当前位置:文档之家› BUCK电路闭环控制系统的MATLAB仿真

BUCK电路闭环控制系统的MATLAB仿真

BUCK电路闭环控制系统的MATLAB仿真
BUCK电路闭环控制系统的MATLAB仿真

BUCK 电路闭环PID 控制系统

的MATLAB 仿真

一、课题简介

BUCK 电路是一种降压斩波器,降压变换器输出电压平均值Uo 总是小于输入电压U i 。通常电感中的电流是否连续,取决于开关频率、滤波电感L 和电容C 的数值。

简单的BUCK 电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID 控制器,实现闭环控制。可通过采样环节得到PWM 调制波,再与基准电压进行比较,通过PID 控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK 电路闭环PID 控制系统。

二、BUCK 变换器主电路参数设计

2.1设计及内容及要求

1、 输入直流电压(VIN):15V

2、 输出电压(VO):5V

3、 输出电流(IN):10A

4、 输出电压纹波峰-峰值 Vpp ≤50mV

5、 锯齿波幅值Um=1.5V

6、开关频率(fs):100kHz

7、采样网络传函H(s)=0.3

8、BUCK 主电路二极管的通态压降VD=0.5V ,电感中的电阻压降

VL=0.1V ,开关管导通压降 VON=0.5V,滤波电容C 与电解电容

RC 的乘积为

F *Ωμ75

2.2主电路设计

根据以上的对课题的分析设计主电路如下:

图2-1 主电路图

1、滤波电容的设计

因为输出纹波电压只与电容的容量以及ESR 有关,

rr rr

C L N

0.2V V R i I ==

? (1)

电解电容生产厂商很少给出ESR ,但C 与R C 的乘积趋于常数,约为50~80μ*ΩF [3]。在本课题中取为75μΩ*F ,由式(1)可得R C =25mΩ,C =3000μF 。

2、滤波电感设计

开关管闭合与导通状态的基尔霍夫电压方程分别如式(2)、(3)所示:

IN

O L ON L ON /V V V V L i T ---=?(2)

O L D L OFF /V V V L i T ++=? (3) off 1/on s

T T f += (4)

由上得:

L

in o L D

on

V V V V L T i ---=? (5)

假设二极管的通态压降V D =0.5V ,电感中的电阻压降V L =0.1V ,开关管导通压降V ON =0.5V 。利用ON OFF S 1T T f +=,可得T ON =3.73μS ,将此值回代式(5),可得L =17.5μH

3、占空比计算

根据:on

T D T

=

(6) 由上得:ON OFF S 1T T f +=,可得T ON =3.73μS ,则D=0.373

三、BUCK 变换器PID 控制的参数设计

PID 控制是根据偏差的比例P)、积分I)、微分D)进行控制,是控制系统中应用最为广泛的一种控制规律。通过调整比例、积分和微分三项参数,使得大多数工业控制系统获得良好的闭环控制性能。

PID 控制的本质是一个二阶线性控制器,其优点:1、技术纯熟;2、易被人们熟悉和掌握;3、不需要建立数学模型;4、控制效果好;5、消除系统稳定误差。

3.1主电路传递函数分析

图3-1 主电路

()2

11IN C vd

V sCR G L s s LC

R

+=++ (1)

5582

15(17.510)

1 3.510 5.2510vd S G S S ---+?=

+?+? (2)

原始回路增益函数0G 为:

()2

11

()()()()()1IN C O m vd m V sCR G s G s H s G s H s L V s s LC

R

+=??=??++ (3) 带入数据得:

530582

582

115(17.510)30.225100.3 1.51 3.510 5.25101 3.510 5.2510S S

G S S S S ------+?+?=??=+?+?+?+? 3.2补偿环节的设计

补偿器的传递函数为:

21133212

1123312

(1)[1()]

()[()](1)(1)

c sR C s R R C G s R C C sR C C s sR C C C +++=

++++ (5) 有源超前-滞后补偿网络有两个零点、三个极点。

1,2694.96P P f HZ =

=

= (6)

06

11

2123.1422 3.140.025300010

Z C f HZ R C π-=

==???? (7) 100.750.75694.96521.22Z P f f HZ ==?= (8) 2020694.962123.14Z P P Z f f HZ f f HZ

==== (9)

31005022

S P f f KHZ =

== (10) 零点为:

1211521.222z f HZ R C π==,

()213313

11694.9622z f HZ R R C R C ππ=?=+ (11) 极点为:1p f 为原点,23312p f R C π=,321212

12p f R C C C C π

=+ (12) 频率1z f 与2z f 之间的增益可近似为:2

11

R AV R =

在频率2p f 与3p f 之间的增益则可近似为:()2132

2133

R R R R AV R R R +=

+ 考虑达到抑制输出开关纹波的目的,增益交接频率取 100

2055

fs fg KHZ

===

(s f为开关频率)

