。 1 混凝土损伤塑性模型 ABAQUS在钢筋混凝土分析上有很强的能力。它提供了三种混凝土本构模型:混凝土损伤塑性模型,混凝土弥散裂缝模型和ABAQUS/Explicit中的混凝土开裂模型。其中混凝土损伤塑性模型可以用于单向加载、循环加载以及动态加载等场合,它使用非关联多硬化塑性和各向同性损伤弹性相结合的方式描述了混凝土破碎过程中发生的不可恢复的损伤。这一特性使得损伤塑性模型具有更好的收敛性。 2 模型材料的定义 2.1 混凝土的单轴拉压应力-应变曲线 本模型中选用的混凝土本构关系是《混凝土结构设计规范》所建议的曲线,其应力应变关系可由函数表达式定义。 2.2 钢筋的本构关系 钢筋采用本构关系为强化的二折线模型,无刚度退化。折线第一上升段的斜率,为钢筋本身的弹性模量,第二上升段为钢筋强化段,此时的斜率大致可取为第一段的1/100。 2.3 损伤的定义 损伤是指在单调加载或重复加载下,材料性质所产生的一种劣化现象,损伤在宏观方面的表现就是(微)裂纹的产生。材料的损伤状态,可以用损伤因子来描述。根据前面确定的混凝土非弹性阶段的应力一应变关系。可求得损伤因子的数值。 2.4混凝土塑性数值的计算 混凝土在单向拉伸,压缩试验中得到的数据,通常是以名义应变和名义应力表示的,为了准确地描述大变形过程中截面积的改变,需要使用真实应变和真实应力,可通过它们之间的换算公式计算。真实应变是由塑性应变和弹性应变两部分构成的。在ABAQUS中定义塑性材料参数时,需要使用塑性应变。 3 钢筋混凝土悬臂梁实例分析 3.1 模型设计 该悬臂梁的具体情况如图1所示,梁截面尺寸为200mm×300mm,梁长1500mm;纵筋为HRB335钢筋,箍筋为HPB235钢筋,混凝土强度等级为C30。混凝土和钢筋的各力学参数均取自《混凝土结构设计规范》的标准值。

车架的有限元分析及优化

车架的有限元分析及优化 作者:马迅盛…文章来源:湖北汽车工业学院点击数:1687 更新时间:2008-8-5 有限元法将设计人员丰富的实践经验与计算机高速精确的计算完美地结合在一起,大大提高了设计计算精度,缩短了产品开发时间。 概念设计阶段车架的结构方案 参考某一同类型车架,考虑到车身安装和其他总成的布置,将概念设计阶段的车架大致结构拟定如下:选用框架式平行梯形车架结构,由2根左右分开的纵梁和8根横梁组成,全长6.3m,宽0.8m,轴距3.65m。各梁的大致形状尺寸及板材厚度如表1所示。 除第3、4根横梁外,其他各横梁的尺寸与参考的同类型车架几乎相同。由于参考车架的第3、4根横梁为上下两片形状复杂的钢板组合而成,无法用梁单元模拟,在概念车架中将之改用两根方型截面的等直梁代替。第1、6横梁为非等截面梁,其宽和高分别由两个尺寸表示。参考车架纵梁的前后两段和中间段的连接采用的是线性渐变的截面,在概念车架中用一等直梁来代替,等直梁的高度等于渐变梁的中间高度。纵横梁上所有的孔及连接板都不予以考虑。 车架的有限元模型 为了后续的优化设计,必须对车架进行参数化建模。选择表1中车架纵横梁的截面尺寸为模型参数,先建立左半个车架的几何模型,选用ANSYS中的二节点12自由度梁单元BEAM188号单元采用不同的梁单

元截面形式对其进行网格剖分;再将左边的几何模型和网格模型进行映射得到右边车架模型,最终合并对称面上的节点使左右车架模型“牢固的”“粘结起来”。 在ANSYS中用BEAM188单元实施网格剖分时,为了保证单元的正确方向,应事先定义该单元的方向点并检查所要剖分的线的法向。单元截面形状和偏置量需用命令SECTYPE、SECOFFSET和SECDATA设定。单元总数为312,节点总数为626。网格剖分并映射后车架模型如图1所示。图中显示出了梁单元的截面形状。 图1 车架的有限元模型 边界条件 车架刚度有多种,其中最重要的是车架的弯曲刚度和扭转刚度。参照车架的刚度试验方法确定车架弯扭刚度的边界条件。 1.弯曲工况的边界条件 计算时约束前后桥在车架纵梁上的竖直投影点的垂直位移,让车架形成一简支梁结构,并在前后支承点中点处加一垂直向下的力,让车架产生纯弯曲变形,如图2所示。

