当前位置:文档之家› 高中物理受迫振动 共振人教版第一册

高中物理受迫振动 共振人教版第一册

高中物理受迫振动 共振人教版第一册
高中物理受迫振动 共振人教版第一册

受迫振动共振

一、教学目标

1.知道什么是受迫振动,知道受迫振动的频率等于驱动力的频率.

2.知道什么是共振以及发生共振的条件,知道共振的应用和防止的实例.

二、教学重点、难点分析

1.理解受迫振动的频率等于驱动力的频率。

2.掌握共振的条件及其应用。

三、教具

受迫振动演示器,共振演示器,两个频率相等的音叉

四、教学方法

实验观察、讲授

五、教学过程

(-)引入新课

上节课讲了阻尼振动,在外力使弹簧振子的小球和单摆的摆球偏离平衡位置后,它们就在系统内部的弹力或重力作用下振动起来,不再需要外力的推动,这种振动叫做自由振动,由于阻力不可避免,这样的振动最终都会停下来。那么我们有无使它们振幅不减小的办法呢?(提问)那就是给系统不断补充能量,即给系统一个周期性的外力,使该外力对系统做功来不断补充系统所损失的能量,使其不断振动下去,这种振动叫受迫振动,这就是本节课我们要研究的内容。

【板书】七受迫振动共振

(二)进行新课

【演示1】受迫振动:课本图9-29所示装置中弹簧下面悬挂着重物,放手后让它振动,由于阻尼作用,重物很快停止振动,如果不断地转动摇把,即用周期性的外力作用于振动的物体,重物就会不断地振动,这就是受迫振动。

【板书】1、受迫振动

(1)驱动力:维持受迫振动的周期性外力叫做驱动力。

(2)受迫振动:物体在外界驱动力作用下的振动叫做受迫振动。

提问:“请同学们举出你所知道的受迫振动的例子。”

学生举例:跳水运动员在跳板上行走时跳板所发生的振动;机器工作时机器底座所发生的振动,都是由于受到外界驱动力作用下所做的受迫振动。那么做受迫振动的物体在振动时的频率由什么决定呢?请同学们进一步观察实验。

(以日常生活中的实例激发学生的学习兴趣,

【演示2】受迫振动

把重物提到某一高度,放手后让它做自由振动,记住它的振动频率(或周期),这个频率是系统的固有频率,然后以各种不同速度转动摇把,振子做受迫振动的周期也随之改变,转速大,振子振动的频率也随之增大,由此得出结论。

【板书】(3)物体受迫振动时,振动稳定后的频率等于驱动力的频率,跟物体的固有频率无关。

振子的固有频率由什么决定的呢?任何物体都有自身的特殊的结构,它们的固有频率是由这些结构所决定的,单摆的固有频率是由摆长和当地的重力加速度所决定的,弹簧振子的固有频率是由弹簧和小球所决定的,而与外界无关。

虽然物体做受迫振动的频率是由驱动力频率决定的,而与物体的固的频率无关,但物体做受迫振动的振幅是否与物体的固有频率有联系呢?

【演示3】共振

在一根张紧的绳子上挂几个摆(课本图9-30),其中A、B、C的摆长相等.当A 摆振动的时候,通过张紧的绳子给其他各摆施加驱动力.当A摆动的时候,其余各摆也随之做受迫振动,而此时驱动力的频率就是A摆的固有频率.

实验表明,固有频率跟驱动力频率相等的B摆和C摆振幅最大;固有频率跟驱动力相差最大的D摆振幅最小.由此得出结论:做受迫振动的物体振幅A与驱动力的频率f的关系曲线.当驱动力的频率f与物体的固有频率f′接近时,物体的振幅越大;当物体所受的驱动力频率与物体的固有频率相等时,物体振动振幅最大.在做实验1时,我们也看到当把手转速达到某一数值时,即驱动力的频率等于振子的固有频率时,振子振幅最大,这种现象叫做共振.

【板书】2、共振

(1)共振:驱动力的频率接近物体的固有频率时,受迫振动的振幅增大,这种现象叫做共振。

【演示4】声音的共鸣(课本图 9-32).

取两个频率相同的音叉A和B,相隔不远并排放在桌上,打击音叉A的叉股,使它发声.过一会儿,用手按住音叉A的叉股,使它停止发音,可以听到没有被敲的音叉B发出了声音.如果在音叉B的叉股上套上一个套管来改变B叉的固有频率,重复上述实验,就听不到音叉B发出的声音.

如何来解释这种现象呢?音叉A振动后,在空气中激起声波,声波传到B后,给B 一个周期性的驱动力.由于驱动力的频率跟音叉B的固有频率相等,于是B发生共振,发出声音.这种声音的共振现象叫做共鸣.

【板书】(2)共鸣

音叉下面所装的空箱叫共鸣箱,音叉发声后,共鸣箱发生共鸣,可以使音叉的声音加强,家用的音箱的原理类似于此.

在日常生活、生产中有些共振对人类有益,有些共振对人类有害,如何利用共振和防止共振呢?

【板书】(3)共振的应用和防止

共振现象有许多应用,把一些不同长度的钢片装在同一个支架上,可用于制成测量发动机转速的转速计.使转速计与开动着的机器紧密接触,机器振动引起转速计的轻微振动,这时固有频率与机器运转频率相同的那片钢片发生共振,有较大的振

幅.若已知钢片的固有频率,就可知道机器的转速.

共振筛(课本图9-33)也是利用共振现象制成的.把筛子用四根弹簧支起来,在筛架上安装一个偏心轮,就成了共振筛.偏心轮在发动机的带动下发生转动时,适当调节偏心轮的转速,可以使筛子受到驱动力的频率接近筛子的固有频率,这时筛子发生共振,有较大的振幅,提高了筛除杂物的效率.

在某些情况下,共振也可能造成损害.军队或火车过轿时,整齐的步伐或车轮对铁轨接头处的撞击会对桥梁产生周期性的驱动力,如果驱动力的频率接近桥梁的固有频率,就可能使桥梁的振幅显著增大,以致使桥梁发生断裂.因此,部队过桥要用便步,以免产生周期性的驱动力.火车过桥要慢开,使驱动力的频率远小于桥梁的固有频率.

轮船航行时,如果所受波浪冲击力的频率接近轮船左右摇摆的固有频率,可能使轮船倾覆,这时可以改变轮船的航向和速度,使波浪冲击力的频率远离轮船摇摆的固有频率.

机器运转时,零部件的运动(如活塞的运动、轮的转动)会产生周期性的驱动力,如果驱动力的频率接近机器本身或支持物的固有频率,就会发生共振,使机器或支持物受到损坏.这时要采取措施,如调节机器转速,使驱动力的频率与机器或支持物的固有频率不一致.同样,厂房建筑物的固有频率也不能处在机器所能引起的振动频率范围之内.