开环传函()

o

G s的极点频率为:

1,2

694.96

P P

f HZ

=== (13)

将()

c

G s两个零点的频率设计为开环传函()

o

G s两个相近极点频率的

1

2

,则:

1,2

11

12694.96347.48

22

p p

fz fz f

===?=。 (14)

将补偿网络()

c

G s两个极点设为

23

100

P P

f f fs KHZ

===以减小输出的高频开

关纹波。

()

22

1

1

2

z

c g

g

f R

AV G j f

f R

π

==

()

22

2

3

2

p

c g

g

f R

AV G j f

f R

π

==

根据已知条件使用MATLAB程序算得校正器Gc(s)各元件的值如下:

取 R2=10000欧姆

H(S)=3/10

算得:R1=1.964e+004欧姆 R3=6.8214欧姆

C1=4.5826e-008F C2=1.5915e-011F C3=2.3332e-008F fz1 =347.3046HZ fz2 =347.3046HZ fp2 = 1000KHZ fp3 =1000KHZ

A V1 =0.5091 A V2 =1.4660e+003

由(2)(3)式得:

G(s)=1.197e-024s^5+1.504e-017s^4+4.728e-011s^3+3.18e-008s^2+0.000900 4s/4.727e-011s^3+8.365e-007s^2+0.002975s+3

补偿器伯德图为:

加入补偿器后:

图4-1-2加入补偿器后系统的伯德图

相角裕度和幅值裕度为:

图4-1-3加入补偿器后系统的相角裕度和幅值裕度

相角裕度到达172度,符合设计要求。(所用MATLAB程序见附录)

四、BUCK变换器系统的仿真

4.1仿真参数及过程描述

仿真参数:

3

582

30.22510

1 3.510 5.2510

S

G

S S

-

--

+?

=

+?+?

G(s)=1.197e-024s^5+1.504e-017s^4+4.728e-011s^3+3.18e-008s^2 +0.0009004s/4.727e-011s^3+8.365e-007s^2+0.002975s+3

4.2仿真模型图及仿真结果

图4-2-1 主电路仿真图

图4-2-2 仿真波形

图4-2-3 加PID控制的仿真电路

图4-2-4 仿真波形

五、总结

本设计论文完成了设计的基本要求详尽的阐述了设计依据,工作原理叙述,BUCK电路的设计,PID控制设计,传递函数参数计算,电路仿真。

在进行本设计论文撰写时,我能够积极的查阅资料,和别人讨论,积极的采纳别人的意见。对电路的工作原理、参数的基数过程,所用器件的选择都进行了深入的阐述。

我能够认真撰写论文,对论文进行进一步的修改。深入研究课题所涉及的内容,希望此设计能够对达到其预期的效果。

由于时间和自身水平的限制,我所做的设计还有很多的不足之处。但通过这段时间以来的实践,我也掌握了很多的经验和教训。

通过这次的课程设计,我了解到怎样把自己在书本上学习到的知识应用到实际的工作之中,也学到很多待人处事的道理,想这在我以后的工作和学习中将是我的宝贵财富。

程序

clc;

Clear;

Vg=;L=;C=;fs=;R=;Vm=;H=;

G0=tf[Vg*H],[L*C

Figure(1)

Margin(G0)

fp1=1/(2*pi*sqrt(L*C));

Fg(1/2)*fs;

Fz1=(1/2)*fp1;

Fz2=(1/2)fp1;

Fp2=fs;

Fp3=fs;

[marg_G0,phase_G0]=bode(G0,fg*2*pi);

Marg_G=1/marg_G0;

A V1=fz2/fg*marg_G;

A V2=fp2/fg*marg_G;

R2=10*10^3;

R3=R2/A V2;

C1=1/(2*pi*fz1*R2);

C3=1/(2*pi*fzp2*R3);

C2=1/(2*pi*fp3*R2);

R1=1/(2*pi*C3*fz1);

Num=conv([C1*R2 1],[(R2+R3)*C3 1]);

Den1=conv([(C1+C2)*R1 0],[R3*C3 1]);

Den=conv(den1,[R2*C1*C2/(C1+C2) 1]);

Gc=tf(num,den); Figure(2);

Bode(Gc);

G=series(Gc,G0); Figure(3) Margin(G)

multisim buck电路仿真

第一章概述 1、1 直流―直流变换的分类 直流—直流变换器(DC-DC)就是一种将直流基础电源转变为其她电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为?48V,由于在通信系统中仍存在?24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将?48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。D C/DC变换就是将固定的直流电压变换成可变的直流电压,也称为直流斩波。主要有 (1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。 (2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。 (3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。 此外还有Sepic、Zeta电路。 1、2 直流—直流变换器的发展 当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80~90)%。日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商、2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