用ANSYS进行四连杆机构的有限元分析

用ANSYS进行四连杆机构的有限元分析 作者:谭辉 日期:08年3月6日 分析目的 1、利用ANSYS对典型的四连杆机构进行分析,主要包含各点的轨迹分 析,例如X和Y方向的位移等。 2、为五连杆和六连杆机构的分析提供可行的分析方法以及原型代码。 问题简述 分析主动杆1绕节点1旋转一周时节点4的运动轨迹,杆2和杆3为从动杆,具体问题见下图:

分析思路 1、根据分析目的,在ANSYS选用link1单元进行单元建模,主要考虑 是link1单元具有X和Y方向的自由度,可以获得各个节点的位移轨迹。 之后可以用梁单元等实现更高级的分析目的,例如获得杆上的力,位移, 加速度等相关信息。 2、该模型结构简单,可以利用直接建模方法进行有限元系统建模,主 要命令:N,E。 3、利用自由度耦合对重合节点进行建模,例如节点2和节点3、节点4 和节点5进行建模,主要命令:cpintf,利用该命令可以一次性将重合节 点生成自由度耦合。 4、利用表数组对于杆1(主动杆)的节点2进行瞬态边界条件的载荷施 加,分析类型为瞬态分析,主要命令:*dim,d等。 5、生成节点位移的对应变量,从而获得节点4的随时间的位移曲线, 主要命令:nsol,plvar等。 命令流如下 行号命令符号注释 结束上一次的分析 1finish ! 清除数据库,并读取启动配置文件2/clear,start ! 3 ! 设置图形显示的背景颜色 4/color,pbak,on,1,5 ! 5 !

6/units,si ! 设置单位制:国际单位制 7*afun,deg ! 设置三角函数运算采用度为单位 8 ! 9/prep7 ! 进入前处理模块 10et,1,link1 ! 设置单元类型:link1 11mp,ex,1,2.07e11 ! 设置材料的弹性模量 12r,1,1 ! 设置单元的实常数,面积为1 13n,1,0,0,0 ! 在(0,0,0)处建立节点1 14n,2,3,0,0 ! 在(3,0,0)处建立节点2 15n,3,3,0,0 !在(3,0,0)处建立节点3,和节点2重合 16n,4,8,7,0 ! 在(8,7,0)处建立节点4 17n,5,8,7,0 !在(8,7,0)处建立节点4,和节点4重合 18n,6,10,0,0 ! 在(10,0,0)处建立节点6 19e,1,2 ! 建立单元1(连接节点1和2) 20e,3,4 ! 建立单元2(连接节点3和4) 21e,5,6 ! 建立单元3(连接节点5和6) 22 ! 23cpintf,all,1e-3 !对于重合节点一次性的建立耦合自由度,容差1e-3 24 ! 25/pnum,node,1 ! 显示节点编号 26/pnum,elem,1 ! 显示单元编号 27eplot ! 显示单元

风力发电机组轮毂极限强度的有限元分析

风力发电机组轮毂极限强度的有限元分析 文章是基于有限元理论,对兆瓦级风力发电机组的轮毂进行强度及疲劳计算。轮毂是风力发电机中的重要组成部分,铸造而成,是将机械能转换为电能的核心部件,其形状复杂,轮毂的设计质量会直接影响到整个机组的正常运行及使用寿命,在其受复杂风载荷的作用下,其强度和疲劳耐久性成为此行业关注的焦点。此分析利用大型有限元分析软件Ansys对轮毂模型分析。模型中包含轮毂、主轴及叶片,从轮毂的应力分布情况,从中找出最危险的部位,为轮毂的设计提供可靠依据。 标签:风力发电机;轮毂;有限元分析;极限强度 1 绪论 1.1 课题研究背景 经济发展过程中,我国作为世界上人口最多的发展中国家,能源消耗量不断增加,传统化石能源无以为继,面临的能源开发利用的资源约束越来越多,环境压力也越来越大。如今,生态环境承载能力弱、资源相对紧张。传统能源利用导致的环境问题越来越严重,以及全国范围内的雾霾天气都在提醒我们要努力做到全面、协调、可持续发展,以符合当今国情。在众多的可再生能源中,风能以其巨大的优越性和发展潜力受到人们的瞩目。 1.2 轮毂在大型风力发电机组的重要性 在大型风力发电机组中,轮毂是核心构件,其不仅承担着与驱动连的链接,而且将叶片所受的风载荷通过主轴传递给齿轮箱,承担着风力发电机组容量增大而带来的更大的负荷。它需要有足够的强度和刚度,以保证机组在各种工况下能正常运行。由此可看出轮毂在风力发电机组的设计和制造过程中的重要性。 2 轮毂的强度校核计算 2.1 轮毂模型介绍 轮毂模型结构见图1 此机组风轮由三片叶片对称安装在轮毂上构成,叶片间的夹角为120°。利用CAD绘图软件Solidworks,绘制了轮毂的三维实体几何简化模型。在保证计算精度的前提下,由于小的孔类、圆角及小凸台类结构对计算结果影响很小并且不是关键部位,已经略去。叶片产生的气动载荷以及由于风轮旋转和机舱对风轮转动引起的离心力、惯性力和重力通过三片叶片连接点传递到轮毂上,这些载荷和轮毂自身的重力构成了轮毂载荷。最终,轮毂简化后的几何模型如图1所示。

