当前位置:文档之家› 材料科学基础第一章备份

材料科学基础第一章备份

(完整版)厦大材料科学基础知识点总结

第一章原子结构和键合 原子中一个电子的空间和能量的描述 (1)主量子数ni:决定原子中电子能量和核间平均距离,即量子壳层,取正整数K、L、M、N、O、P、Q (2)轨道动量量子数li:给出电子在同一量子壳层内所处的能级(电子亚层),与电子运动的角动量有关,s,p,d,f (3)磁量子数mi:给出每个轨道角动量数或轨道数,决定原子轨道或子云在空间的伸展方向 (4)自旋角动量量子数si:表示电子自旋的方向,取值为+1/2 或-1/2 核外电子的排布规律 (1)能量最低原理:电子总是占据能量最低的壳层,使体系的能量最低。而在同一电子层,电子依次按s,p,d,f的次序排列。 (2)Pauli不相容原理:在一个原子中不可能有运动状态完全一样的两个电子。因此,主量子数为n的壳层,最多容纳2n2电子。 (3)Hund原则:在同一个亚能级中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。 原子间的键(见作业) 第二章固体结构 晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列。即存在长程有序。性能上两大特点:(1)固定的熔点;(2)各向异性 空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点)即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵特征:每个阵点在空间分布必须具有完全相同的周围环境 晶胞:代表性的基本单元(最小平行六面体) 选取晶胞的原则: Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性; Ⅱ)平行六面体内的棱和角相等的数目应最多; Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多; Ⅳ)在满足上条件,晶胞应具有最小的体积。 晶体结构与空间点阵的区别: 空间点阵是晶体中质点的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,只有14种。 晶体是指晶体中实际质点(原子、离子和分子)的具体排列情况,它们能组成各种类型的排列,因此,实际存在的晶体结构是无限的。 晶带 所有相交于某一晶向直线或平行于此直线的晶面构成一个“晶带”。此直线称为晶带轴,所有的这些晶面都称为共带面。晶带轴[u v w]与该晶带的晶面(h k l)之间存在以下关系 hu+kv+lw=0 ————晶带定律 凡满足此关系的晶面都属于以[u v w]为晶带轴的晶带

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

材料科学基础知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,

材料科学基础第一章全部作业

(一) 1 谈谈你对材料学科及材料四要素之间的关系的认识 2 金属键与其它结合键有何不同,如何解释金属的某些特性? 3 说明空间点阵、晶体结构、晶胞三者之间的关系。 4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题? 5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么? 6 画出立方晶系中(011),(312),[211],[211],[101],(101) 7, 画出六方晶系中(1120),(0110),(1012),(110),(1012) 8. 原子间的结合键共有几种?各自特点如何? 9.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),() 123,(130),[211],[311];

10.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。 11.计算面心立方结构(111)、(110)与(100)面的面密度和面间距。 12. 标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),()123,(130),[211],[311]; b)六方晶系()2111, ()1101,()3212,[2111],1213????。 13 在体心立方晶系中画出{111}晶面族的所有晶面。 14 画出<110>晶向族所有晶向

15.写出密排六方晶格中的[0001],(0001),()1120,()1100,()1210 16. 在一个简单立方晶胞内画出一个(110)晶面和一个[112]晶向。 17. 标出具有下列密勒指数的晶面和晶向: 立方晶系(421),()123,(130),[211],[311]; 18.计算晶格常数为a 的体心立方结构晶体中八面体间隙的大小。 19.画出面心立方晶体中(111)面上的[112]晶向。 20.已知某一面心立方晶体的晶格常数为a ,请画出其晶胞模型并分别计算该晶体 的致密度、{111}晶面的面密度以及{110}晶面的面间距。 21.表示立方晶体的(123),[211],()012 22. 写出密排六方晶格中()1120,()1100,()1210[2111],1213???? 23. 画出密排六方晶格中的[0001], ,()0110,()1010,[2110],[1120] 24 在面心立方晶胞中的(1 1 1)晶面上画出[110]晶向 25 指出在一个面心立方晶胞中的八面体间隙的数目,并写出其中一个八 面体间隙的中心位置坐标。假设原子半径为r ,计算八面体间隙的半径。 26.画出密排六方晶格中的(0001),()1120,()1100,()1210 27.立方晶系中画出(010),(011),(111),(231),[231],[321] 29.计算晶格常数为a 的面心立方结构晶体中四面体间隙和八面体间隙的大小。(4分) 30.写出立方晶系{}110、{}123晶面族的所有等价面 31.立方晶胞中画出以下晶面和晶向:()102,(112),(213) ,[110], 32.六方晶系中画出以下晶面和晶向:(2110),(1012),1210????,0111???? 33.写出立方晶系{}100、{}234晶面族的所有等价面 34.画出立方晶胞内(111),[112], 35.画出六方晶胞内(1011),[1123]