Buck电路的设计与仿真

uck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为 20V ,输出电压5V ,要求纹波电压为输出 电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的 电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B 输入20V ,输出5V ,可确定占空比 Dc=25% ; C.根据如下公式选择电感 这个值是电感电流连续与否的临界值,L>L c 则电感电流连续,实际电感值 可选为1.1~1.2倍的临界电感,可选择为4 10?H ; D.根据纹波的要求和如下公式计算电容值 C=^^T s2 J =4.17 10 牛 8L^U 。 8 沃 4.5 沃 10 X0.0055 1 0000 (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B 输入20V ,输出5V ,可确定占空比 Dc=25% ; C.根据如下公式选择电感 . (1—DJR T (1 —0.25)汇10,. 1 L c (1 _DJR T 2 s (1-0.25)1° 亠 2 10000 = 3.75 10* H 5 (1-0.25) 0.75 10, H 50000 这个值是电感电流连续与否的临界值, L>Lc 则电感电流连续,实际电感值

L c T s 2

可选为1.2倍的临界电感,可选择为0.9 10" H ; D.根据纹波的要求和如下公式计算电容值 分析:在其他条件不变的情况下,若开关频率提高 n 倍,则电感值减小为 1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论 2、Buck 电路仿真: 利用sim power systems 中的模块建立所设计降压变换器的仿真电路。输 入电压为20V 的直流电压源,开关管选 MOSFET 模块(参数默认),用Pulse Gen erator 模块产生脉冲驱动开关管 建模: 分别做两种开关频率下的仿真 工作频率为10kHz 时 U o (1-D c ) 8L U o T s 2 5 (1-0.25) 1 8 0.9 10J 0.005 5 500002 = 0.833 10*F matlab20120510 ?

题目Buck电路的设计与仿真

题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.310000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>c L 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4105.4-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2410000 15005.0105.48)25.01(5?????-?-=F 41017.4-? (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.050000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>Lc 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4109.0-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2450000 15005.0109.08)25.01(5?????-?-=F 410833.0-? 分析: 在其他条件不变的情况下,若开关频率提高n 倍,则电感值减小为1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论。 2、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (一)开关频率为10Hz 时; (1)使用理论计算的占空比,记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 由第一步理论计算得占空比Dc=25%; 实验仿真模型如下所示(稳态直流电压值为4.299V ):

multisimbuck电路仿真设计

第一章概述 1.1 直流―直流变换的分类 直流—直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为?48V,由于在通信系统中仍存在?24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将?48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。D C/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。主要有 (1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。 (2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。 (3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。 此外还有Sepic、Zeta电路。 1.2 直流—直流变换器的发展 当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商.2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

Buck电路设计与MATLAB仿真

Buck电路设计与仿真 姓名:朱龙胜 班级:电气1102 学号:11291065 日期:2014年5月10日 指导老师:郭希铮 北京交通大学

计算机仿真技术作业四 题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 2、Buck 电路理论计算: 由以下公式计算: 20.252.0.5A (1) 3.5% 8() 4.2o d o o o s o s d o LB OB V D V V I R V T D V LC DT V V I I L = == =?-==-== 1.占空比: 负载电流: 纹波电压: 电流连续条件: 得到下列计算结果 3、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (1)使用理论计算的占空比(D=0.25),记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 4、仿真过程:: A .建立模型: 建立仿真模型如下如所示 :

B. 记录数据: 仿真算法选择ode23tb,最大步长为0.1s ,占空比D=0.25进行仿真,记录数据如下表所 C .仿真过程: 当f s =10KHz,L=0.375mH C=500μF, 占空比D=0.25,电流连续的临界状态时,记录稳态直流电压值V o =4.736V ,稳态直流电压理论值5V 计算稳态直流纹波电压的理论值 2(1D)0.025V 8s o o T V V CL -?==,通过图中得到直流纹波电压为0.0267V 当fs=10KHz,L=0.375mH, C=500μF,占空比D=0.25,电流连续的临界状态时, 由(1)o S L V D T I L -?= ,得电感电流波动理论值是1A ,由图像得到电感电流波动值是 1A ,与理论计算相符合

BUCK电路闭环控制系统的MATLAB仿真

BUCK 电路闭环PID 控制系统 的MATLAB 仿真 一、课题简介 BUCK 电路是一种降压斩波器,降压变换器输出电压平均值Uo 总是小于输入电压U i 。通常电感中的电流是否连续,取决于开关频率、滤波电感L 和电容C 的数值。 简单的BUCK 电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID 控制器,实现闭环控制。可通过采样环节得到PWM 调制波,再与基准电压进行比较,通过PID 控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK 电路闭环PID 控制系统。 二、BUCK 变换器主电路参数设计 2.1设计及内容及要求 1、 输入直流电压(VIN):15V 2、 输出电压(VO):5V 3、 输出电流(IN):10A 4、 输出电压纹波峰-峰值 Vpp ≤50mV 5、 锯齿波幅值Um=1.5V 6、开关频率(fs):100kHz 7、采样网络传函H(s)=0.3 8、BUCK 主电路二极管的通态压降VD=0.5V ,电感中的电阻压降 VL=0.1V ,开关管导通压降 VON=0.5V,滤波电容C 与电解电容 RC 的乘积为 F *Ωμ75