ABAQUS中的钢筋混凝土剪力墙建模

ABAQUS中的钢筋混凝土剪力墙建模 曲哲 2006-5-29 一、试验标定 选用ABAQUS中的塑性损伤混凝土本构模型,分离式钢筋建模,建立平面应力模型模拟钢筋混凝土剪力墙的单调受力行为。李宏男(2004)本可以提供比较理想的基准试验。然而计算发现,该文中试验记录的初始刚度普遍偏小,仅为弹性分析结果的1/5~1/8,原因不明,故此处不予采用。左晓宝(2001)研究了小剪跨比开缝墙的低周滞回性能,其中有一片整体墙作为对照试件,本文仅以这片墙为基准标定有限元模型。 图1:剪力墙尺寸与配筋 该试件尺寸及配筋如图1所示。墙全高750mm,宽800mm,厚75mm,墙内布有间距φ6@100的分布钢筋,墙两端设有暗柱。混凝土立方体抗压强度为54.9MPa,钢筋均为一级光圆筋。 (a)墙体分区及网格(b)钢筋网 图2:ABAQUS中的有限元模型 剪力墙采用平面应力八节点全积分单元,墙上下两端各加设100mm高的弹性梁。钢筋采用两节点梁单元,通过Embed方式内嵌于墙体内。模型网格及外观如图2所示。墙下弹性梁底面嵌固。分析中,先在墙顶施加160kN均布轴压力,再在墙上方弹性梁的左端缓缓施加位移荷载。 ABAQUS中损伤模型各参数取值如表1、图3所示。未说明的参数均使用ABAQUS默认值。

表1:有限元模型材料属性 混凝土 钢筋 材料非线性模型 Damaged Plasticity Plasticity 初始弹性模量(GPa ) 38.1 210 泊松比 0.2 0.3 膨胀角(deg ) 50 初始屈服应力(MPa ) 13 235 峰值压应力(MPa ) 44 峰值压应变(με) 2000 峰值拉应力(MPa ) 3.65 注:其中混凝土弹性模量为文献中提供的试验值,其余均为估计值。 (a )压应力-塑性应变曲线 (b )拉应力-非弹性应变曲线 (c )受拉损伤指标-开裂应变曲线 图3:混凝土塑性硬化及损伤参数 ABAQUS 的混凝土塑性损伤模型用两个硬化参数分别控制混凝土的拉压行为,同时可以分别引入受压和受拉损伤指标。本文受压硬化曲线采用Saenz 曲线(式1),可用表1中列出的初始弹性模量、峰值应力和峰值应变唯一确定。受拉软化曲线采用Gopalaratnam 和Shah (1985)曲线(式2),并采取江见鲸建议参数k =63,λ=1.01,如图3(b )所示。本文模型只定义受拉损伤指标,损伤指标随开裂应变的变化如图3(c )所示,当开裂应变小于0.0014时,损伤指标线性增大,开裂应变超过0.0014后,损伤指标保持固定值0.6。 02 0000012c c c c E E εσεεεσεε= ??????+?+???????????? (1) e k t t f λ ωσ?= (2) 图4比较了采用4节点单元和8节点单元得到的剪力墙荷载-位移曲线,并同时画出了 文献中提供的荷载-位移骨架线。可见8节点单元模型的计算结果较4节点单元模型更加平滑顺畅,下降段也比较稳定。二者在达到峰值之前差别不大,但软化行为则相差较多。这可能与基于开裂应变定义的损伤指标引入的网格依赖性有关,本文对此不做深入讨论。 与试验曲线相比,有限元分析得到的荷载-位移曲线初始刚度略大,且墙底开裂(图中1点)时刚度退化不如试验中显著,导致之后的分析结果位移偏小。受拉侧钢筋屈服后计算得到的刚度与试验曲线比较接近,不久主斜裂缝的出现使墙的承载力进入软化段,被主要裂缝穿过的钢筋均进行屈服段。软化过程中墙体形成了新的主斜裂缝并最终沿这条主斜裂缝破坏。图5、6分别展示了剪力墙在受力全过程中关键点处的混凝土主拉应变和钢筋大主应力。 与试验曲线相比,计算结果刚度偏差较大,承载力基本一致。