实变函数论主要知识点.docx

实变函数论主要知识点 第一章集合 1、集合的并、交、差运算;余集和De Morgan公式;上极限和下极限; 练习:①证明(A-B)-C = A-(BUC); ②证明E[f>a]=QE[f>a + -]; ?=i n 2、对等与基数的定义及性质; 练习:①证明(0,1)□口; ②证明(0,1)0 [0,1]; 3、可数集的定义与常见的例;性质“有限个可数集合的直积是可数集合”与应用;可数集合 的基数; 练习:①证明直线上增函数的不连续点最多只有可数多个; ②证明平面上坐标为有理数的点的全体所成的集合为一可数集; ?Q =________ ; ④[0,1 ]中有理数集E的相关结论; 4、不可数集合、连续基数的定义及性质; 练习:?(0J)= _______ ; ②卩= ________ (P为Cantor集);

第二章点集 1、度量空间,n维欧氏空间中有关概念 度量空间(Metric Space),在数学中是指一个集合,并且该集合中的任意元素之间的距离是可定义的。 n维欧氏空间:设V是实数域R上的线性空间(或称为向量空间),若V上定义着正定对称双线性型g (g称为内积),则V称为(对于g的)内积空间或欧几里德空间(有时仅当V是有限维时,才称为欧几里德空间)。具体来说,g是V上的二元实值函数,满足如下关系: ⑴ g(x,y)=g(y,x); (2) g(x+y,z)=g(x,z)+g(y,z); (3) g(kx,y)=kg(x,y); (4) g(x,x)>=0,而且g(x,x)=O当且仅当x=0时成立。 这里x,y,z是V中任意向量,k是任意实数。 2、,聚点、界点、内点的概念、性质及判定(求法);开核,导集,闭包的概念、性质及判定(求法); 聚点:有点集E,若在复平面上的一点z的任意邻域都有E的无穷多个点,则称z为E的聚点。内点:如果存在点P的某个邻域U(P)eE,则称P为E的内点。 3、开集、闭集、完备集的概念、性质;直线上开集的构造; 4、Cantor集的构造和性质; 5、练习:?P=__________ , P' = ______ , P= ________

《材料科学基础》总复习(完整版)

《材料科学基础》上半学期容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、瓷马氏体相变性能的不同――作为题目) 有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

实变函数与泛函分析要点

实变函数与泛函分析概要 第一章集合基本要求: 1、理解集合的包含、子集、相等的概念和包含的性质。 2、掌握集合的并集、交集、差集、余集的概念及其运算性质。 3、会求已知集合的并、交、差、余集。 4、了解对等的概念及性质。 5、掌握可数集合的概念和性质。 6、会判断己知集合是否是可数集。 7、理解基数、不可数集合、连续基数的概念。 8、了解半序集和Zorn引理。 第二章点集基本要求: 1、理解n维欧氏空间中的邻域、区间、开区间、闭区间、体积的概念。 2、掌握内点、聚点的概念、理解外点、界点、孤立点的概念。掌握聚点的性质。 3、掌握开核、导集、闭区间的概念及其性质。 4、会求己知集合的开集和导集。 5、掌握开核、闭集、完备集的概念及其性质,掌握一批例子。 6、会判断一个集合是非是开(闭)集,完备集。 7、了解Peano曲线概念。 主要知识点:一、基本结论: 1、聚点性质§2 中T1聚点原则: P0是E的聚点? P0的任一邻域内,至少含有一个属于E而异于P0的点?存在E中互异的点列{Pn},使Pn→P0 (n→∞) 2、开集、导集、闭集的性质§2 中T2、T3 T2:设A?B,则A ?B ,· A? · B, - A? - B。 T3:(A∪B)′=A′∪B′. 3、开(闭)集性质(§3中T1、2、3、 4、5) T1:对任何E?R?,?是开集,E′和― E都是闭集。(?称为开核,― E称为闭包的理由也 在于此) T2:(开集与闭集的对偶性)设E是开集,则CE是闭集;设E是闭集,则CE是开集。T3:任意多个开集之和仍是开集,有限多个开集之交仍是开集。 T4:任意多个闭集之交仍是闭集,有限个闭集之和仍是闭集。 T5:(Heine-Borel有限覆盖定理)设F是一个有界闭集,?是一开集族{Ui}i?I 它覆盖了F(即Fс ∪ i?IUi),则?中一定存在有限多个开集U1,U2…Um,它们

