当前位置:文档之家› 硕士研究生结构有限元课件6

硕士研究生结构有限元课件6

硕士研究生结构有限元课件6
硕士研究生结构有限元课件6

2.2 梁在轴压下稳定性的变分原理及逼近计算 ( 曲屈问题buckling )

1.基本问题及认识: 现考虑上节的结构,仅轴向拉载改为压载-P 即:

P

P

(1)从挠度上看不稳定(由三角级数或其他方法可获及挠度解)

∑?∞

==-=10

2

224

43

sin

)

1(sin

2n l

n n

dx l

x

n q q EJn p l n l x

n EJ q l w ππππ 当P 从零增大时,级数中的每个分母逐渐减少,即级数的每一项的绝对值都在增加,假设外载荷只有01≠q ,当P 接近

2

2l

EJ

P cr π=

时,级数的第一项∞→,即当P 不大时,可导致很大的挠度,且与横向载荷的大小无关。 当P =P cr 时,即使没有横向载荷(即01===n q q )也可能产生横向挠度,因为这时

级数的第一项变为 ,(一个不确定值),可以不等于0。

再看一例:

(仅限制角度,不限制轴向位移)

分析可知:2

24l

EJ

P cr π= 上式说明,不同支持端条件,导致临界压力不同,故设计时支持端条件非常重要。 (2)从系统能量上看不稳定

由最小能量原理知,如系统处于稳定平衡状态,系统势能取最小值,意味着给一个挠度微量变化,则泛函的变分: ()()W W W δπδπ=?+()2

0w δ

π?>

因为:()22

22

2

11[()()]022l

d w d w w EJ N dx dx dx δπ???=+>? 但当N 变成-P 时,()2

w δ

π?逐步下降,变成0或负值。这意味着扰动后系统的势能增量

没有增加反而减小了(肯定平衡不稳定了),这种势能微量上的变化差为失稳时的运动能量。

00

q(x)

()20w δπ?=的点为临界点。

(当w w w δ=?→?,0) 此时,也意味着泛函的二阶变分等于零的点为临界点,与挠度的性质对应,当无横向载荷作用,轴向压载达到最大值,挠度不稳定(不确定)时,此刻泛函的二阶变分为零。 (3) 微分方程的本征值(eigen-value )问题

取横向载荷为0, 挠度w 的方程满足:(EJ 为变剖面梁)

0)(222222=+dx

w

d p dx w d EJ dx d 该方程仅有通解(无限多个) 梁的边界条件可能有多种情况,但都没有位移或外载荷,故在边界端点上可总结为:

000

022

22===+=dx

w d dx dw dx

w d p dx w d EJ dx d w 或或)(

因为方程及边界条件都是齐次的,故0=w 是一个解(平凡解),但当 ,,21P P P =的一系列值时,w 也有不等于零的解 21,??。

可以从级数解的结果上看到0,,1=n q q ,P 等于适当的值可使分母为零,变为不定型) 称: ,,21P P 为满足方程边界条件的本征值;而 21,??为本征向量。 由此说,P cr 就是最小的本征值。

* 在梁的轴压稳定性问题中,只有最小的本征值P 1与相应的本征函数有实用意义,其他本征值及本征函数只有理论意义。对于其他问题,如固有振动问题,则每个本征值及本征函数都有意义。

* 以上从不同的角度看待稳定性问题,事实上也导致不同的分析方法。 2. 稳定性问题的变分原理

由前面的分析可知,梁在新的位形(w+δw )上总位能的展开形式为:

+++=+πδδππδπ22

1

)()(w w w

其中:0=δπ(因为w 是平衡形态) 将πδ2

改写为:

π

??==-=l

l

dx w dx d v dx w dx d EJ w v p w

202222)(~)(~~~δδπδ 当处于不稳定平衡时,02

=πδ (分析如前)

即可以得到:??=

=l

l

dx w dx d

dx w dx d EJ v

w

P 0

20

2

22)(

)(~~δδ (从该式看应有无穷多个)

如前述,有实际意义的P 值应是其中数值最小的一个。 所以 min )~~

(min v

w P P cr ==

当无横向载荷作用,即P 未达到临界值时00≡w ,w δ代表偏离平衡位置的可能位移状态,

w w w w =-=0δ(取代上式的δw )