2.2主电路设计 根据以上的对课题的分析设计主电路如下: 图2-1 主电路图 1、滤波电容的设计 因为输出纹波电压只与电容的容量以及ESR 有关, rr rr C L N 0.2V V R i I == ? (1) 电解电容生产厂商很少给出ESR ,但C 与R C 的乘积趋于常数,约为50~80μ*ΩF [3]。在本课题中取为75μΩ*F ,由式(1)可得R C =25mΩ,C =3000μF 。 2、滤波电感设计 开关管闭合与导通状态的基尔霍夫电压方程分别如式(2)、(3)所示: IN O L ON L ON /V V V V L i T ---=?(2) O L D L OFF /V V V L i T ++=? (3) off 1/on s T T f += (4) 由上得: L in o L D on V V V V L T i ---=? (5) 假设二极管的通态压降V D =0.5V ,电感中的电阻压降V L =0.1V ,开关管导通压降V ON =0.5V 。利用ON OFF S 1T T f +=,可得T ON =3.73μS ,将此值回代式(5),可得L =17.5μH

buck电路设计

Buck变换器设计——作业 一.Buck主电路设计 1.占空比D计算 2.电感L计算 3.电容C计算 4.开关元件Q的选取 二. Buck变换器开环分析 三. Buck闭环控制设计 1.闭环控制原理 2.补偿环节Gc(s)的设计——K因子法 3.PSIM仿真 4. 补偿环节Gc(s)的修正——应用sisotool 5.修正后的PSIM仿真 四.标称值电路PSIM仿真 五.设计体会 Buck变换器性能指标: 输入电压:标准直流电压48V,变化范围:43V~53V

输出电压:直流电压24V ,5A 输出电压纹波:100mv 电流纹波:0.25A 开关频率:fs=250kHz 相位裕度:60 幅值裕度:10dB 一. Buck 主电路设计: 1.占空比D 计算 根据Buck 变换器输入输出电压之间的关系求出占空比D 的变化范围。 .50V 48V 24U U D .4530V 53V 24U U D 0.558 V 43V 24U U D innom o nom max in o min min in o max ========= 2.电感L 计算 uH 105f i 2)D U -(U i 2)T U -(U L s L min o inmax L on(min) o inmax =?=?= 3.电容C 计算 uF 25.1250000 *1.0*825 .0vf 8i C s L ==??= 电容耐压值:由于最大输出电压为24.1V ,则电容耐压值应大于24.1V 。 考虑到能量储存以及伏在变化的影响,要留有一定的裕度,故电容选取120uf/50V 电容。 4.开关元件Q 的选取

BUCK电路的Saber仿真

功率变换器计算机仿真与设计题目BUCK变换器电路设计 学生姓名 学号 学院 专业电气工程及自动化 班级 指导教师 2013年 10月 20日

一、设计要求 1.1 设计指标: 设计一个BUCK直流变换器,主电路拓扑如图1.1(参数需重新设置),使得其满足以下性能要求: 高压侧蓄电池输入电压V in:30-60V(额定电压48V) 低压侧直流母线输出电压V out:24V 输出电压纹波V out(p-p):25mV 输出电流I out:2A 开关频率f s:200kHz 电感电流临界连续时I G:0.1A 12 图1.1

二、开环参数计算及仿真 2.1 主电路参数计算: (1)高压侧输入电压V in 变化范围为30-60V ,低压侧输出电压V out 为24V ,则占空比: 8.030 24 min max === in out V V D 4.06024 max min === in out V V D 5.048 24 === innom out nom V V D (2)由于输出电流I out 为2A ,故负载电阻:12out out V R I = =Ω (3)根据电感电流临界连续时I G :0.1A ,可由下式计算得滤波电感感值: H T I U L U T I L OFF o o CCM o μμ3605)4.01(2 .024 2max min )min(=?-?--==?=?? (4)根据输出电压纹波V out (p-p )为25mV ,可由下式计算得滤波电容容值: uF f V I C I T C idt C V p p out ripple o p p out T 510 200102582 .082211133)(0) (2=????==?==---? 取F C f μ10=,其中开关频率f 为200KHZ 。 在实际器件中,电容存在寄生电阻,因此实际器件仿真时,电容的选取如下: Ω ====???=??=?-m 125ESR ,600C ,u 520C 25,10652.0min max pp 6 uF F mV V C ESR I V 取而 2.2 开关管及二极管应力计算: (1)开关管的选取 功率管承受的最大电压为60V ,流过开关管电流最大值为2A ,开关管电压电流降额系数均为0.5,则开关管电压要大于或等于120V ,电流最大值要大于4A 。粗略以最大占空比计算电流的有效值为3.2A ,则最大功率为384W ,取400W 。根据仿真,可选irf460作为开关管。 (2)二极管的选取