总之,在需要利用共振时,应使驱动力的频率接近或等于振动物体的固有频率;在需要防止共振时,应使驱动力的频率与物体的固有频率不同,而且相差越大越好.(三)巩固练习

1.A、B两个单摆,A摆的固有频率为f, B摆的固有频率为 4f.若让它们在频率为 5f的驱动力作用下做受迫振动,那么 A、B两个单摆比较

A.A摆的振幅较大,振动频率为f.

B.B摆的振幅较大,振动频率为 4f.

C.A摆的振幅较大,振动频率为 5f.

D.B摆的振幅较大,振动频率为 5f.

2.一船在海上以某速度朝东北方向行驶,正遇上自北向南的海浪,海浪每分钟拍打船体15次,船在水中振动的固有周期是6s,为避免发生共振,以下可采用的四种措施中,最有效的是

A.把船改向东航行,并使船速增大.

B.把船改向东航行,并使船速减小.

C.把船改向北航行,并使船速增大.

D.把船改向北航行,并使船速减小.

3.支持车厢的弹簧固有频率是2 Hz,列车行驶在铁轨长度为12.5 m的铁路上,当行驶速度为多大时,车厢振动最强烈?

(四)作业

受迫振动共振教案19

2011年广西中学物理优质课评比课教案 受迫振动共振 教学目标 一、知识目标 1.知道受迫振动的概念. 2.知道受迫振动频率的决定因素. 3.知道产生共振的条件. 4.知道共振应用和防止的方法. 二、能力目标 1.培养学生从现象中分析、归纳规律的学习能力. 2.培养学生对所学知识的应用能力. 三、德育目标 1.通过对受迫振动及共振概念的教学.培养学生树立“透过现象看本质”的科学观. 2.通过对共振危害的学习,培养学生居安思危的安全意识. 教学重点 1.知道什么是受迫振动. 2.知道共振的产生条件. 教学难点 1.理解共振与受迫振动的关系. 2.理解共振与驱动力的关系. 教学方法 1.对概念教学采用实验演示、分析、归纳相结合的教学方法. 2.对共振应用和防止的教学采用指导性自学与录像、多媒体教学相结合的教学方法. 教学用具 投影片、录像片断、flash课件,受迫振动演示仪、音叉、单摆共振演示仪等. 教学过程 (一)复习提问 让学生注意观察教师的演示实验。教师把弹簧振子的振子向右移动至B点,然后释放, 则振子在弹性力作用下,在平衡位置附近持续地沿直线振动起来。重复两次让学生在黑板上画出振动图象的示意图(图1中的Ⅰ)。 再次演示上面的振动,只是让起始位置明显地靠近平衡位置,再让学生在原坐标上画出第二次振子振动的图象(图1中的Ⅱ)。Ⅰ和Ⅱ应同频、同相、振幅不同。

教师把画得比较标准的投影片向学生展示。 结合图象和振子运动与学生一起分析能量的变化并引入新课。 (二)新课教学 现在以弹簧振子为例讨论一下简谐运动的能量问题。 问:振子从B向O运动过程中,它的能量是怎样变化的?引导学生答出弹性势能减少,动能增加。 问:振子从O向C运动过程中能量如何变化?振子由C向O、又由O向B运动的过 程中,能量又是如何变化的? 问:振子在振动过程中总的机械能如何变化?引导学生运用机械能守恒定律,得出在不计阻力作用的情况下,总机械能保持不变。 教师指出:将振子从B点释放后在弹簧弹力(回复力)作用下,振子向左运动,速度加大,弹簧形变(位移)减少,弹簧的弹性势能转化为振子的动能。当回到平衡位置O时,弹簧无形变,弹性势能为零,振子动能达到最大值,这时振子的动能等于它在最大位移处(B点) 弹簧的弹性势能,也就是等于系统的总机械能。 在任何一位置上,动能和势能之和保持不变,都等于开始振动时的弹性势能,也就是系统的总机械能。 由于简谐运动中总机械能守恒,所以简谐运动中振幅不变。如果初始时B点与O点的距离越大,到O点时,振子的动能越大,则系统所具有的机械能越大。相应地,振子的振 幅也就越大,因此简谐运动的振幅与能量相对应。 问:从能量的观点来看,Ⅰ和Ⅱ哪一个振动的机械能多?学生答出Ⅰ的机械能多。 教师可以指出:可以证明,对于简谐运动,系统的机械能与振幅的平方成正比,即 其中E是振动系统的机械能,k是简谐运动中回复力与位移的比例系数,A是振幅,A 越大,E越大。 简谐运动是一种理想化的振动,像弹簧振子和单摆那样,一旦提供振动系统一定的能量,由于机械能守恒,它们就要以一定的振幅永不停息地振动下去。可是实际上振动系统不

受迫振动和共振复习练习题(含解析2015高考物理一轮)

受迫振动和共振复习练习题(含解析2015高考物理一轮) 受迫振动和共振复习练习题(含解析2015高考物理一轮) 1.弹簧振子在振动过程中振幅逐渐减小,这是由于( ) A.振子 开始振动时振幅太小 B.在振动过程中要不断克服外界阻力做功,消耗能量 C.动能和势能相互转化 D.振子的机械能逐渐转化为内能2.在飞机的发展史中有一个阶段,飞机上天后不久,飞机的机翼很 快就抖动起来,而且越抖越厉害,后来人们经过了艰苦地探索,利用在飞机机翼前缘处装置一个配重杆的方法解决了这一问题,在飞机机冀前装置配重杆的主要目的是( ) A.放大飞机的惯性 B.使机体更加平衡 C.硬机翼更加牢固 D.改变机翼的固有频率 3.如图所示,五个摆悬挂于同一根绷紧的水平绳上,A是摆球质量较大的摆,让它摆动后带动其他摆运动.下列结论正确的是( ) 第3题图 A.其他各摆的振动周期与A摆的相同 B.其他各摆的振幅都相等C.其他各摆的振幅不同,E摆的振幅最大 D.其他各摆的振动周期 不同,D摆周期最大 4.有A,B两个弹簧振子,A的固有频率为f,B的固有频率为4f.如果它们都在频率为3f的驱动力作用下做受迫振动.那么,下列结论正确的是( ) A.振子A的振幅较大,振动频率为f B.振子B的振幅较大,振动频率为3f C.振子A的振幅较大,振动频率为3f D.振子B的振幅较大,振动频率为4f 5.某简谐振子,自由振动时的振动图象如图(a)中的曲线Ⅰ所示,而在某驱动力 作用下做受迫振动时,稳定后的振动图象如图(a)中的曲线Ⅱ所示, 那么,此受迫振动对应的状态可能是如图(b)中的( ) (a) (b) 第5题图 A.a点 B.b点 C.c点 D.一定不是c点 6.铺设 铁轨时,每两根钢轨接缝处都必须留一定的间隙,匀速运行列车经过轨端接缝处时,车轮就会受一次冲击.由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动.普通钢轨长12.6m,列车固有振动周期为0.315s.下列说法正确的是( ) A.列车的危险速率为40m/s B.列车过桥需要减速,是为了防止列 车发生共振现象 C.列车运行的振动频率和列车的固有频率总是相等的 D.增加钢轨的长度有利于列车高速运行 7.一个单摆做受迫振动,