基于ANSYS Workbench的定位卡锁机构有限元分析

基于ANSYS Workbench的定位卡锁机构有限元分析 摘要本文首先在Pro/E中建立了定位卡锁机构受最大外力时的简化模型,然后将该模型导入到ANSYS Workbench 13平台中进行了有限元模型的分析求解,最后结合求解结果用第四强度理论对定位卡锁机构各零件进行了强度校核,同时对该定位卡锁机构的改进提出了建议。 关键词定位卡锁机构;有限元分析 在某工程项目中应用的定位卡锁机构承担着为某输送设备准确定位的作用。由于该输送设备运行一个周期位就要启停一次,启停工作由定位卡锁机构配合实现。定位卡锁机构收回,输送设备开始运转,一个周期位后电机停转,定位卡锁机构伸出,进入与之配合的凹槽使输送设备完全停位。因此,定位卡锁机构成为该输送设备的关键部件,是保证输送设备正常工作的必备条件。所以,对定位卡锁机构的研究与分析有着重要的意义。 定位卡锁机构在伸出状态受最大外力时,其所受最大应力不应超过材料的许用应力是保证定位卡锁机构实现其功能的充分条件。为了保证定位卡锁机构的工作可靠性,本文利用ANSYS Workbench对该机构进行有限元分析,研究在定位卡锁机构受最大外力时的受力及变形情况,并依据理论知识对其强度进行校核。 1 定位卡锁机构模型的建立与导入 在对定位卡锁机构进行有限元分析之前,首先应建好定位卡锁机构的三维模型。一般在整个有限元分析的过程中,几何建模的工作量占据了非常多的时间,同时也是非常重要的过程[2]。ANSYS Workbench 13中,建模工作主要由ANSYS Workbench 自带的几何建模工具Design Modeler模块完成。对于小型或简单模型的建立可以直接在Design Modeler模块中建模,这样避免了从CAD系统中导入ANSYS的模型可能不能直接进行网格划分,需进行大量修补完善工作的麻烦。对于零部件较多的装配体的建模,通常先利用专业的三维建模软件完成模型的建立,然后再把它导入到ANSYS中进行分析。这样,工程技术人员就可以使用自己擅长的CAD软件建好模型,从而避免了重复现有CAD模型的劳动。 本文采用PTC公司的Pro/Engineer对定位卡锁机构进行三维建模。定位卡锁机构简化模型由液压缸、卡锁活塞杆、端盖、螺塞、螺钉组成,建好的三维模型如图1所示。建好后的三维模型可以在Pro/E中直接导入到ANSYS Workbench 13 中进行有限元分析。 图1 定位卡锁机构的三维模型 2 定位卡锁机构的有限元分析 2.1 定义模型材料属性