材料科学基础要背知识总结

2010级材料科学基础复习参考材料 一、名词解释 第二章 2-1 Crystalline and Non-crystalline 结晶态与非晶态 Crystalline: The state of a solid material characterized by a periodic and repeating three-dimensional array of atoms,ions,or molecules. Non-crystalline:The solid state wherein there is no long-range atomic order.sometimes the terms amorphous,glassy,and vitreous are used synonymously. 2-2 Single crystalline materials and polycrystalline materials 单晶与多晶材料 Single crystalline materials:A crystalline solid for which the periodic and repeated atomic pattern extends throughout its entirety without interruption. polycrystalline materials:Referring to crystalline materials that are composed of more than one crystal or grain. 2-3 Crystal structure, point lattice and unit cell 晶体结构、空间点阵、单位晶胞 Crystal structure:For crystalline materials,the manner in which atoms or ions are arrayed in space.It is defined in terms of the unit cell geometry and the atom positions within the unite cell. point lattice:The regular geometrical arrangement of points in crystal space. unit cell:The basic structural unit of a crystal structure.It is generally defined in terms of atom(or ion) positions within a parallelepiped volume. 2-4点群与空间群 点群:是指宏观晶体中对称要素的集合。它包含了宏观晶体中全部对称要素的总和以及它们相互间的组合关系。 空间群:晶体内部结构中全部对称要素的集合。 2-5 Direction indices and plane indices 晶向指数与晶面指数 晶向指数:晶体点阵在任何方向上分解为相互平行的结点直线组,质点等距离地分布在直线上。位于一条直线上的质点构成一个晶向。用表示,其中u v w是晶向矢量在参考坐标系X Y Z轴上的矢量分量等比例化简而得到。 晶面指数:可将晶体点阵在任何方向上分解为相互平行的结点平面,即晶面,用表示,h l k是晶面在三个坐标轴(晶轴)上截距倒数的互质整数比。 2-6 Coordination number and coordination polyhedron配位数与配位多面体 配位数:一个原子(或离子)周围同种原子(或异号离子)的数目为原子或离子的配位数 配位多面体:由原子(或离子)与其配位原子(或异号离子)组成的多面体结构为配位多面体。

材料科学基础作业解答

第一章 1.简述一次键与二次键各包括哪些结合键这些结合键各自特点如何 答:一次键——结合力较强,包括离子键、共价键和金属键。 二次键——结合力较弱,包括范德瓦耳斯键和氢键。 ①离子键:由于正、负离子间的库仑(静电)引力而形成。特点:1)正负离子相间排列,正负电荷数相等;2)键能最高,结合力很大; ②共价键:是由于相邻原子共用其外部价电子,形成稳定的电子满壳层结构而形成。特点:结合力很大,硬度高、强度大、熔点高,延展性和导电性都很差,具有很好的绝缘性能。 ③金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合的方式。特点:它没有饱和性和方向性;具有良好的塑性;良好的导电性、导热性、正的电阻温度系数。 ④范德瓦耳斯键:一个分子的正电荷部位和另一个分子的负电荷部位间的微弱静电吸引力将两个分子结合在一起的方式。也称为分子键。特点:键合较弱,易断裂,可在很大程度上改变材料的性能;低熔点、高塑性。 2.比较金属材料、陶瓷材料、高分子材料在结合键上的差别。 答:①金属材料:简单金属(指元素周期表上主族元素)的结合键完全为金属键,过渡族金属的结合键为金属键和共价键的混合,但以金属键为主。 ②陶瓷材料:陶瓷材料是一种或多种金属同一种非金属(通常为氧)相结合的化合物,其主要结合方式为离子键,也有一定成分的共价键。 ③高分子材料:高分子材料中,大分子内的原子之间结合方式为共价键,而大分子与大分子之间的结合方式为分子键和氢键。④复合材料:复合材料是由二种或者二种以上的材料组合而成的物质,因而其结合键非常复杂,不能一概而论。 3. 晶体与非晶体的区别稳态与亚稳态结构的区别 晶体与非晶体区别: 答:性质上,(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变;(3)晶体有各向异性的特点。