。于是,另一个角度 把v

w

P ~~=看成是w 泛函,P cr 是P 达到的最小值,即有P 的一阶变分为零,得到:

v v p w v v v w w v

v w v w P P ~~~~~~~

~~~~δδδδδδδδ-=-=-=?=20 0~≠v

? 0=-v p w ~~δδ ? 由此得到特征微分方程,这说明此泛函的选择是正确地。同时由微分方程的特征值问题的讨论,即有:

min min

v

w P )~~(= 所以: m i n

))(

)((

??=l

l

cr dx w dx

d

dx w dx d EJ P 020

2

22 称:泛函??=

l

l

dx w dx

d

dx w dx d EJ P 0

20

2

22)(

)(为瑞利商(Rayleigh quotient )

而))(

)((

??=l

l

dx w dx

d

dx w dx d EJ st P 0

20

222

为直梁屈曲问题的变分原理(直接应用新泛函,而不是原泛函

的二阶变分,此即Rayleigh d 商泛函的意义)。

作业:证明上述变分原理与原微分方程特征值问题等价。

说明:

(1)屈曲问题主要是系统的平衡位形发生了性质变化,平衡由稳定段达到了不稳定段的临

界点。

(2)平衡性质的变化表现在轴压逐渐增大过程中,(P

的势能增加,但增加的量在降低,即泛函二阶变分的值在降低,直至负值,达到屈曲临界状态。

(3)可引入瑞利商泛函,通过其一阶变分(驻值)来获得临界载荷。

(4)瑞利商变分的结果(即驻值点)可能多个(可从微分方程特征值角度理解),但只有

最小的一个是临界值。

(5)定义:一个系统变形后,如果它的势能恒大于零,则称这个系统是正定的;若可能大

于零,也可能小于零,则称这个系统是不定的。由此,曲屈临界载荷的第二个定义:当P

P cr 时,系统是不定的;P =P cr 点,系统从正定到不定的过渡状态,即处在随遇平衡状态。

(6)瑞利商中的两个积分具有明显的物理意义,分子是梁的弯曲应变能的两倍,分母是梁

两端的靠拢的两倍(指有滑动铰链支持)。

由挠度引起的微元伸长可以看出,即:

2

2221121111)()()(dx

dw dx dw dx dw dx dx ds =-+≈-+=- (7)系统进入不定阶段,由不同特征值对应不同的特征函数,可以证明这些特征函数有正

交特性,

即: ?=l

j

i dx dx d dx d 0

0??

3. 由Ritz 法求临界载荷的近似值

稳定性问题的两种求法{

微分方程特征值泛

函的驻立值

泛函驻立值计算原理:如欲求P cr 的精确解,必须在很大范围内的函数集求泛函的最小值,这等同于微分方程的特征值问题;如只欲求P cr 的近似解,就可在一个适当小的范围内的函数集中求泛函的最小值(函数范围选择不好,可能导致较大的误差)。 Rayleigh Quotient 泛函:

??=l

l

cr dx w dx

d

dx

w dx d EJ P 0

20

222

)(

)(min

w 在边界上满足:

位移边值:在x = 0及x = l 处:w =0(两端简支等剖面梁)

举例:边值条件:0022==l

x dx

w

d EJ ,| (自然边界条件) ①取只包含一参数α的函数集:

)(l

x l x w -=1α

代入泛函式,变成函数极值问题:

Note : '''2

22

(12)2

1212min cr x w l l

w l EJ EJ

P l l

α

α

=

-=-==

此解与精确解 22

cr EJ

P l

π=

误差偏大22%。

该近似函数一不满足微分方程;也不满足简支端上弯距等于0的自然边界条件;故与真实挠度相差甚远。(仅满足一定的连续性及基本边界条件) ② 取w 的范围稍宽些,使它包含在两个参数α、β,如下:

(1)[(1)]x x x x

w l l l l

αβ=

-+- 代入泛函式得函数极值问题(或称代数特征值问题):

22

2

221

125

min

535

cr EJ

P l αβααββ+=++ 解法(pay more attention ):

()()00=-?=ator deno P numerator

P min δδδ

()0=?-?r denominato P numerator δ

先将上式转化成隐形式

22222122221

()()0125355(,)(,)012cr cr l P EJ F K PK l P P EJ

ααββαβαβαβ++-+=?=-==

与微分方程形式类比,故称为代数特征值问题。求其驻值

''''

12212''

12000001()0(1)5112()0(2)5535F P K K PK K PK F K PK P P ααααββααβ

ααββαβ??=?--=?-=???=?-=??

-+=????

?-+=?? 变形代数方程组:'

'2(1)0(1)7

1(1)0(2)5P P P P βααβ?--=????--=??

两式相减 3

(1)35

P αβ?=- 代入(1)’式 239

10357

P P ?-+= 该方程的最小根为P = 0.8229

22

120.82299.875cr EJ EJ

P l l ??=

=

与精确界的误差只偏大6%0,保留两个参数就能得到这么好的结果,说明这个方法很有效。 ③一般情况下,取 ξ?

T

w =

=ξ[]T n ξξξ,,,21 :待定参数列;

=?[]T n ???,,,21 :关于x 的函数列,要求每个元素的二阶导存在及满足边界条件,实

际选取时,应尽量使前几个12,,?? 的线性组合就能相当好的逼近真实的失稳形态(有一定的经验性)。

代入稳定性问题的变分式即得: ξ

ξξξG K P T T cr min =