混凝土有限元分析

混凝土有限元分析 廖奕全 (06级防灾减灾工程及防护工程,06114249) 摘要:用传统的理论解析方法分析钢筋混凝土结构,只能解决一些非常简单的构件或结构的非线性问题,对大量的钢筋混凝土结构的非线性分析问题只能用数值方法解决,因此,有限元方法作为一个强有力的数值分析工具,在钢筋混凝土结构的非线性分析中得到了广泛地应用。随着有限元理论和计算机技术的进步,钢筋混凝土非线性有限元分析方法也得以迅速的发展并发挥出巨大的作用。 关键词:钢筋混凝土有限元分析有限元模型 钢筋混凝土结构是土木工程中应用最广泛的一种建筑结构。相比其它材料结构,钢筋混凝土结构有以下特点:①造价低,往往是建筑结构的首选材料;②易于浇注成各种形状,满足建筑功能及各种工艺的要求;⑧充分发挥钢筋和混凝土的作用,结构受力合理:④材料的重度与强度之比不大;⑤材料性能复杂,一般的计算模型难与实际结构的受力情况相符。正因为钢筋混凝土材料的这些优缺点,长期以来,钢筋混凝土在工程中的应用如此广泛;为了满足工程需要所建立的反映混凝土材料性能的计算模型也不断完善。然而,混凝土是一种由水泥、水、砂、石及各种掺合料、外加剂混合而成的成分复杂、性能多样的材料。到目前为止,还没有一种公认的、能全面反映混凝土的力学行为和性质的计算模型或本构关系。因此,对钢筋混凝土的力学性能研究还需要学术界和工程人员继续努力。长期以来,人们用线弹性理论来分析钢筋混凝土结构的受力和变形,以极限状态的设计方法来确定构件的承载能力。这种设计方法在一定程度上能满足工程的要求。随着国民经济的发展,越来越多大型、复杂的钢筋混凝土结构需要修建,而且对设计周期和工程质量也提出了更高的要求。这样一来,常规的线弹性理论分析方法用于钢筋混凝土结构和构件的设计就力不从心。设计人员常有“算不清楚”以及“到底会不会倒”的困惑。为此,钢筋混凝土非线性有限元分析方法开始受到重视。同时,随着有限元理论和计算机技术的进步,钢筋混凝土非线性有限元分析方法也得以迅速的发展并发挥出巨大的作用。 一、钢筋混凝土结构有限元分析的意义 钢筋混凝土结构是目前各种建筑结构物的主要结构形式,由于钢筋混凝土结构受到较大的荷载(如地震荷载)作用时其非线性特性对结构的性能影响很大,所以钢筋混凝土结构的非线性分析在结构抗震工程领域中十分重要并成为一个研究热点。用传统的理论解析方法分析钢筋混凝土结构,只能解决一些非常简单的构件或结构的非线性问题,对大量的钢筋混凝土结构的非线性分析问题只能用数值方法解决,因此,有限元方法作为一个强有力的数值分析工具,在钢筋混凝土结构的非线性分析中得到了广泛地应用。由于钢筋混凝土是由两种性质不同的材料——混凝土和钢筋组合而成的,它的性能明显地依赖于这两种材料的性能以及它们的相互作用,特别是在非线性阶段,混凝土钢筋本身的各种非线性性能,都不同程度地在这种组合材料中反映出来。以下是与钢筋混凝土结构计算分析有关的一些非线性问题: 1)由于钢筋和混凝土的抗拉强度相差很大,钢筋混凝土结构在正常使用状态下,大部分受弯构件都已经开裂而进入非线性状态。2)混凝土和钢筋在一个结构中共同工作的条件是两者之间的变形协调而且没有相对的滑移,但实际上,这种条件并不能完全满足,特别是在反

有限元分析及应用例子FEM14

第9章受内外压筒体的有限元建模与应力变形分析(Project 2) 计算分析模型如图9-1 所示, 习题文件名: cylinder。 X (a) σO=100N/mm2 σI =200N/mm2 γ =7.85g/cm3 μ =0.3 E =210000N/mm2 (b) 图9-1 计算分析模型 9.1进入ANSYS 程序→ANSYSED 6.1ed →Interactive →change the working directory into yours→input Initial jobname: cylinder→Run 9.2 设置计算类型 ANSYS Main Menu: Preferences…→select Structural →OK 9.3 选择单元类型 ANSYS Main Menu: Preprocessor → Element Type →Add/Edit/Delete… → Add… →select Solid Quad 4node 42 →Apply →select Solid Brick 8node 45 → OK → Close (the Element