实变函数论主要知识点

实变函数论主要知识点

实变函数论主要知识点 第一章 集 合 1、 集合的并、交、差运算;余集和De Morgan 公式;上极限和下极限; 练习: ①证明()()A B C A B C --=-U ; ②证明1 1[][]n E f a E f a n ∞=>=≥+U ; 2、 对等与基数的定义及性质; 练习: ①证明(0,1):?; ②证明(0,1)[0,1]:; 3、 可数集的定义与常见的例;性质“有限个可数集合的直积是可数集合”与应用;可数集合的基数; 练习: ①证明直线上增函数的不连续点最多只有可数多个; ②证明平面上坐标为有理数的点的全体 所成的集合为一可数集; ③Q = ; ④[0,1]中有理数集E 的相关结论; 4、 不可数集合、连续基数的定义及性质; 练习: ①(0,1)= ; ②P = (P 为Cantor 集);

第二章点集 1、度量空间,n维欧氏空间中有关概念 度量空间(Metric Space),在数学中是指一个集合,并且该集合中的任意元素之间的距离是可定义的。 n维欧氏空间: 设V是实数域R上的线性空间(或称为向量空间),若V上定义着正定对称双线性型g(g称为内积),则V称为(对于g的)内积空间或欧几里德空间(有时仅当V是有限维时,才称为欧几里德空间)。具体来说,g是V 上的二元实值函数,满足如下关系: (1)g(x,y)=g(y,x); (2)g(x+y,z)=g(x,z)+g(y,z); (3)g(kx,y)=kg(x,y); (4)g(x,x)>=0,而且g(x,x)=0当且仅当x=0

时成立。 这里x,y,z是V中任意向量,k是任意实数。 2、,聚点、界点、内点的概念、性质及判定(求法);开核,导集,闭包的概念、性质及判定(求法); 聚点:有点集E,若在复平面上的一点z的任意邻域都有E的无穷多个点,则称z为E的聚点。 内点:如果存在点P的某个邻域U(P)∈E,则称P为E的内点。 3、开集、闭集、完备集的概念、性质;直线上开集的构造; 4、Cantor集的构造和性质; 5、练习:①P=o,P'=,P=; ②11 1,,,, 2n ' ?? ?? ?? L L= ; 第三章测度论 1、外测度的定义和基本性质(非负性,单调性,次可数可加性); 2、可测集的定义与性质(可测集类关于可数