音叉的受迫振动与共振实验

2.13音叉的受迫振动与共振实验 受迫振动与共振等现象在工程和科学研究中经常用到。如在建筑、机械等工程中,经常须避免共振现象,以保证工程的质量。而在一些石油化工企业中,常用共振原理,利用振动式液体密度传感器和液体传感器,在线检测液体密度和液位高度,所以受迫振动与共振是重要的物理规律受到物理和工程技术广泛重现。 【实验目的】 (1)研究音叉振动系统在周期性外力作用下振幅与强迫力频率的关系,测量及绘制振动系统的共振曲线,并求出共振频率和振动系统振动的锐度,运用计算机进行实时测量,自动分析扫描的曲线。 (2)音叉共振频率与对称双臂质量关系曲线的测量,求出音叉共振频率与附在音叉双臂一定位置上相同物块质量的关系公式。 (3)通过测量共振频率的方法,测量一对附在音叉固定位置上物块的质量。 【实验原理】 1.简谐振动与阻尼振动 许多振动系统如弹簧振子的振动、单摆的振动、扭摆的振动等,在振幅较小而且在空气阻尼可以忽视的情况下,都可作简谐振动处理,即此类振动满足简谐振动方程 (1) 02022=+x dt x d ω(1)式的解为(2)) cos(0?ω+=t A x 式中,A 为系统振动最大振幅,为圆频率,为初相位。 0ω?对弹簧振子振动圆频率,为弹簧劲度,为振子的质量,为弹簧的等效0 0m m K += ωK m 0m 质量。弹簧振子的周期满足T (3) )(402 2m m K T +=π但实际的振动系统存在各种阻尼因素,因此(1)式左边须增加阻尼项。在小阻尼情况下,阻

尼与速度成正比,表示为,则相应的阻尼振动方程为dt dx β2(4)022022=++x dt dx dt x d ωβ式中为阻尼系数。 β2.受迫振动与共振 阻尼振动的振幅随时间会衰减,最后会停止振动,为了使振动持续下去,外界必须给系统一个周期性变化的力(一般采用的是随时间作正弦函数或余弦函数变化的力),振动系统在周期性的外力作用下所发生的振动称为受迫振动,这个周期性的外力称为策动力。假设策动力有简单的形式:,为策动力的角频率,此时,振动系统的运动满足下列方程 t F f ωcos 0=ω(5) t m F x dt dx dt x d ωωβcos '202022=++(5)式中,为振动系统的有效质量。 m ′式(5)为振动系统作受迫振动的方程,它的解包括 两项,第一项为瞬态振动,由于阻尼存在,振动开始后振 幅不断衰减,最后较快地为零;而后一项为稳态振动的解, 其为) cos(?ω+=t A x 式中 (6)()22222004ωβωω+?′= m F A 3.共振由式(6)可知,稳态受迫振动的位移振幅随策动力的频率而改变,当策动力的频率为某一特定值时,振幅达到极大值,此时称为共振。振幅达到极大值时的角频率为 (7) 2 202βωωγ?=振幅最大值为 图1共振曲线的锐度

二、单摆、受迫振动与共振

二、单摆、受迫振动与共振 (一)单摆 1.装置:悬挂小球的细线的伸缩量和质量可以忽略,线长又比球的直径大得多。 2.做简谐运动的条件:最大摆角θ<10°。 3.回复力:回复力由重力的切向分力来提供,大小为x l mg F -=,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力不为零,方向指向悬点,作为圆运动的向心力。 4.单摆的周期:g l T π2=(与单摆的振幅、摆球的质量无关) 5.小球在光滑圆弧上的往复滚动,和单摆完全等同,只要摆角足够小,这个振动就是简谐运动,这时周期公式中的l 应该是圆弧半径R 。 (二)受迫振动与共振 1.受迫振动: (1)含义:物体在驱动力(既周期性外力)作用下的振动叫受迫振动。 (2)特点:物体做受迫振动的频率等于驱动力的频率,与物体的固有频率无关。 2.共振 (1)共振曲线及特点 ①当驱动力的频率跟物体的固有频率相等时,受迫振动的振幅最大,这种现象叫共振。 ②物体做受迫振动的振幅由驱动力频率和物体的固有频率共同决定:两者越接近,受迫振动的振幅越大,两者相差越大受迫振动的振幅越小。 ③产生某一振幅可能有两个不同的驱动力频率 (2)共振的利用和防止 ①利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千…… ②防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢…… 1.等效单摆周期的求解 在有些振动系统中l 不一定是绳长,g 也不一定为9.8 m/s 2 ,因此出现了等效摆长和等效重力加速度的问题. (1)等效摆长:在振动平面内物体重心到旋转中心的距离. 例1.求出下述两种情况的振动周期

①在甲图中,三根等长的绳l 1、l 2、l 3共同系住一密度均匀的小球m ,球直径为d ,l 2、l 3与天花板的夹角α<30°.若摆球在纸面内做小角度的左右摆动,其周期T 1= .若摆球做垂直纸面的小角度摆动,其周期T 2= . ②如图乙所示,已知单摆摆长为L ,悬点正下方3L/4处有一个 钉子。让摆球做小角度摆动,其周期T 3= . 解析:①若摆球在纸面内做小角度的左右摆动,则摆动圆弧的 圆心在O 1处,故等效摆长为l 1+2d ,周期T 1=2πg d l /)2 (1+. 若摆球做垂直纸面的小角度摆动,则摆动圆弧的圆心在O 处,故等效摆长为l 1+l 2sin α+2d ,周期T 2=2πg d l l /)2 sin (21++α. ②该摆在通过悬点的竖直线两边的运动都可以看作简谐运动,周期分别为g l T π 21=和g l T π=2,因此周期为 :g l T T T 232221π =+= (2)等效重力加速度g ′:由单摆所在的空间位置和环境决定,g ′变化与否,关键是看加某种因素后对回复力又无影响。单摆位于天体表面附近摆动时,设天体的质量为M ,半径为R ,摆球的质 量为m ,则其等效重力mg ′=GMm/R 2,等效重力加速度g ′=GM/R 2 例2.求出下述两种情况的振动周期: ①若给摆长为l 、摆球质量为m 的单摆带上电荷量为q 的正电荷,将其放在竖直向下的匀强电场E 中 ②若在上述单摆的悬点处或悬点的正上方固定另一正的点电荷或加一方向垂直于振动方向所在平面的匀强磁场 解析:①让单摆平衡,将此时摆线张力大小写成与等效重力相等,即F=mg+qE=m (g+m qE )=mg ′,将g ′=g+m qE 换下单摆周期公式中的g ,即为此种情况下单摆周期的大小:m qE g l T +=π2 ②若在悬点处固定点电荷或加上面所述磁场后,摆球除受重力、摆线拉力作用外,又增加了库仑力或洛伦兹力.但由于库仑力或洛伦兹力始终沿摆线方向,在摆球运动的圆弧轨迹切线方向均无分力,也就是说,加上上述点电荷或磁场后,对单摆振动的回复力无任何影响,因此对单摆振动的快慢无任何影响,即单摆周期应不变,仍为.g l T π 2= 2.利用振动图象分析单摆的有关问题 例3.如图所示为一单摆及其振动图象,由图回答:

受迫振动共振上课教案

七受迫振动共振 【教学目标】 1、知识目标 (1)知道什么叫驱动力,什么叫受迫振动,能举出受迫振动的实例; (2)知道受迫振动的频率等于驱动力的频率,跟物体的固有频率无关; (3)知道什么是共振以及发生共振的条件; (4)知道共振的应用和防止的实例。 2、能力目标 (1)通过分析实际例子,得到什么是受迫振动和共振现象,培养学生联系实际,提高观察和分析能力; (2)了解共振在实际中的应用和防止,提高理论联系实际的能力。 3、德育目标 (1)通过共振的应用和防止的教学,渗透一分为二的观点; (2)通过共振产生条件的教学,认识因和外因的关系。 【教学重点】 (1)受迫振动概念的建立; (2)什么是共振及产生共振的条件。 【教学难点】 (1)物体发生共振决定于驱动力的频率与物体固有频率的关系,与驱动力大小无关; (2)当f=f'时,物体做受迫振动的振幅最大。 【教学方法】 实验演示、总结归纳与多媒体教学相结合 【教具准备】 受迫振动演示仪、共振演示仪、两个相同的带有共鸣箱的音叉、橡皮槌、CAI课件【课时安排】 1课时 【教学过程】 一、导入新课 实际的振动系统不可避免地要受到摩擦阻力和其他因素的影响,系统的机械能损耗,导

致振动完全停止,这类振动叫阻尼振动。物体之所以做阻尼振动,是由于机械能在损耗,那么如果在机械能损耗的同时我们不断地给振动系统补充能量,物体的振动情形又如何呢?本节课我们来学习这一问题。 二、新课教学 1、受迫振动 演示:用如图所示的实验装置,向下拉一下振子,观察它的振动情 况。 现象:振子做的是阻尼振动,振动一段时间后停止振动。 演示:请一位同学匀速转动把手,观察振动物体的振动情况。 现象:现在振子能够持续地振动下去。 分析:使振子能够持续振动下去的原因,是把手给了振动系统一个 周期性的外力的作用,外力结系统做功,补偿系统的能量损耗。 (1)驱动力:使系统持续地振动下去的外力,叫驱动力。 (2)受迫振动:物体在外界驱动力作用下所做的振动叫受迫振动。 要想使物体能持续地振动下去,必须给振动系统施加一个周期性的驱动力作用。 受迫振动实例:发动机正在运转时汽车本身的振动;正在发声的扬声器纸盒的振动;飞机从房屋上飞过时窗玻璃的振动;我们听到声音时耳膜的振动等。 (多媒体展示几个受迫振动的实例) ①电磁打点计时器的振针;②工作时缝纫机的振针;③扬声器的纸盒;④跳水比赛时,人在跳板上走过时,跳板的振动;⑤机器底座在机器运转时发生的振动。 (3)受迫振动的特点 做简谐运动的弹簧振子和单摆在振动时,按振动系统的固有周期和固有频率振动。通过刚才的学习,我们知道物体在周期性的驱动力作用下所做的振动叫受迫振动;那么周期性作用的驱动力的频率、受迫振动的频率、系统的固有频率之间有什么关系呢? 演示:用前面的装置实验。用不同的转速匀速地转动把手,观察振子的振动快慢情况。 现象:当把手转速小时,振子振动较慢;当把手转速大时,振子振动较快。物体做受迫振动时,振动物体振动的快慢随驱动力的周期而变化。 总结:①物体做受迫振动时,振动稳定后的频率等于驱动力的频率;②受迫振动的频率跟物体的固有频率没有关系。 2、共振 (1)共振摆实验

高考物理一轮复习 课时作业(五十二)单摆 受迫振动和共振

课时作业(五十二)单摆受迫振动和共振 班级:____________姓名:____________ 1.(多选)在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议.其中对提高测量结果精确度有利的是() A.适当加长摆线 B.质量相同、体积不同的摆球,应选用体积较大的 C.单摆偏离平衡位置的角度不能太大 D.当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期 2.某同学做“用单摆测定重力加速度”的实验时,测得的重力加速度数值明显大于当地的重力加速度的实际值.造成这一情况的可能原因是() A.测量摆长时,把悬挂状态的摆线长当成了摆长 B.测量周期时,当摆球通过平衡位置时启动秒表,记为第0次,此后摆球第30次通 求得周期 过平衡位置时制动秒表,读出经历的时间为t,并由计算式T=t 30 C.开始摆动时振幅过小 D.所用摆球的质量过大 3.两个弹簧振子,甲的固有频率是100Hz,乙的固有频率是400Hz,若它们均在频率是300Hz的驱动力作用下做受迫振动,则() A.甲的振幅较大,振动频率是100Hz B.乙的振幅较大,振动频率是300Hz C.甲的振幅较大,振动频率是300Hz D.乙的振幅较大,振动频率是400Hz 4.(多选)某振动系统的固有频率为f0,在周期性驱动力的作用下做受迫振动,驱动力的频率为f.若驱动力的振幅保持不变,下列说法正确的是() A.当ff0时,该振动系统的振幅随f减小而增大 C.该振动系统的振动稳定后,振动的频率等于f0 D.该振动系统的振动稳定后,振动的频率等于f 5.(多选)一个单摆做受迫振动,其共振曲线(振幅A与驱动力的频率f的关系)如图所示,则() 第5题图 A.此单摆的固有周期约为0.5s B.此单摆的摆长约为2m C.若摆长减小,单摆的固有频率增大 D.若摆长增大,共振曲线的峰将向左移动 6.(多选) 如图所示为同一地点的两单摆甲、乙的振动图象,则下列说法中正确的是() 第6题图 A.甲、乙两单摆的摆长相等 B.甲摆的振幅比乙摆大 C.甲摆的机械能比乙摆大 D.在t=0.5 s时有正向最大加速度的是乙摆

受迫振动与共振教学设计

1.5 受迫振动与共振 【教学目标】 (一)知识目标 1.知道什么叫驱动力,什么叫受迫振动,能举出受迫振动的实例; 2.知道受迫振动的频率等于驱动力的频率,跟物体的固有频率无关; 3.知道什么是共振以及发生共振的条件; 4.知道共振的应用和防止的实例。 (二)能力目标 1.通过分析实际例子,得到什么是受迫振动和共振现象,培养学生联系实际,提高观察和分析能力; 2.了解共振在实际中的应用和防止,提高理论联系实际的能力。 (三)德育目标 1.通过共振的应用和防止的教学,渗透一分为二的观点; 2.通过共振产生条件的教学,认识内因和外因的关系。 【教学重点】 1.受迫振动概念的建立; 2.什么是共振及产生共振的条件。 【教学难点】 1.物体发生共振决定于驱动力的频率与物体固有频率的关系,与驱动力大小无关; 2.当f=f'时,物体做受迫振动的振幅最大。 【教学方法】 实验演示、总结归纳与多媒体教学相结合 【教具准备】 受迫振动演示仪、共振演示仪、两个相同的带有共鸣箱的音叉、橡皮槌、CAI课件