Types window) 9.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Materials Models →Structural→Lineal →Elastic→Isotropic…→input EX:2.1e5, PRXY:0.3→ OK 关闭材料定义窗口 9.5构造筒体模型 ?生成模型截平面 ANSYS Main Menu: Preprocessor →Modeling→Create →Keypoints →In Active CS… →按次序输入横截平面的十个特征点和旋转对称轴上两点坐标(十个特征点:(300,0,0), (480,0,0), (480,100,0), (400,100,0), (400,700,0), (480,700,0), (480,800,0), (300,800,0), (300,650,0), (300,150,0),对称轴上两点:(0,0,0), (0,800,0))(每次输入完毕,用Apply结束,0可以不输入) →Cancel (back to Create window) →-Areas- Arbitrary → Through KPs →依次连接截面边线上的十个特征点(注意在选完第10点后结束,不要再选第1点)→ OK ?对平面进行网格划分 ANSYS Main Menu: Preprocessor →Meshing→Mesh Tool →(Size Controls) Globl: Set →input SIZE (element edge length): 50 →OK (back to MeshTool window)→Mesh → Pick All (in Picking Menu) → Close( the MeshTool window) ?用旋转法生成筒体模型 ANSYS Main Menu: Preprocessor →Modeling→Operate →Extrude→Elem Ext Opts→select TYPE:SOLID 45→Element sizing options for extrusion No. Elem divs: 1→OK (back to Extrude window)→Areas →About Axis →Pick All(in Picking Menu)→OK→Pick the two keypoints (11,12) of the Symmetrical Axis → OK→input ARC: 90; NSEG: 3→ OK 9.6 模型加位移约束 ANSYS Main Menu: Solution→Define Loads →Apply→Structural→Displacement ?两截面分别加Z, X方向的约束 ANSYS Utility Menu: Select → Entities…→Nodes → By Location →select X coordinates →input 0→ OK (back to Displacement window)→On Nodes → Pick All(in Picking Menu) → select Lab2:UX →OK →ANSYS Utility Menu: Select → Everything ANSYS Utility Menu: Select → Entities…→ Nodes → By Location →select Z coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) → select Lab2:UZ →OK →ANSYS Utility Menu: Select →Everything ?底面加Y方向的约束 ANSYS Utility Menu: Select → Entities… → Nodes → By Location →select Y coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) →

混凝土有限元分析

混凝土非线性有限元分析 1、推导破坏面上任一点的直角坐标转化成圆柱坐标的换算关系,并进行经典理论验证。 静水压力轴为通过坐标原点且与各坐标轴的夹角相等的线,静水压力轴上任一点的应力状态满足321σσσ==,其单位向量为(31,31,31)。与静水压力轴垂直的平面称为偏平面,通过坐标原点的偏平面称为π平面。 坐标轴上一点至静水压力 轴的距离,称为偏应力r 。 ξ—静水压力轴 r —偏应力 θ—相似角 θ-偏平面上偏应力r 与 1σ轴在偏平面上的投影 之间的夹角,称为相似角。 设P 点坐标为),,(321σσσ, N 点坐标为),,(m m m σσσ,则)(3 1321σσσσ++=m 。 oct I ON σσσσξ33 1)(311321==++==,其中,)(31321σσσσσ++==m oct ),,(),,(321321S S S NP m m m =---=→σσσσσσ,即o c t J S S S r τ3222322 21==++= 其中,2132322212)()()(3 132σσσσσστ-+-+-==J oct 1σ轴在π平面上的投影OC 的单位向量)1,1,2(6 1--=→e 则,r S S S S S S e r e r 62)2(6 1cos 321232221321σσσθ--=++--=??=→ →

即 oct m I σσξ333 11=== 22J r = 2 32132132262cos J r σσσσσσθ--=--= 拉压子午线为静水压力轴和一个主应力轴组成的平面,同时通过另两轴的等分线。拉压子午面与破坏曲面的交线分别称为拉、压子午线。 拉子午线:00=θ, 321σσσ=≥;静水压力与轴向拉应力组合,单轴受拉及二轴等压的应力状态位于拉子午线上。 拉子午线:060=θ, 321σσσ≥=;三轴受压,单轴受压及二轴等拉状态均位于压子午线上。 拉、压子午线与静水压力轴相交于同一点,即三轴等拉点。 混凝土破坏曲面的形状具有以下特点: 1、曲面连续、光滑、外凸 2、对静水压力轴三轴对称 3、曲面在静水压力轴拉端封闭,在压端开口 4、子午线的偏应力值随静水压力值的减小而单调增大 5、偏平面上的封闭包络线形状,随静水压力值的减小,由近似三角形渐变为外凸、饱满,过渡为一圆。 2、验证混凝土的强度准则,并绘制破坏曲面的偏平面与子午线图 (1)最大拉应力强度准则 当混凝土材料承受任一方向主拉应力达到混凝土轴心受压强度t f 时,混凝土破坏,其表达式为:t f =1σ,t f =2σ,t f =3σ 当o o 600≤≤θ,且321σσσ≥≥时,破坏准则为:t f =1σ 根据???????????????????+?????????+-=??????????+??????????=??????????1113)32cos()32cos(cos 3211112321321I J S S S m πθπθθσσσσ (o o 600≤≤θ)

相关主题
文本预览
相关文档 最新文档