基于BUCK电路的电源设计

现代电源技术 基于BUCK电路的电源设计

学院:专业:姓名:班级:学号:指导教师:日期:

目录 摘要 (4) 一、设计意义及目的 (5) 二、Buck电路基本原理和设计指标 (5) 2.1 Buck电路基本原理 (5) 2.2 Buck电路设计指标 (7) 三、参数计算及交流小信号等效模型建立 (7) 3.1 电路参数计算 (7) 3.2 交流小信号等效模型建立 (11) 四、控制器设计 (12) 五、Matlab电路仿真 (18) 5.1 开环系统仿真 (18) 5.2 闭环系统仿真 (19) 六、设计总结 (22)

摘要 Buck电路是DC-DC电路中一种重要的基本电路,具有体积小、效率高的优点。本次设计采用Buck电路作为主电路进行开关电源设计,根据伏秒平衡、安秒平衡、小扰动近似等原理,通过交流小信号模型的建立和控制器的设计,成功地设计了Buck电路开关电源,通过MATLAB/Simulink进行仿真达到了预设的参数要求,并有效地缩短了调节时间和纹波。通过此次设计,对所学课程的有效复习与巩固,并初步掌握了开关电源的设计方法,为以后的学习奠定基础。 关键词:开关电源设计 Buck电路

一、设计意义及目的 通常所用电力分为直流和交流两种,从这些电源得到的电力往往不能直接满足要求,因此需要进行电力变换。常用的电力变换分为四大类,即:交流变直流(AC-DC),直流变交流(DC-AC),直流变直流(DC-DC),交流变交流(AC-AC)。其中DC-DC电路的功能是将直流电变为另一固定电压或可调电压的直流电,包过直接直流变流电路和间接直流变流电路。直接直流变流电路又称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,主要包括六种基本斩波电路:Buck电路,Boost电路,Buck-Boost电路,Cuk电路,Sepic电路,Zeta 电路。其中最基本的一种电路就是Buck电路。 因此,本文选用Buck电路作为主电路进行电源设计,以达到熟悉开关电源基本原理,熟悉伏秒平衡、安秒平衡、小扰动近似等原理,熟练的运用开关电源直流变压器等效模型,熟悉开关电源的交流小信号模型及控制器设计原理的目的。这些知识均是《线代电源设计》课程中所学核心知识点,通过本次设计,将有效巩固课堂所学知识,并加深理解。 二、Buck电路基本原理和设计指标 2.1 Buck电路基本原理 Buck变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器,主要用于电力电路的供电电源,也可拖动直流电动机或带蓄电池负载等。其基本结构如图1所示:

题目-Buck电路的设计与仿真

题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.310000 1 210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>c L 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4 105.4-?; D.根据纹波的要求和如下公式计算电容值 =?-= 2008)1(s c T U L D U C 2 410000 15005.0105.48)25.01(5?????-?-=F 4 1017.4-? (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.050000 1 210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>Lc 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4 109.0-?; D.根据纹波的要求和如下公式计算电容值

=?-= 2008)1(s c T U L D U C 2 450000 15005.0109.08)25.01(5?????-?-=F 4 10833.0-? 分析: 在其他条件不变的情况下,若开关频率提高n 倍,则电感值减小为1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论。 2、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (一)开关频率为10Hz 时; (1)使用理论计算的占空比,记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 由第一步理论计算得占空比Dc=25%; 实验仿真模型如下所示(稳态直流电压值为4.299V ): 直流电压整体波形如下所示:

Buck电路闭环控制器设计仿真设计

Buck 电路闭环控制器设计 15121501 曾洋斌 作业要求: 1、 建立Buck 电路的状态平均模型,设计系统闭环控制器; 2、 分析稳态误差产生原因,并提出改进措施,并进行仿真; 3、完成作业报告。 4、Buck 电路参数:输入电压为20V ,输出电压5V ,负载电阻4欧姆,电感1×10-3H ,电容5×10-4F ,开关频率20kHz 。 一、Buck 电路的状态平均模型 根据题目所给参数,容易计算得其占空比为25%,Buck 电路如图1所示: S V o V 图1:Buck 电路 根据状态空间平均法建模步骤如下: 1、列写状态方程、求平均变量 设状态方程各项如下: [()()]T L o i t v t =x ()s u v t = ()VD y i t = 则有状态方程如下: x =Ax +Bu T y =C x