【教学过程】 (一)导入新课 实际的振动系统不可避免地要受到摩擦阻力和其他因素的影响,系统的机械能损耗,导致振动完全停止,这类振动叫阻尼振动。物体之所以做阻尼振动,是由于机械能在损耗,那么如果在机械能损耗的同时我们不断地给振动系统补充能量,物体的振动情形又如何呢?本节课我们来学习这一问题。 (二)新课教学 1、受迫振动 演示:用如图所示的实验装置,向下拉一下振子,观察它 的振动情况。 现象:振子做的是阻尼振动,振动一段时间后停止振动。 演示:请一位同学匀速转动把手,观察振动物体的振动情 况。 现象:现在振子能够持续地振动下去。 分析:使振子能够持续振动下去的原因,是把手给了振动 系统一个周期性的外力的作用,外力结系统做功,补偿系统的 能量损耗。 (1)驱动力:使系统持续地振动下去的外力,叫驱动力。 (2)受迫振动:物体在外界驱动力作用下所做的振动叫受迫振动。 要想使物体能持续地振动下去,必须给振动系统施加一个周期性的驱动力作用。 受迫振动实例:发动机正在运转时汽车本身的振动;正在发声的扬声器纸盒的振动;飞机从房屋上飞过时窗玻璃的振动;我们听到声音时耳膜的振动等。 (多媒体展示几个受迫振动的实例) ①电磁打点计时器的振针;②工作时缝纫机的振针;③扬声器的纸盒;④跳水比赛时,人在跳板上走过时,跳板的振动;⑤机器底座在机器运转时发生的振动。 (3)受迫振动的特点 做简谐运动的弹簧振子和单摆在振动时,按振动系统的固有周期和固有频率振动。通过刚才的学习,我们知道物体在周期性的驱动力作用下所做的振动叫受迫振动;那么周期性作用的驱动力的频率、受迫振动的频率、系统的固有

高二物理选修3-4 受迫振动 共振

高二物理选修3-4 受迫振动共振 【教学目标】 一、知识与技能 1、掌握阻尼振动的概念,知道阻尼振动中的能量转化的情况; 2、知道在什么情况下可以把实际的振动看作简谐运动; 3、知道受迫振动和共振的概念;特点以及它们的区别和共同点; 4、知道受迫振动的频率等于驱动力的频率;与固有频率不同; 5、知道发生共振的条件;知道共振的应用和防止的实例。 二、过程与方法 1、通过再现实际振动情景,让学生知道实际的振动一般是阻尼振动 2、通过实际演示,总结归纳得到受迫振动的频率决定于驱动力的频率; 3、通过演示、举例,了解什么是共振, 并大致画出共振曲线,认识共振曲线的物理意义。 4、了解共振的应用和防止。 三、情感态度与价值观 1、培养学生善于观察与思考的学习习惯。 2、通过受迫振动的频率由驱动力的频率决定,认识内因和外因的关系。通 过共振的应用和防止的教学,渗透一分为二的观点; 3、懂得进行物理实验是学习与掌握物理知识的主要途经。 【教学重点、难点】 1、重点:受迫振动的概念;共振的概念及产生共振的条件。 2.难点:受迫振动的频率由驱动力的频率决定;当f驱=f固时,物体受迫振动的振幅最大。 【教学用具】 CAI课件、受迫振动演示仪、共振演示仪、两个相同的带有共鸣箱的音叉、小槌。 【教学过程】 一、创设情境,了解受迫振动 我们刚刚学过了弹簧振子和单摆。在忽略到它们所受的空气阻力和摩擦力时,系统的机械能守恒,它们会以不变的振幅永不停息地振动下去。这种振动我们称为等幅振动。 但是实际情况下这两种振子在振动过程中,肯定是要受到空气阻力的作用,

因此它们的振幅会越来越小,最后静止振动。这类振动我们称为阻尼振动。 提问:是不是所有的振动,只要有空气阻力存在,它们的振动都会越来越慢,最终停止的呢?(稍作停顿,让学生思考) 通过两个实例来帮助学生思考: 事例一:机械钟摆在摆动过程中,虽然受空气阻力,但是我们只要定期给这座 钟上发条,它会不会停下来? 事例二:如果一个人坐在秋千上玩,那秋千荡了一会就会停下来,那是因为秋 千在荡的过程中要受到空气阻力的作用。但如果旁边有一个人帮助推一下,只要他不停的推一下,那秋千摆动就不会停下来。 一般情况下,在空气中的振动最终都要停下来,但如果定期给它一个动力,用来补偿空气阻力所造成的能量损失,这个振动就可以一直维持下去。这种周期性的外力就叫做驱动力;这种情况下振子的振动已非己愿,它是被迫振动,所以物体在驱动力作用下的振动就称之为受迫振动。 (5) ⑤机器底座在机器运转时发生的振动 . 二、进一步认识受迫振动 通过刚才的学习,我们知道物体在周期性的驱动力作用下所做的振动叫受迫振动;那么做受迫振动的物体还是不是按自身的固有频率振动的呢? 受迫振动实验:介绍实验装置,先让振子做自由振动,说明振子做自由振动时周期与振幅无关,振子的频率或周期是振子的本身的属性,所以他们的频率或周期称之为固有频率或固有周期。 说明摇柄的作用,再摇动摇柄,让学生注意观察摇柄的节奏和下面所挂弹簧振子的振动关系。从而定性说明摇得越快,下面的弹簧振子振动得也越快。 同学们可以这样想:如果我用手握住下面所挂的勾码,让勾码振动起来,那是不是要它快就快,要慢就慢呢?这时振子的振动频率就和我的手的频率或周期保持一致。 能够从这个实验中得出什么结论?