其中 ??==l T

l

T

dx

dx d dx d dx dx d dx d EJ 02

22202222G K ???? 转换为代数特征值形式:0G K =-=ξξξξT T P F 取驻值:

{}

0=??i F

ξ 0G K =-?ξξP ()0G K =-?ξP (广义特征值的问题) 解法放在与有限元一起讲。

结论:用Ritz 法解临界应力的近似值是非常有效的。

如果所有选取的W 函数具有一级极小误差,那么所求得的临界载荷的近似值误差就只有二级小量。这个结论出自下面的讨论:

如果所选取的挠度函数正是各本征函数的线性组合,由本征函数在积分意义下的正交特性,

稳定性问题的泛函可能转变为如下代数式:

++++++=2

333222221112

33332222221111ξξξξξξA A A A P A P A P P 其中{}i ξ为待定函数,12P P << 为各特征值;2

(

)l

i ii d A EJ dx dx

?=

?

,i ?为本征函数。 如果恰好选取1?,那么230ξξ=== ,于是上式得精确解。可见23,ξξ 相对于1ξ的大小,代表所选函数所具有的误差。如所选函数W 具有一阶小量的误差(23,ξξ 小于1ξ一个数量级),那么,所求得的临界力近似的误差就只有二级小量,即

+++=2

1

112

33332111222221ξξξξA A P A A P P P 4.用有限元素法求临界载荷的近似值

有限元法计算临界载荷的近似方法,对单元的划分、节点自由度的选择、形状函数的选取都与前面介绍的有限元素法完全相同,仅所用的泛函式不同,而且推导步骤,刚度矩阵,集合刚阵的数据公式也完全相同。最终获得的代数特征值方法也与Ritz 法的类似,仅数值

不同,即:

()[]

T

n n w w w U 0

U G P K θθθ,,,,,, 2211==- 在未置边界条件前。

解上式前应置入边界条件(方法如前所述),再进行特征值计算。

隐格式直接计算P 法:

思路:赋不同的P 值,然后计算行列式值,通过行列式符号的变化来判断根的位置,过程中可采用二分法或黄金分割法缩小搜索范围。 即:

021<->-G P K G P K 则根在[P 1,P 2]之内。

计算行列式可采用三角分解方法,以使行列式值容易计算 即 []

LS G P K =- L 为单位下三角;S 为上三角。 则:()∏==

-n

i ii

S

G P K 1

det

Note :此算法作为一个粗步的估计算值。

Homework :

P

有限元理论基础

有限元理论基础

有限元理论基础 2.1 数值模拟技术 2.1.1数值模拟技术简介 在工程技术领域中许多力学问题和场问题,实质上就是在一定的边界条件下求解一些微分方程。对于少数简单问题,人们可以通过建立它们的微分方程与边界约束求出该问题的解析解。但是对于比较复杂的数学方程问题以及不规则的边界条件通过激吻戏法往往难以求解,而需要借助各种数值模拟方法活的相应的工程数值解,这就是所谓的数值模拟技术。 在实际工程领域中,用数值模拟技术可以对复杂的工程结构进行受力和响应分析,这样可以在设计或者加工前预知实体结构工作状态下的大概情况。 目前在工程实际应用中,常用的数值求解方法有:有限单元法、有限差分法、边界元等但从实用性和使用范围来说,有限单元法则是随着计算机技术的发展而被广泛应用的一种行之有效的数值计算方法。 2.2.2 有限元法 有限元法是一种基于能量原理的数值计算

方法,是解决工程实际问题的一种有效的数值计 算工具。它是里茨法的另一种表示形式,它可应用里茨法分析的所有弹性理论。 限元法是处理连续的结构体离散或有限个单元集合,也就是将连续的求解域离散为一定数量的单元集合体。且每个单元都具有一定的节点,相邻单元通过节点相互连续,同时使用等效节点力代替作用于单元上的力和选定场函数的节点值作为基本未知量。并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律:进而利用力学中的某些变分原理去建立用以求解节点未知量的有限元法方程,从而将一个连续域中的无限自由度问题化为离散域中的有限自由度问题。求解后,可利用解出的节点值和设定的插值函数确定整个单元集体上的场函数。有限元求解问题中的单元分析:t t t a k F= 式中::t F单元节点作用力。 t K:单元刚度矩阵。 t a:单元节点位移。 通过单元分析确定单元刚度矩阵,建立单元节点作用力和单元为伊关系。有限元求解问题时建立 的结构整体平衡方程:P KU=

专业ABAQUS有限元建模经验笔记

基于ABAQUS的有限元分析和应用 第一章绪论 1.有限元分析包括下列步骤: 2.为了将试验数据转换为输入文件,分析者必须清楚在程序中所应用的和由实验人员提供的材料数据的应力和应变的度量。 3.ABAQUS建模需注意以下内容: 4.对于许多包含过程仿真的大变形问题和破坏分析,选择合适的网格描述是非常重要的,需要认识网格畸变的影响,在选择网格时必须牢牢记住不同类型网格描述的优点。 第二章ABAQUS基础 1.一个分析模型至少要包含如下的信息:离散化的几何形体、单元截面属性、材料数据、载荷和边界条件、分析类型和输出要求。 ①离散化的几何形体:模型中所有的单元和节点的集合称为网格。 ②载荷和边界条件: 2.功能模块: (1)Assembly(装配):一个ABAQUS模型只能包含一个装配件。 (2)Interaction(相互作用):相互作用与分析步有关,这意味着用户必须规定相互作用是在哪些分析步中起作用。 (3)Load(载荷):载荷和边界条件与分析步有关,这意味着用户指定载荷和边界条件是在哪些分析步中起作用。 (4)Job(作业):多个模型和运算可以同时被提交并进行监控。 3.量纲系统 ABAQUS没有固定的量纲系统,所有的输入数据必须指定一致性的量纲系统,常用的一致性量纲系统如下:

4.建模要点 (1)创建部件:设定新部件的大致尺寸的原则必须是与最终模型的最大尺寸同一量级。(2)用户应当总是以一定的时间间隔保存模型数据(例如,在每次切换功能模块时)。(3)定义装配: 在模型视区左下角的三向坐标系标出了观察模型的方位。在视区中的第2个三向坐标系标出了坐标原点和整体坐标系的方向(X,Y和Z轴)。 (4)设置分析过程: (5)在模型上施加边界条件和荷载: 用户必须指定载荷和边界条件是在哪个或哪些分析步中起作用。 所有指定在初始步中的力学边界条件必须赋值为零,该条件是在ABAQUS/CAE中自动强加的。 在许多情况下,需要的约束方向并不一定与整体坐标方向对齐,此时用户可定义一个局部坐标系以施加边界条件。 在ABAQUS中,术语载荷通常代表从初始状态开始引起结构响应发生变化的各种因素,包括:集中力、压力、非零边界条件、体力、温度(与材料热膨胀同时定义)。

有限元动力学分析知识点汇总

复习目录 一、模型输入、建模 A 输入几何模型 1、两种方法:No defeaturing 和 defeaturing (Merge合并选项、Solid实体选项、Small选项) 2、产品接口。输入IGES 文件的方法虽然很好,但是双重转换过程CAD > IGES > ANSYS 在很多情况下并不能实现100%的转换.ANSYS 的产品接口直接读入“原始”的CAD 文件,解决了上面提到的问题. 3、输入有限元模型。除了实体几何模型外, ANSYS 也可输入由某些软件包生成的有限元单元模型数据(节点和单元)。 B 实体建模 1、定义实体建模:建立实体模型的过程。(两种途径) 1)自上而下建模:首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状. ?开始建立的体或面称为图元. ?工作平面用来定位并帮助生成图元. ?对原始体组合形成最终形状的过程称为布尔运算 ?总体直角坐标系 [csys,0] 总体柱坐标系[csys,1] 总体球坐标系[csys,2] 工作平面 [csys,4] 2)自下而上建模:按照从点到线,从线到面,从面到体的顺序建立模型。 B 网格划分 1、网格划分三步骤: 定义单元属性、指定网格的控制参数、生成网格 2、单元属性(单元类型 (TYPE)、实常数 (REAL)、材料特性 (MAT)) 3、单元类型 单元类型是一个重要选项,它决定如下单元特性: 自由度(DOF)设置、单元形状、维数、假设的位移形函数。 1)线单元(梁单元、杆单元、弹簧单元) 2)壳用来模拟平面或曲面。 3)二维实体用于模拟实体截面 4)三维实体 ?用于几何属性,材料属性,荷载或分析要求考虑细节,而无法采用更简单的单元进行建模的结构。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

有限元动力学分析知识点

有限元动力学分析知识 点

复习目录 一、模型输入、建模 A 输入几何模型 1、两种方法:No defeaturing 和 defeaturing (Merge合并选项、Solid实体选项、Small选项) 2、产品接口。输入IGES 文件的方法虽然很好,但是双重转换过程CAD > IGES > ANSYS 在很多情况下并不能实现100%的转 换.ANSYS 的产品接口直接读入“原始”的CAD 文件,解决了上面提到的问题. 3、输入有限元模型。除了实体几何模型外, ANSYS 也可输入由某些软件包生成的有限元单元模型数据(节点和单元)。 B 实体建模 1、定义实体建模:建立实体模型的过程。(两种途径) 1)自上而下建模:首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状. ?开始建立的体或面称为图元. ?工作平面用来定位并帮助生成图元. ?对原始体组合形成最终形状的过程称为布尔运算 ?总体直角坐标系 [csys,0] 总体柱坐标系[csys,1] 总体球坐标系[csys,2] 工作平面 [csys,4] 2)自下而上建模:按照从点到线,从线到面,从面到体的顺序建立模型。

B 网格划分 1、网格划分三步骤: 定义单元属性、指定网格的控制参数、生成网格 2、单元属性(单元类型 (TYPE)、实常数 (REAL)、材料特性 (MAT)) 3、单元类型 单元类型是一个重要选项,它决定如下单元特性: 自由度(DOF)设置、单元形状、维数、假设的位移形函数。 1)线单元(梁单元、杆单元、弹簧单元) 2)壳用来模拟平面或曲面。 3)二维实体用于模拟实体截面 4)三维实体 ?用于几何属性,材料属性,荷载或分析要求考虑细节,而无法采用更简单的单元进行建模的结构。 ?也用于从三维CAD系统转化而来的几何模型,而这些几何模型转化成二维模型或壳体会花费大量的时间和精力 4、单元阶次与形函数 ?单元阶次是指单元形函数的多项式阶次。 ?什么是形函数? –形函数是指给出单元内结果形态的数值函数。因为FEA 的解答只是节点自由度值,需要通过形函数用节点自由 度的值来描述单元内任一点的值。 –形函数根据给定的单元特性给出。

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

有限元分析理论基础