(1)列写[0,1S d T ]时间的状态方程 如图2所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数 矩阵如下所示: 11011L C RC ?? - ? = ? ?- ???A ,11[0]T L =B ,1[00]T =C S V o V 图2:开关VT 导通状态 (2)列写[1S d T ,S T ]时间的状态方程 如图3所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数 矩阵如下所示: 21011L C RC ??- ? = ? ?- ???A ,2[00]T =B ,2[10]T =C S V o V 图3:开关VT 关断状态 因此,在[0,1S d T ]和[1S d T ,S T ]两个时间段分别有如下两种状态方程:

BUCK电路PID控制器设计仿真

BUCK 电路PID 控制器设计及仿真 本文在BUCK 电路传递函数的基础上对BUCK 电路的开环特性进行了分析,并利用MATLAB 的SISOTOOL 工具箱设计了PID 控制器,然后用以运放为核心搭建了PID 控制器硬件电路,最后在PSIM 上对BUCK 电路进行闭环仿真。 1. 设计指标 输入直流电压(Vin):28V 输出电压(Vo):15V 基准电压(Vref):5V 开关频率(fs):100kHz 三角载波峰峰值:Vm=4V 图1为Buck 变换器主电路,元件参数如图所示: 500uF 50uH 3 28v 图1 buck 变换器主电路 2. PID 控制器设计 2 .1原始系统分析 BUCK 变换器构成的负反馈控制系统如图3.1所示: + - ) (s G c ) (s G m ) (s G vd ) (s H )(s V ref )(s B ) (s E ) (s V c ) (s d ) (s V o 反馈信号 参考信号 误差信号图2 BUCK 变换器闭环系统 其中为占空比至输出电压的传递函数, 为PWM 脉宽调制器的传递函数, 表示反馈分压网络的传递函数, 是误差信号 至控制量

的传递函数,为补偿网络的传递函数。 本系统中,PWM 调制器的传递函数为: ?1 ?4 m c m d(s) 1G (s)== =v (s)V (1 ) 式中, 为PWM 调制器中锯齿波的幅值。 反馈分压网络的传递函数为: 占空比至输出电压的传递函数为: 其中 ,,,,。 将参数代入式(3)可得, 对于BUCK 变换器系统,其回路增益函数 为 式中, 为未加补偿网络 时的回路增益函数,称为原始回路增益函数,将式子 (1)、(2)、(4)可得本系统中原始回路增益函数 根据式(7)可做出系统原始回路增益函数波特图如图3所示:

MatlabBuck电路的仿真

MATLAB 仿真报告2 题目:Buck 电路的仿真 一降压变换器,输入电压为600V,输出电压450V,电感值2mH、电容值 1mF,负载电阻3 ,开关频率为2kHz。 用SimPowerSystems 中的模块建立仿真电路。开关管选IGBT 模块。 (1) 计算开关器件的占空比。 =75% D 450 600 (2)对电路进行仿真。 (a)记录电容电压波形,计算稳态电压值,计算启动时的超调量; 解:电容电压波形如下图所示,稳态电压值如上图V=29.74v。启动时的超调量如下图所示,Matlab给出启动时超调量为46.905%

b)记录电感电流波形,计算稳态电流平均值,记录启动时的电流瞬时峰值; 由图1可以得出,稳态电流平均值为I=6.441A,启动时电流瞬时峰值为 26.95A. c)测量纹波电压和纹波电流;

纹波电压波形如图1,纹波电流波形如图2。 图1中电压最大值Umax = 30.162V;电压最小值为Umin = 29.720V. 图2中电流最大值Imax = 13.568A;电流最小值Imin = 6.479A. d)用理论分析上述结果。 在开关管打开的时候,电压加在电感两端给电感充电,在开关管闭合的时候,电感两端放电,被电容吸收,无功功率在电路中传输,造成了V ripple以及I ripple,导致纹波的产生。 (3) 将电感值修改为0.5mH。比较开关管分别选择为IGBT 和IGBT/Diode 时, 波形有什么差别,并解释原因。

电感减少以后,将IGBT换成IGBT/Diode,电路的波形由原来的CCM工作在了DCM,电路超调量减小,稳定性上升,原因是IGBT/Diode在CE点之间接入一个二极管,似的电路的电流电压被钳制在一个稳定值,电路启动时,不会拥有过大的超调量,电路的稳定性上升。 (4) 以(2)中的仿真为基础,不改变主电路的拓扑和参数,试通过控制手段,降 低电路启动时电压电流的超调量。 在电路中加入一个串联校正控制器,电路的超调量有着明显的下降。