高考物理复习专题简谐运动及其描述单摆受迫振动和共振

专题50 简谐运动及其描述 单摆 受迫振动和共振(测) 【满分:110分 时间:90分钟】 一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中.1~8题只有一项符合题目要求; 9~12题有多项符合题目要求。全部选对的得5分,选对但不全的得3分,有选错的得0分。) 1.关于单摆摆球在运动过程中的受力,下列说法中正确的是: ( ) A .摆球受到重力、摆线的张力、回复力、向心力作用 B .摆球受到的回复力为零时,向心力最大;回复力最大时,向心力为零 C .摆球受到的回复力最大时,摆线中的张力大小比摆球的重力大 D .摆球受到的向心力最大时,摆球的加速度方向沿摆球运动方向 【答案】B 【名师点睛】本题关键明确回复力和向心力的来源,并明确单摆的摆动过程,能正确分析摆动中的最高点和最低点的受力情况. 2.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间的动摩擦因数为μ,下列说法正确的是: ( ) A 、若t 时刻和()t t +?时刻物块受到的摩擦力大小相等,方向相反,则t ?一定等于 2T 的整数倍 B 、若2 T t ?=,则在t 时刻和()t t +?时刻弹簧的长度一定相同 C 、研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D 、当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于 m kx m M + 【答案】D

【名师点 睛】灵活利用整体法和隔离法解题是关键.要知道简谐运动的基本特征是F kx =-,但k 不一定是弹簧的劲度系数. 3.质点做简谐运动,其位移x 与时间t 的关系曲线如图所示,由图可知: ( ) A .振幅为4m ,频率为0.25Hz B .t =1s 时速度为零,但质点所受合外力为最大 C .t =2s 时质点具有正方向最大加速度 D .该质点的振动方程为)2sin( 2t x π= 【答案】C 【解析】 由图像读出,振幅为2cm ,周期为4s ,则频率为0.25Hz ,选项A 错误;t =1s 时质点在平衡位置,故此时速度最大,质点所受合外力为零,选项B 错误;t =2s 时质点在负向位移最大的位置,此时质点具有正方向最大加速度,选项C 正确;因22T ππω= =,故 该质点的振动方程为2cos()2x t π =,选项D 错误;故选C . 【名师点睛】本题简谐运动的图象能直接读出振幅和周期.对于质点的速度方向,也可以根据斜率读出.注意加速度与位移具有正比反向的关系。 4.弹簧振子在光滑水平面上做简谐运动,在振子向着平衡位置运动的过程中: ( ) A .振子所受的回复力逐渐增大 B .振子离开平衡位置的位移逐渐增大 C .振子的速度逐渐增大 D .振子的加速度逐渐增大 【答案】C

受迫振动 共振说课

受迫振动共振 一、教学目标 1.知道什么是受迫振动,知道受迫振动的频率等于驱动力的频率. 2.知道什么是共振以及发生共振的条件,知道共振的应用和防止的实例. 二、教学重点、难点分析 1.理解受迫振动的频率等于驱动力的频率。 2.掌握共振的条件及其应用。 三、教具 受迫振动演示器,共振演示器,两个频率相等的音叉 四、教学方法 实验观察、讲授 五、教学过程 (-)引入新课 上节课讲了阻尼振动,在外力使弹簧振子的小球和单摆的摆球偏离平衡位置后,它们就在系统内部的弹力或重力作用下振动起来,不再需要外力的推动,这种振动叫做自由振动,由于阻力不可避免,这样的振动最终都会停下来。那么我们有无使它们振幅不减小的办法呢?(提问)那就是给系统不断补充能量,即给系统一个周期性的外力,使该外力对系统做功来不断补充系统所损失的能量,使其不断振动下去,这种振动叫受迫振动,这就是本节课我们要研究的内容。【板书】七受迫振动共振 (二)进行新课 【演示1】受迫振动:课本图9-29所示装置中弹簧下面悬挂着重物,放手后让它振动,由于阻尼作用,重物很快停止振动,如果不断地转动摇把,即用周

期性的外力作用于振动的物体,重物就会不断地振动,这就是受迫振动。 【板书】1、受迫振动 (1)驱动力:维持受迫振动的周期性外力叫做驱动力。 (2)受迫振动:物体在外界驱动力作用下的振动叫做受迫振动。 提问:“请同学们举出你所知道的受迫振动的例子。” 学生举例:跳水运动员在跳板上行走时跳板所发生的振动;机器工作时机器底座所发生的振动,都是由于受到外界驱动力作用下所做的受迫振动。那么做受迫振动的物体在振动时的频率由什么决定呢?请同学们进一步观察实验。 (以日常生活中的实例激发学生的学习兴趣, 【演示2】受迫振动 把重物提到某一高度,放手后让它做自由振动,记住它的振动频率(或周期),这个频率是系统的固有频率,然后以各种不同速度转动摇把,振子做受迫振动的周期也随之改变,转速大,振子振动的频率也随之增大,由此得出结论。 【板书】(3)物体受迫振动时,振动稳定后的频率等于驱动力的频率,跟物体的固有频率无关。 振子的固有频率由什么决定的呢?任何物体都有自身的特殊的结构,它们的固有频率是由这些结构所决定的,单摆的固有频率是由摆长和当地的重力加速度所决定的,弹簧振子的固有频率是由弹簧和小球所决定的,而与外界无关。 虽然物体做受迫振动的频率是由驱动力频率决定的,而与物体的固的频率无关,但物体做受迫振动的振幅是否与物体的固有频率有联系呢? 【演示3】共振 在一根张紧的绳子上挂几个摆(课本图9-30),其中A、B、C的摆长相等.当A摆振动的时候,通过张紧的绳子给其他各摆施加驱动力.当A摆动的时候,其余各摆也随之做受迫振动,而此时驱动力的频率就是A摆的固有频率.实验表明,固有频率跟驱动力频率相等的B摆和C摆振幅最大;固有频率跟驱动力相差最大的D摆振幅最小.由此得出结论:做受迫振动的物体振幅A

华中科技大学大学物理实验报告_音叉的受迫振动与共振

华中科技大学音叉的受迫振动与共振 【实验目的】 1.研究音叉振动系统在驱动力作用下振幅与驱动力频率的关系,测量并绘制它们的关系曲线,求出共振频率和振动系统振动的锐度。 2.通过对音叉双臂振动与对称双臂质量关系的测量,研究音叉共振频率与附在音叉双臂一定位置上相同物块质量的关系。 3.通过测量共振频率的方法,测量附在音叉上的一对物块的未知质量。 4.在音叉增加阻尼力情况下,测量音叉共振频率及锐度,并与阻尼力小情况进行对比。【实验仪器】 FD-VR-A型受迫振动与共振实验仪(包括主机和音叉振动装置)、加载质量块(成对)、阻尼片、电子天平(共用)、示波器(选做用) 【实验装置及实验原理】 一.实验装置及工作简述 FD-VR-A型受迫振动与共振实验仪主要由电磁激振驱动线圈、音叉、电磁线圈传感器、支座、低频信号发生器、交流数字电压表(0~1.999V)等部件组成(图1所示) 1.低频信号输出接口 2.输出幅度调节钮 3.频率调节钮 4.频率微调钮 5.电压输入接口 6.电源开关 7.信号发生器频率显示窗 8.数字电压表显示窗 9.电压输出接口10.示波器接口Y11.示波器接口X12.低频信号输入接口13.电磁激振驱动线圈14.电磁探测线圈传感器15.质量块16.音叉17.底座18.支架19. 固定螺丝 图1 FD-VR-A型受迫振动与共振实验仪装置图 在音叉的两双臂外侧两端对称地放置两个激振线圈,其中一端激振线圈在由低频信号发生器供给的正弦交变电流作用下产生交变磁场激振音叉,使之产生正弦振动。当线圈中的电流最大时,吸力最大;电流为零时磁场消失,吸力为零,音叉被释放,因此音叉产生的振动频率与激振线圈中的电流有关。频率越高,磁场交变越快,音叉振动的频率越大;反之则小。另一端线圈因为变化的磁场产生感应电流,输出到交流数字电压表中。因为I=dB/dt,而dB/dt取决于音叉振动中的速度v,速度越快,磁场变化越快,产生电流越大,电压表显示的数值越大,即电压值和速度振幅成正比,因此可用电压表的示数代替速度振幅。由此可知,将探测线圈产生的电信号输入交流数字电压表,可研究音叉受迫振动系统在周期外力作用下振幅与驱动力频率的关系及其锐度,以及在增加音叉阻尼力的情况下,振幅与驱动力频率的关系及其锐度。