有限元分析概念 有限元法:把求解区域瞧作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状与大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性与复杂的边界条件 有限元模型:它就是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:就是利用数学近似的方法对真实物理系统(几何与载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元就是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也就是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程就是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力与应变就是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有她们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题就是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系就是非线性关系。研究这类问题一般都就是假定材料的应力与应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触与摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。 有限元理论基础

abaqus 有限元分析(齿轮轴)

Abaqus分析报告 (齿轮轴) 名称:Abaqus齿轮轴 姓名: 班级: 学号: 指导教师:

一、简介 所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。 图1.齿轮轴装配结构图 二、模型建立与分析 通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。 1.part 针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。 2.材料属性 材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性 截面类型定义为solid,homogeneous。 4.组装 组装时选择dependent方式。 5.建立分析步 本例用通用分析中的静态通用分析(Static,General)。 6.施加边界条件与载荷 对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。 边界条件:分别在三个轴径突变处采用固定约束,如图2。 载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。 均布载荷比计算: 矩形键槽数据: 长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm 齿轮数据:= 齿轮分度圆半径:R2 =14.7mm、压力角:20°、 单个齿轮受力面积:S2 ≈72mm2 通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷

支架的有限元分析ABAQUS

支架的线性静力学分析实例:建模和分析计算 在此实例中读者将学习ABAQUS/CAE的以下功能。 1) Sketch功能模块:导人CAD二维图形,绘制线段、圆弧和倒角,添加尺寸,修改平面图,输出平面图。 2) Part功能模块:通过拉伸来创建几何部件,通过切割和倒角未定义几何形状。 3) Property功能模块:定义材料和截面属性。 4) Mesh功能模块:布置种子,分割实体和面,选择单元形状、单元类型、网格划分 技术和算法,生成网格,检验网格质量,通过分割来定义承受载荷的面。 5) Assembly功能模块:创建非独立实体。 6) Step功能模块:创建分析步,设置时间增量步和场变量输出结果。 7) Interaction功能模块:定义分布榈合约束(distributing coupling constraint)。 8) Load功能模块:定义幅值,在不同的分析步中分别施加面载荷和随时间变化的集中力,定义边界条件。 9) Job功能模块:创建分析作业,设置分析作业的参数,提交和运行分析作业,监控运行状态。 10) Visualization功能模块:后处理的各种常用功能。 结构静力学分析(static analysis)是有限元法的基本应用领域,适用于求解惯性及阻尼对结构响应不显著的问题。主要用来分析由于稳态外载荷引起的位移,应力和应变等。本章的静力学分析实例按照ABAQUS工程分析的流程对支架进行线性静力学分析,通过实例基本掌握了分析的流程,同时了解接触的定义。 1.问题描述 所示的支架,一端牢固地焊接在一个大型结构上,支架的圆孔中穿过一个相对较软的杆件,圆孔和杆件用螺纹连接。材料的弹性模量E=2100000MPa,泊松比为0.3。

有限元动力学分析方程及解法

动力分析中平衡方程组的解法 1前言 描述结构动力学特征的基本力学变量和方程与静力问题类似,但所有的变量都是时间的函数。 基本变量 三大类变量(,)i u t ξ、(,)ij t εξ和(,)ij t σξ是坐标位置(,,)x y z ξ和时间t 的函数,一般将其记为()()()i ij ij u t t t εσ。 基本方程 (1) 平衡方程 利用达朗贝尔原理将惯性力和阻尼力等效到静力平衡方程中,有 ,()()()()0ij j i i i t b t u t u t σρν+--=&&& (1) 其中ρ为密度,ν为阻尼系数。 (2) 几何方程 ,,1 ()(()())2ij i j j i t u t u t ε=+ (2) (3) 物理方程 ()()ij ijkl kl t D t σε= (3) 其中ijkl D 为弹性系数矩阵。 (4) 边界条件 位移边界条件()BC u 为, ()()i i u t u t = 在u S 上 (4) 力的边界条件()BC p 为, ()()ij j i t n p t σ= 在p S 上 (5) 初始条件 0(,0)()i i u t u ξξ== (6) 0(,0)()i i u t u ξξ==&& (7)