Buck电路设计与MATLAB仿真

B u c k电路设计与 M A T L A B仿真 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

Buck电路设计与仿真 姓名:朱龙胜 班级:电气1102 学号: 日期: 2014年5月10日 指导老师:郭希铮 北京交通大学 计算机仿真技术作业四 题目:Buck电路的设计与仿真

1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 2、Buck 电路理论计算: 由以下公式计算: 20.252.0.5A (1) 3.5% 8() 4.2o d o o o s o s d o LB OB V D V V I R V T D V LC DT V V I I L = == =?-==-==1.占空比: 负载电流: 纹波电压: 电流连续条件: 得到下列计算结果 3、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (1)使用理论计算的占空比(D=,记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 4、仿真过程:: A .建立模型: 建立仿真模型如下如所示:

B. 记录数据: 仿真算法选择ode23tb,最大步长为,占空比D=进行仿真,记录数据如下表所示: 与理论值对比

Buck-Boost电路设计

500W Buck/Boost电路设计与仿真验证 一、主电路拓扑与控制方式 Buck/Boost变换器是输出电压可低于或高于输入电压的一种单管直流变换器,其主电路与Buck或Boost变换器所用元器件相同,也有开关管、二极管、电感和电容构成,如图1-1所示。与Buck和Boost电路不同的是,电感L f在中间,不在输出端也不在输入端,且输出电压极性与输入电压相反。开关管也采用PWM控制方式。Buck/Boost变换器也有电感电流连续喝断续两种工作方式,本文只讨论电感电流在连续状态下的工作模式。图1-2是电感电流连续时的主要波形。图1-3是Buck/Boost变换器在不同工作模态下的等效电路图。电感电流连续工作时,有两种工作模态,图1-3(a)的开关管Q导通时的工作模态,图1-3(b)是开关管Q关断、D续流时的工作模态。 V o 图1-1 主电路 V i LF i Q i D V 图1-2 电感电流连续工作波形 V o V o (a) Q导通(b) Q关断,D续流 图1-3 Buck/Boost不同开关模态下等效电路二、电感电流连续工作原理和基本关系

电感电流连续工作时,Buck/Boost 变换器有开关管Q 导通和开关管Q 关断两种工作模态。 在开关模态1[0~t on ]: t=0时,Q 导通,电源电压V in 加载电感L f 上,电感电流线性增长,二极管D 戒指,负载电流由电容C f 提供: f L f in di L V dt = (2-1) o o LD V I R = (2-2) o f o dV C I dt = (2-3) t=t on 时,电感电流增加到最大值max L i ,Q 关断。在Q 导通期间电感电流增加量f L i ? f in L y f V i D T L ?= ? (2-4) 在开关模态2[t on ~ T]: t=t on 时,Q 关断,D 续流,电感L f 贮能转为负载功率并给电容C f 充电,f L i 在输出电压 Vo 作用下下降: f L f o di L V dt = (2-5) f o o o L f o f LD dV dV V i C I C dt dt R =+=+ (2-6) t=T 时,f L i 见到最小值min L i ,在t on ~ T 期间f L i 减小量f L i ?为: (1)f o o L off y f f V V i t D T L L ?= ?=- (2-7) 此后,Q 又导通,转入下一工作周期。由此可见,Buck/Boost 变换器的能量转换有两 个过程:第一个过程是Q 开通电感L f 贮能的过程,第二个是电感能量向负载和电容C f 转移的过程。 稳态工作时,Q 导通期间f L i 的增长量应等于Q 关断期间f L i 的减小量,或作用在电感L f 上电压的伏秒面积为零,有: 1y o in y D V V D = - (2-8) 由(2-8)式,若D y =0.5,则V o =V in ;若D y <0.5,则V o 0.5,V o >V in 。设变换器没有损耗,则输入电流平均值I i 和输出电流平均值I o 之比为

Buck电路设计与MATLAB仿真

Buck电路设计与仿真 姓名: 朱龙胜 班级: 电气1102 学号: 11291065 日期: 2014年5月10日 指导老师: 郭希铮 北京交通大学 计算机仿真技术作业四 题目:Buck电路的设计与仿真 1、Buck电路设计: 设计一降压变换器,输入电压为20V,输出电压5V,要求纹波电压为输出电压的0、5%,负载电阻10欧姆,求工作频率分别为10kHz与50kHz时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。

2、Buck 电路理论计算: 由以下公式计算: 20.252.0.5A (1) 3.5% 8() 4.2o d o o o s o s d o LB OB V D V V I R V T D V LC DT V V I I L = == =?-==-== 1.占空比: 负载电流: 纹波电压: 电流连续条件: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (1)使用理论计算的占空比(D=0、25),记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 4、仿真过程:: A.建立模型: 建立仿真模型如下如所示 : 示 与理论值对比