实验1 用摆球探究受迫振动和共振现象

实验1 用摆球探究受迫振动和共振现象 实验目的 探究受迫振动的振动频率由什么因素决定,以及发生共振的条件是什么。 实验器材 一组带小孔的金属小球(质量不同)、细绳、钢丝、电子秒表。 实验设计与步骤 1.改变甲球的振幅,测量乙球的周期。 2.改变乙球的绳长,测量乙球的周期。 3.不改变绳长,改变乙球的质量(如更换不同质量的小球或 在球上增加一块橡皮泥),测量乙球的周期。 4.改变甲球的绳长,测量乙球的周期。 5.用5个摆球演示共振现象,三个摆球的长摆相同,另外两 个摆长不同。 实验结果与分析 1.从小到大改变驱动球甲球的振幅,测量乙球的周期。 表7.4-1

实验分析:甲球的振幅改变,不影响乙球的振动周期(频率)。 2.改变乙球的绳长,测量乙球的周期变化。 表7.4—2 实验分析:乙球的振动周期(频率)不随着自身摆长(固有周期)的改变而改变。 3.不改变绳长,改变乙球的质量,测量乙球的周期变化。 表7.4-3 实验分析:乙球的振动周期(频率)不随着自身的质量的改变而改变。 4.改变甲球的绳长,测量乙球的周期变化。

表7.4-4 实验分析:甲球绳长的改变,即驱动周期(频率)的改变影响了乙球的振动周期(频率)的变化。 5.演示共振现象。 实验装置如图所示。球A、B、C的摆长一样,球E的摆长较短,球D的摆长最长。让球A振动起来,观察其他小球振动稳定后的现象。 实验现象:与球A同摆长的球B、C的振幅最大,摆长与球A越接近的球E的振幅次之,球D的振幅最小。 实验分析:对于摆长与球A同摆长的球B、C,即固有周期(频率)与驱动力周期(频率)相等的摆球的振动,振幅最大;固有周期(频率)与驱动力周期(频率)相差最大的摆球(如球D)的振幅最小。 结论与解释 为了使阻尼振动能够持续的周期性振动,可以施加外界驱动力;受迫振动的物体振动稳定后的频率等于驱动力的频率,与物体的固有频率无关;当驱动力的频率接近或等于物体的

第50课时 简谐运动及图象、单摆、受迫振动(修订版)

第50课时简谐运动及图象、单摆、受迫振动 1 单摆、单摆的周期公式Ⅰ弹簧振子周期公式不要求 2 简谐运动的公式和图像Ⅱ 3 受迫振动和共振Ⅰ ■预习内容■:教科版选修3-4 P2-P13 ◇知识整理◇: 一、简谐运动 1.物体在平衡位置附近所做的,叫做机械振动,产生条件是、。 2.叫做回复力。 3.如果振动物体离开平衡位置后,所受到的回复力,即F kx =- 回 ,则物体所做的往复运动就是简谐运动;简谐运动的表达式是。 4.简谐运动的图像表示,振动图像不是质点的运动轨迹。 二、单摆 单摆是一种理想化模型,摆线的质量不计且,摆球的直径比摆线的长,摆球可视为;单摆的振动可看作简谐运动的条件是:。作简谐运动的单摆的周期公式为。 三、振动能量、受迫振动 1.振动过程是一个动能和势能不断转化的过程,在任意时刻,动能和势能之和等于振动物体总的机械能。没有损耗时,振动过程中总机械能守恒。振动物体的总机械能的大小与有关,振幅越大,振动能量越大。简谐运动的振幅不变,总机械能守恒。 2.振动,叫做阻尼振动。振动系统受到的阻尼越大,振幅减小得越快,振动停下来也越快。阻尼过大时,系统将不能发生振动。 阻尼振动的,因此阻尼振动的机械能不守恒,阻尼振动又叫减幅振动。相对的,振幅不变的振动,叫做无阻尼振动,又叫振动。 注意:等幅振动、阻力振动是从振幅是否变化的角度来区分的,等幅振动不一定不受阻力作用。 3.叫受迫振动。物体做受迫振动时,振动稳定 课前准备区

后的振动频率等于 ,跟物体的 无关。 4.共振是一种特殊的受迫振动,当驱动力的频率接近或等于物体的固有频率时,受迫振动的振幅最大,这种现象叫做共振。声音的共振现象叫 。利用共振的方法是 ,直至等于振动系统的固有频率。如测速计、共振筛等。防止共振的方法是 。如车队便步过桥,轮船在大海中遇风暴时改变行向和行速等。 ●预习检测● 1.如图所示是一弹簧振子的振动图象,由图可知,该振子的振幅是 ,周期是 ,频率是 ,振子在0.8 s 内通过的路程是 ,若振子从A 时刻开始计时,那么到 点为止,振子完成了一次全振动,图象上B 点振子的速度方向是 ,D 点振子的速度方向是 。 2.关于简谐运动的位移、速度、加速度的关系,下列说法中正确的是( ) A .位移减小时,加速度增大,速度增大 B .位移方向总跟加速度方向相反,跟速度方向相同 C .物体运动方向指向平衡位置时,速度方向跟位移方向相反 D .物体向平衡位置运动时,做加速运动,背离平衡位置时,做减速运动 3.一弹簧振子做简谐运动,O 为平衡位置,当它经过O 点时开始计时,经过0.3 s ,第一次到达M 点,再经过0.2 s 第二次到达M 点,则弹簧振子的周期为 ( ) A .s 3 6.1 B .1.4s C .1.6s D .3s