虚功原理 基于上述基本方程,可以写出平衡方程及力边界条件下的等效积分形式, ,() ()0p ij j i i i ij j i S u u b u d n p dA δσρνδσΩ∏=---+Ω+-=??&&& (8) 对该方程右端第一项进行分部积分,并应用高斯-格林公式,整理得, ()()0p ijkl ij kl i i i i i i i i S D u u u u d b u d p u dA εδερδνδδδΩΩ-++Ω-Ω+=???&&& (9) 有限元分析列式 单元的节点位移列阵为, 111222()[(),(),(),(),(),()(),(),()]e t k k k U t u t v t w t u t v t w t u t v t w t =L (10) 单元内的插值函数为, (,)()()e t u t N U t ξξ= (11) 其中()N ξ为单元的形状函数矩阵,与相应的静力问题单元的形状函数矩阵完全相同,ξ为单元中的几何位置坐标。 基于上面的几何方程和物理方程及(11)式,将相关的物理量表达为节点位移的关系,有, (,)[](,)[]()()()()e e t t t u t N U t B U t εξξξξ=?=?= (12) (,)()()()()e e t t t D DB U t S U t σξεξξ=== (13) (,)()()e t u t N U t ξξ=&& (14) (,)()()e t u t N U t ξξ=&&&& (15) 将(12)-(15)供稿到虚功方程(9)中,有, [()()()()]()0e e e e e e e T e t t t t t M U t C U t K U t R t U t δδ∏=++-=&&&g (16) 由于()e t U t δ具有任意性,消去该项并简写有, e e e e e t t t t U C U KU R ++=&&& (17) 其中, e e T M N Nd ρΩ= Ω? (18) e e T C N Nd νΩ=Ω? (19)

有限元法的理论基础

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 2.2有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元可以是四面体、长方体和六面体等。为合理有效地表示连续体,需要适当选择单元的类型、数目、大小和排列方式。 离散化的模型与原来模型区别在于,单元之间只通过节点相互连接、相互作用,而无其他连接。因此这种连接要满足变形协调条件。离散化是将一个无限多自由度的连续体转化为一个有限多自由度的离散体过程,因此必然引起误差。主要有两类:建模误差和离散化误差。

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念2009-11-24 00:06:28 作者:jiangnanxue 来源:智造网—助力中国制造业创新—https://www.doczj.com/doc/5014934682.html, CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis - cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

有限元动力学分析方程及解法

动力分析中平衡方程组的解法 1前言 描述结构动力学特征的基本力学变量和方程与静力问题类似,但所有的变量都是时间的函数。 基本变量 三大类变量(,)i u t ξ、(,)ij t εξ和(,)ij t σξ是坐标位置(,,)x y z ξ和时间t 的函数,一般将其记为()()()i ij ij u t t t εσ。 基本方程 (1) 平衡方程 利用达朗贝尔原理将惯性力和阻尼力等效到静力平衡方程中,有 ,()()()()0ij j i i i t b t u t u t σρν+--= (1) 其中ρ为密度,ν为阻尼系数。 (2) 几何方程 ) ,,1()(()())2 ij i j j i t u t u t ε=+ (2) (3) 物理方程 ()()ij ijkl kl t D t σε= (3) 其中ijkl D 为弹性系数矩阵。 (4) 边界条件 位移边界条件()BC u 为, ()()i i u t u t = 在u S 上 (4) 力的边界条件()BC p 为, ()()ij j i t n p t σ= 在p S 上 (5) 初始条件 0(,0)()i i u t u ξξ== (6)

{ 0(,0)()i i u t u ξξ== (7) 虚功原理 基于上述基本方程,可以写出平衡方程及力边界条件下的等效积分形式, ,()()0p ij j i i i ij j i S u u b u d n p dA δσρνδσΩ∏=---+Ω+-=?? (8) 对该方程右端第一项进行分部积分,并应用高斯-格林公式,整理得, ()()0p ijkl ij kl i i i i i i i i S D u u u u d b u d p u dA εδερδνδδδΩΩ-++Ω-Ω+=??? (9) 有限元分析列式 单元的节点位移列阵为, 111222()[(),(),(),(),(),()(),(),()]e t k k k U t u t v t w t u t v t w t u t v t w t = (10) 单元内的插值函数为, (,)()()e t u t N U t ξξ= (11) % 其中()N ξ为单元的形状函数矩阵,与相应的静力问题单元的形状函数矩阵完全相同,ξ为单元中的几何位置坐标。 基于上面的几何方程和物理方程及(11)式,将相关的物理量表达为节点位移的关系,有, (,)[](,)[]()()()()e e t t t u t N U t B U t εξξξξ=?=?= (12) (,)()()()()e e t t t D DB U t S U t σξεξξ=== (13) (,)()()e t u t N U t ξξ= (14) (,)()()e t u t N U t ξξ= (15) 将(12)-(15)供稿到虚功方程(9)中,有, [()()()()]()0e e e e e e e T e t t t t t M U t C U t K U t R t U t δδ∏=++-= (16) 由于()e t U t δ具有任意性,消去该项并简写有, e e e e e t t t t U C U KU R ++= (17)