当f s =10KHz,L=0、375mH C=500μF, 占空比D=0、25,电流连续的临界状态时,记录稳态直流电压值V o =4、736V,稳态直流电压理论值5V 计算稳态直流纹波电压的理论值 2(1D)0.025V 8s o o T V V CL -?==,通过图中得到直流纹波电压为0、0267V 当fs=10KHz,L=0、375mH, C=500μF,占空比D=0、25,电流连续的临界状态时, 由(1)o S L V D T I L -?= ,得电感电流波动理论值就是1A ,由图像得到电感电流波动值就 是1A,与理论计算相符合 Time/s P u l s e /V Switch (fs=10KHz,L=0.375mH,C=500uF) Time/s I L /V Inductor Current(fs=10KHz,L=0.375mH,C=500uF)

Buck电路闭环控制器设计仿真

Buck 电路闭环控制器设计 曾洋斌 作业要求: 建立Buck 电路的状态平均模型,设计系统闭环控制器; 分析稳态误差产生原因,并提出改进措施,并进行仿真; 3、完成作业报告。 4、Buck 电路参数:输入电压为20V ,输出电压5V ,负载电阻4欧姆,电感1×10-3H ,电容5×10-4F ,开关频率20kHz 。 一、Buck 电路的状态平均模型 根据题目所给参数,容易计算得其占空比为25%,Buck 电路如图1所示: S V o V 图1:Buck 电路 根据状态空间平均法建模步骤如下: 1、列写状态方程、求平均变量 设状态方程各项如下: [()()]T L o i t v t =x ()s u v t = ()VD y i t = 则有状态方程如下: x =Ax +Bu &

T y =C x (1)列写[0,1S d T ]时间内的状态方程 如图2所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数矩阵如下所示: 11011L C RC ?? - ? = ? ?- ???A ,11[0]T L =B ,1[00]T =C S V o V 图2:开关VT 导通状态 (2)列写[1S d T ,S T ]时间内的状态方程 如图3所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数矩阵如下所示: 21011L C RC ??- ? = ? ?- ???A ,2[00]T =B ,2[10]T =C S V o V

图3:开关VT 关断状态 因此,在[0,1S d T ]和[1S d T ,S T ]两个时间段内分别有如下两种状态方程: [0,1S d T ]: 11x x u =+A B &,1T y x =C [1S d T ,S T ]: 22x x u =+A B &,2T y x =C 根据平均状态向量:() ()1 S S t T T t S x t x d T ττ+=? 可得: ()()()() ()()()()() 112211S S S S S S S t dT t T T t t dT S t dT t T t t dT S x t x d x d T x u d x u d T ττττ ττττττ ++++++= +=+++????????? ? ? ?A B A B & 又根据建模的低频假设和小纹波假设,可得到如下近似: ()()S T x t x τ≈ () () S T u t u τ≈ 将这两个近似式回代原方程得: ''11211121() [()()]() [()()]() S S S T T T x t d t d t x t d t d t u t =+++A A B B & 同理可得: '1121() [()()]() S S T T T T y t d t d t x t =+C C & 因此有: X =AX +BU &,T Y =C X 其中 1112(1)d d =+-A A A ,1112(1)d d =+-ΒΒΒ,1112(1)T T T d d =+-C C C 2、求解稳态方程及动态方程 (1)求解稳态方程

Buck变换器的设计与仿真

Sa b er 仿真作业 Buck 变换器的设计与仿真 1Buck变换器技术 ..................................................................... -2 - 1.1Buck变换器基本工作原理 ....................................................... -2 - 1.2Buck变换器工作模态分析....................................................... -2 - 1.3Buck变化器外特性............................................................. -3 - 2Buck 变换器参数设计................................................................. -5 - 2.1Buck变换器性能指标 ........................................................... -5 - 2.2Buck变换器主电路设计......................................................... -5 - 2.2.1占空比 D .................................................................... - 5 - 2.2.2滤波电感Lf .................................................................. - 5 - 2.2.3滤波电容Cf .................................................................. - 6 - 2.2.4 开关管Q的选取........................................................ -7 -

Buck电路的设计与仿真

Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.310000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>c L 则电感电流连续,实际电感值可选为1.1~1.2倍的临界电感,可选择为H 4104-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2410000 15005.0105.48)25.01(5?????-?-=F 41017.4-? (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.050000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>Lc 则电感电流连续,实际电感值

可选为1.2倍的临界电感,可选择为H 4109.0-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2450000 15005.0109.08)25.01(5?????-?-=F 410833.0-? 分析:在其他条件不变的情况下,若开关频率提高n 倍,则电感值减小为1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论。 2、Buck 电路仿真: 利用sim power systems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。 建模: 分别做两种开关频率下的仿真。 工作频率为10kHz 时

相关主题
相关文档 最新文档