FD-FV-I受迫振动与共振实验仪

音叉的受迫振动与共振实验 一、预备问题 1、 实验中策动力的频率为200Hz 时,音叉臂的振动频率为多少? 2、实验中在音叉臂上加砝码时,为什么每次加砝码的位置要固定? 二、引言 实际的振动系统总会受到各种阻力。系统的振动因为要克服内在或外在的各种阻尼而消耗自身的能量。如果系统没有补充能量,振动就会衰减,最终停止振动。要使振动能持续下去,就必须对系统振子施加持续的周期性外力,以补充因各种阻尼而损失的能量。振子在周期性外力作用下产生的振动叫做受迫振动。当外加的驱动力的频率与振子的固有频率相同时,会产生共振现象。 音叉是一个典型的振动系统,其二臂对称、振动相反,而中心杆处于振动的节点位置,净受力为零而不振动,我们将它固定在音叉固定架上是不会引起振动衰减的。其固有频率可因其质量和音叉臂长短、粗细而不同。音叉广泛应用于多个行业,如用于产生标准的“纯音”、鉴别耳聋的性质、用于检测液位的传感器、用于检测液体密度的传感器、以及计时等等。 本实验借助于音叉,来研究受迫振动及共振现象。用带铁芯的电磁线圈产生不同频率的电磁力,作为驱动力,同样用电磁线圈来检测音叉振幅,测量受迫振动系统振动与驱动力频率的关系,研究受迫振动与共振现象及其规律。具有不直接接触音叉,测量灵敏度高等特点。 三、实验原理 1、音叉的电磁激振与拾振 将一组电磁线圈置于钢质音叉臂的上下方两侧,并靠近音叉臂。对驱动线圈施加交变电流,产生交变磁场,使音叉臂磁化,产生交变的驱动力。接收线圈靠近被磁化的音叉臂放置,可感应出音叉臂的振动信号。由于感应电流dt dB I / , dt dB /代表交变磁场变化的快慢,其值大小取决于音叉振动的速度,速度越快,磁场变化越快,产生的电流越大,从而使测得的电压值越大。所以,接收线圈测量电压值获得的曲线为音叉受迫振动的速度共振曲线。相应的输出电压代表了音叉的速度共振幅值。

(完整word版)自激振动、自由振动、受迫振动和共振[转]

自激振动、自由振动、受迫振动和共振[转] 自激振动:结构系统受到自身控制的激励作用时所引起的振动。 自由振动:定义1:激励或约束去除后出现的振动。定义2:引起振动的激励除去后,结构系统所保持的振动。自激振动系统为能把固定方向的运动变为往复运动(振动)的装置,它由三部分组成:①能源,用以供给自激振动中的能量消耗;②振动系统;③具有反馈特性的控制和调节系统。在振幅小的期间,振动能量可平均地得到补充;在振幅增大期间,耗散能量的组成,被包含在振动系统中,此时补充的能量与耗散的能量达到平衡而接近一定振幅的振动。心脏的搏动、颤抖、性周期等一些在生物中所看到的周期现象,有许多是自激振动。 自由振动:在外力使弹簧振子的小球和单摆的摆球偏离平衡位置后,它们就在系统内部的弹力或重力作用下振动起来,不再需要外力的推动,这种振动叫做自由振动。简单说自激振动初始状态为不动或只有些微的振动,由于外界驱动下可以自发的激励起来某个模式或多个模式,随着耗散和驱动而其中一个或几个模式增长,其他消亡。自激振动的频率一般就是自由振动频率,但是由于要维持振动就

必须有能量的输入,一般说来自激振动是非线性过程。常见的自激振动如机械表、风吹过某腔体而发声等;自由振动指无外加驱动,当系统偏离平衡状态而引起的振动,这个例子很多,如钟摆拉离平衡点引起的摆动,扔块石子在水面后引起的水波自由振动等。 区别:一个有持续或多次能量馈入,有耗散,振动可维持,一般为非线性过程。一个可以称之为只有一次能量馈入,当有耗散时最终振动会停止,自由振动只是与系统自身相关,可能线性也可能非线性。自由振动和自激振动的本质区别在于,自由振动的激励来自外界,并且只在初始受激励;而自激振动的激励来自自身,并一直存在。受迫振动:线性阻尼系统对简谐性激励的长期响应。为了弥补阻尼造成的机械能损失,使振动持续下去,也可以采用其它方式的激励。自激振动就是一种在单方向(即非振动型)的激励作用下,振动系统的响应。自激振动在激励方式上是不同于受迫振动的。并且,由此导致了另外两个不同点:一是受迫振动的长期行为与初始状态无关,而自激振动的形成却依赖于初始振动的存在,因为若没有初始振动,也就没有可以反馈的信号,系统不能“起振”。二是,受迫振动中,系统对外界激励作出的响应就是“服从”,即受迫振动频率等于简谐性驱动力的频率(当受迫振动驱动力频率等于固有频率时,即发生共振),而自激振动的频率为系统

受迫振动和共振的研究

受迫振动和共振的研究 振动科学是物理学的重要组成部分。其中受迫振动....和共振.. 问题的研究,不但在理论上涉及经典和现代物理科学的发展;更在工程技术领域受到极大的重视并不断取得新的成果。例如:在建筑、机械等工程问题中,经常须避免“共振”现象的出现以保证工程质量;但目前新研发的很多仪器和装置的工作原理又是基于各种“共振”现象的产生;在微观科学研究领域中“共振”也已成为重要的研究手段。 本实验以音叉振动系统为研究对象,用电磁激振线圈的电磁力作为驱动力使音叉起振;并以另一电磁线圈作为检测振幅传感器,观测受迫振动系统的振幅与驱动力频率之间的关系,以研究“受迫振动”与“共振”现象及其规律。 一、 实验目的 (1) 研究音叉振动系统在周期性外力作用下振幅与外力频率的关系,测绘其关系曲线,并求出系统的共振频率和系统的振动锐度(和品质因素Q 值有关的参量); (2) 通过改变音叉双臂同一位置处所加金属块的质量,研究系统的共振频率与系统质量的关系; (3) 通过测量音叉的共振频率,确定未知物体的质量,以了解音叉式传感器的工作原理; (4) 改变音叉阻尼状态,了解阻尼力对音叉系统的共振频率及其振动锐度的影响。 二、 实验原理 1. 简谐振动与阻尼振动 众所周知:弹簧振子、单摆、复摆、扭摆等振动系统在作小幅度振动,并且其所受各种阻尼力小到可以忽略的情况下,可视为简谐振动状态。此类振动满足下述简谐振动.... 方程: 02022=+x dt x d ω (1) 上式的解为: )cos(00?ω+=t A x (2) 以理想弹簧振子为例:其固有角频率m K =0ω,K 为弹簧的劲度系数,m 为振动系统的有效质量,振幅A 和初位相0?与振动系统的初始状态有关,系统的振动周期T =K m πωπ220=。即振动周期仅与系统的质量及弹簧的劲度系数有关;由此可知:理想弹簧振子的振动频率f=m K T π 211=。 但是,实际的振动系统存在各种阻尼因素。仍以弹簧振子为例:其振动幅度在摩擦力(空气阻力、内力等)的阻尼下会逐步减小直到零——即阻尼振动.... 状态。摩擦力的大小通常与振动速率有关,在多数情况下其大小与速率成正比而方向相反,可以dt dx b ?表述。由牛顿第二定律ma F =给出的阻尼运动方程可以表示为:22dt x d m dt dx b Kx =??。则相应的阻尼振动....方程则为:

相关主题
文本预览
相关文档 最新文档