Abaqus有限元分析中的沙漏效应

Abaqus有限元分析中的沙漏效应[转] 2011-09-21 17:34:27| 分类:有限元 | 标签: |字号大中小订阅 1. 沙漏的定义 沙漏hourglassing一般出现在采用缩减积分单元的情况下: 比如一阶四边形缩减积分单元,该单元有四个节点“o”,但只有一个积 分点“*”。而且该积分点位于单元中心位置,此时如果单元受弯或者受剪,则必然会发生变形,如下图a所示。 关于沙漏问题,建议看看abaqus的帮助文档,感觉讲的非常好,由浅入深,把深奥的东西讲的很容易理解。 沙漏的产生是一种数值问题,单元自身存在的一种数值问题,举个例子,对于单积分点线性单元,单元受力变形没有产生应变能--也叫0能量模式,在 这种情况下,单元没有刚度,所以不能抵抗变形,不合理,所以必须避免这种情况的出现,需要加以控制,既然没有刚度,就要施加虚拟的刚度以限制沙漏 模式的扩展---人为加的沙漏刚度就是这么来的。 关于沙漏现象的判别,也就是出现0能模式的方法最简单的是察看单元变 形情况,就像刚才所说的单点积分单元,如果单元变成交替出现的梯形形状, 如果多个这样的单元叠加起来,是不是象我们windows中的沙漏图标呢? ABAQUS中沙漏的控制: *SECTION CONTROLS:指定截面控制 警告:对于沙漏控制,使用大于默认值会产生额外的刚度响应,甚至当值 太大时有时导致不稳定。默认沙漏控制参数下出现沙漏问题表明网格太粗糙, 因此,更好的解决办法是细化网格而不是施加更大的沙漏控制。 该选项用来为减缩积分单元选择非默认的沙漏控制方法,和standard中的修正的四面体或三角形单元或缩放沙漏控制的默认系数;在explicit中,也 为8节点块体单元选择非默认的运动方程:为实体和壳选择二阶方程、为实体 单元激活扭曲控制、缩放线性和二次体积粘度、设置当单元破损时是否删除他们、或为上述完全破损的单元指定一标量退化参数。等 必需参数: NAME:名字 可选参数: DISTORTION CONTROL:只用于explicit分析。=YES激活约束防止负体积 单元出现或其他可压缩材料的过度变形,这对超弹材料是默认的。DISTORTION

有限元理论基础

有限元理论基础 2.1 数值模拟技术 2.1.1数值模拟技术简介 在工程技术领域中许多力学问题和场问题,实质上就是在一定的边界条件下求解一些微分方程。对于少数简单问题,人们可以通过建立它们的微分方程与边界约束求出该问题的解析解。但是对于比较复杂的数学方程问题以及不规则的边界条件通过激吻戏法往往难以求解,而需要借助各种数值模拟方法活的相应的工程数值解,这就是所谓的数值模拟技术。 在实际工程领域中,用数值模拟技术可以对复杂的工程结构进行受力和响应分析,这样可以在设计或者加工前预知实体结构工作状态下的大概情况。 目前在工程实际应用中,常用的数值求解方法有:有限单元法、有限差分法、边界元等但从实用性和使用范围来说,有限单元法则是随着计算机技术的发展而被广泛应用的一种行之有效的数值计算方法。 2.2.2 有限元法 有限元法是一种基于能量原理的数值计算方法,是解决工程实际问题的一种有效的数值计算工具。它是里茨法的另一种表示形式,它可应用里茨法分析的所有弹性理论。 限元法是处理连续的结构体离散或有限个单元集合,也就是将连续的求解域离散为一定数量的单元集合体。且每个单元都具有一定的节点,相邻单元通过节点相互连续,同时使用等效节点力代替作用于单元上的力和选定场函数的节点值作为基本未知量。并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律:进而利用力学中的某些变分原理去建立用以求解节点未知量的有限元法方程,从而将一个连续域中的无限自由度问题化为离散域中的有限自由度问题。求解后,可利用解出的节点值和设定的插值函数确定整个单元集体上的场函数。 有限元求解问题中的单元分析:t t t a k F = 式中::t F 单元节点作用力。 t K :单元刚度矩阵。 t a :单元节点位移。 通过单元分析确定单元刚度矩阵,建立单元节点作用力和单元为伊关系。有限元求解问题时建立的结构整体平衡方程:P KU = 式中:P —结构整体等效点力载荷 K —结构总体刚度矩阵 U —结构节点位移阵列 单元内力的计算:t DBa =σ 式中:D —弹性矩阵 P —应变矩阵 整个结构的有限元分析就是一句上述方程而进行的具体的有限元求解过程如图

abaqus有限元分析简支梁

1.梁C 的主要参数: 其中:梁长3000mm ,高为406mm ,上下部保护层厚度为38mm ,纵筋端部保护层厚度为25mm 抗压强度:35.1MPa 抗拉强度:2.721MPa 受拉钢筋为2Y16,受压钢筋为2Y9.5,屈服强度均为440MPa 箍筋:Y7@102,屈服强度为596MPa 2.混凝土及钢筋的本构关系 1、运用陈光明老师的论文(Chen et al. 2011)来确定混凝土的本构关系: 受压强度: 其中C a E ==28020,c f ρσ'=,0.002ρε= 2、受压强度与开裂位移的相互关系:

其中123.0, 6.93c c == 3、损伤因子: 其中c h = e=10(选取网格为10mm ) 4、钢筋取理想弹塑性 5、名义应力应变和真实应力及对数应变的转换: ln (1)ln(1)true nom nom Pl true nom E σσεσε ε=+=+- 6、混凝土最终输入的本构关系如下: compressive behavior tensile behavior tension damage yield stress inelastic strain yield stress displacement parameter displacement 21.50274036 2.721 25.56359281 2.72247E-05 2.683556882 0.0003129 0.18766492 0.0003129 28.88477336 8.85105E-05 2.646628319 0.0006258 0.31902609 0.0006258 31.43501884 0.000177278 2.610210508 0.0009387 0.41606933 0.0009387 33.24951537 0.000292271 2.574299562 0.0012516 0.49065237 0.0012516 34.40787673 0.000430648 2.538891515 0.0015645 0.54973463 0.0015645 35.01203181 0.000588772 2.503982327 0.0018774 0.5976698 0.0018774 35.16872106 0.000762833 2.46956789 0.0021903 0.63732097 0.0021903 34.97805548 0.000949259 2.435644029 0.0025032 0.67064827 0.0025032 34.52749204 0.001144928 2.402206512 0.0028161 0.69903885 0.0028161 33.88973649 0.001347245 2.369251048 0.003129 0.72350194 0.003129 33.17350898 0.001541185 2.336773294 0.0034419 0.74478941 0.0034419 32.38173508 0.001737792 2.30476886 0.0037548 0.76347284 0.0037548 31.54367693 30.68161799 0.001936023 0.002135082 2.27323331 2.242162167 0.0040677 0.0043806 0.77999451 0.79470205 0.0040677 0.0043806

有限元的基础理论

§1有限元的基础理论 §1-1 概述 有限元法是一种数值计算的近似方法。早在40年代初期就已有人提出,但当时由于没有计算工具而搁置,一直到50年代中期,高速数字电子计算机的出现和发展为有限元法的应用提供了重要的物质条件,才使有限元法得以迅速发展。 有限元法在西方起源于飞机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德的J.H.Argyris教授,于1954–1955年间,他在《Aircraft engineering》上发表了许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书成为有限元法的理论基础。美国的M.T.Turner,R.W.Clough,H.C.Martin和L.J.Topp等人于1956年发表了一篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,说明了如何利用计算机进行分析。美国教授R.W.Clough于1960年在一篇介绍平面应力分析的论文中,首次提出了有限元法的名字。1965年英国的O.C.Zienliewice教授及其合作者解决了将有限元应用于所有场的问题,使有限元法的应用范围更加广泛。 有限元法的优点很多,其中最突出的优点是应用范围广。发展至今,不仅能解决静态的、平面的、最简单的杆系结构,而且还可以解决空间问题、板壳问题、结构的稳定性问题、动力学问题、弹塑性问题和粘弹性问题、疲劳和脆性断裂问题以及结构的优化设计问题。而且不论物体的结构形式和边界条件如何复杂,也不论材料的性质和外载荷的情况如何,原则上都能应用。 §1-2 有限元的基础理论 有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点处连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据各节点处的平衡和协调条件建立方程,综合后作整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化为简单单元的分析与综合的问题。因此,一般的有限元解法包括三个主要步骤:离散化、单元分析、整体分析。 §1-2-1 离散化 一个复杂的弹性体可以看作由无限个质点组成的连续体。为了进行解算,可以将此弹性体简化为有限个单元组成的集合体,这些单元只在有限个节点上铰接,因此,这集合体只具有有限个自由度,这就为解算提供了可能。有无限个质点的连续体转化为有限个单元的集合体,就称为离散化。 §1-2-2 单元分析 单元分析首先要进行单元划分。在工程结构中,一般采用四种类型的基本单元,即标量单元、线单元(杆、梁单元)、面单元和体单元。四种基本单元的若干例子及各单元节点自由度(节点位移)表示在图(1-1)中。而单元划分一般注意下面几点: 一、从有限元本身来看,单元划分的越细,节点布置得越多,计算的结果越精确。但计算时间和计算费用的增加。所以在划分单元时对应兼顾这两个方面。 二、在边界比较曲折,应力比较集中,应力变化较大的地方,单元应划分的细点,而在应力变化平缓处单元划分的大些。单元由小到大应逐渐过渡。 三、对于三角形单元,三条边长应尽量接近,不应出现钝角,以免计算出现较大的偏差。对于矩形单元,长度和宽度也不应相差过大。 四、任意一个三角形单元的角点必须同时也是相邻单元边上的角点,而不能是相邻单元边上的内点。划分其他单元时也应遵循此原则。

相关主题
文本预览
相关文档 最新文档