材料科学基础知识点大全

点缺陷1范围分类1点缺陷.在三维空间各方向上尺寸都很小,在原子尺寸大小的晶体缺陷.2线缺陷在三维空间的一个方向上的尺寸很大(晶粒数量级),另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷.其具体形式就是晶体中的位错3面缺陷在三维空间的两个方向上的尺寸很大,另外一个方向上的尺寸很小的晶体缺陷 2点缺陷的类型1空位.在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”2.间隙原子.在晶格非结点位置,往往是晶格的间隙,出现了多余的原子.它们可能是同类原子,也可能是异类原子3.异类原子.在一种类型的原子组成的晶格中,不同种类的原子替换原有的原子占有其应有的位置3点缺陷的形成弗仑克耳缺陷:原子离开平衡位置进入间隙,形成等量的空位和间隙原子.肖特基缺陷:只形成空位不形成间隙原子.(构成新的晶面)金属:离子晶体:1 负离子不能到间隙2 局部电中性要求 4点缺陷的方程缺陷方程三原则: 质量守恒, 电荷平衡, 正负离子格点成比例增减. 肖特基缺陷生成:0=V M,,+ V O··弗仑克尔缺陷生成: M M=V M,,+ M i ·· 非计量氧化物:1/2O2(g)=V M,,+ 2h·+ O O不等价参杂:Li2O=2Li M,+ O O + V O··Li2O+ 1/2O2 (g) =2Li M, + 2O O + 2h· .Nb2O5=2Nb Ti ·+ 2 e, + 4O O + 1/2O2 (g) 5过饱和空位.晶体中含点缺陷的数目明显超过平衡值.如高温下停留平衡时晶体中存在一平衡空位,快速冷却到一较低的温度,晶体中的空位来不及移出晶体,就会造成晶体中的空位浓度超过这时的平衡值.过饱和空位的存在是一非平衡状态,有恢复到平衡态的热力学趋势,在动力学上要到达平衡态还要一时间过程. 6点缺陷对材料的影响.原因无论那种点缺陷的存在,都会使其附近的原子稍微偏离原结点位置才能平衡即造成小区域的晶格畸变.效果1提高材料的电阻定向流动的电子在点缺陷处受到非平衡力(陷阱),增加了阻力,加速运动提高局部温度(发热)2加快原子的扩散迁移空位可作为原子运动的周转站3形成其他晶体缺陷过饱和的空位可集中形成内部的空洞,集中一片的塌陷形成位错4改变材料的力学性能.空位移动到位错处可造成刃位错的攀移,间隙原子和异类原子的存在会增加位错的运动阻力.会使强度提高,塑性下降. 位错 7刃型位错若将上半部分向上移动一个原子间距,之间插入半个原子面,再按原子的结合方式连接起来,得到和(b)类似排列方式(转90度),这也是刃型位错. 8螺型位错若将晶体的上半部分向后移动一个原子间距,再按原子的结合方式连接起来(c),同样除分界线附近的一管形区域例外,其他部分基本也都是完好的晶体.而在分界线的区域形成一螺旋面,这就是螺型位错 9柏氏矢量.确定方法,首先在原子排列基本正常区域作一个包含位错的回路,也称为柏氏回路,这个回路包含了位错发生的畸变.然后将同样大小的回路置于理想晶体中,回路当然不可能封闭,需要一个额外的矢量连接才能封闭,这个矢量就称为该位错的柏氏矢10柏氏矢量与位错类型的关系刃型位错,柏氏矢量与位错线相互垂直.(依方向关系可分正刃和负刃型位错).螺型位错,柏氏矢量与位错线相互平行.(依方向关系可分左螺和右螺型位错).混合位错,柏氏矢量与位错线的夹角非0或90度. 柏氏矢量守恒1同一位错的柏氏矢量与柏氏回路的大小和走向无关.2位错不可能终止于晶体的内部,只能到表面,晶界和其他位错,在位错网的交汇点, 11滑移运动--刃型位错的滑移运动在晶体上施加一切应力,当应力足够大时,有使晶体上部向有发生移动的趋势.假如晶体中有一刃型位错,显然位错在晶体中发生移动比整个晶体移动要容易.因此,①位错的运动在外加切应力的作用下发生;②位错移动的方向和位错线垂直;③运动位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动(滑移);④位错移出晶体表面将在晶体的表面上产生柏氏矢量大小的台阶.螺型位错的滑移在晶体上施加一切应力,当应力足够大时,有使晶体的左右部分发生上下移动的趋势.假如晶体中有一螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边晶体

实变函数学习心得

实变函数学习心得 实变函数课在我国高等学校数学系的教学计划中属于专业基础课,是一门承上启下的课。下面是为大家准备的实变函数学习心得体会,希望大家喜欢! 实变函数学习心得体会范文篇1 学习实变函数这们课已经一个学期了,对于我们数学专业的学生,大学最难的一门课就是实变函数论与实变函数这门课了。我们用的教材难度比较大,所以根据我自己学习这门课的心得与方法,有以下几点: 1、复习并巩固数学分析等基础课程。学习实变函数这门课程要求我们以数学分析为学习基础,因此,想学好这门课必须有相对比较扎实的数学分析基础。 2、课前预习。实变函数是一门比较难的课程,龙老师上课也讲得比较快、比较抽象,因此,适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。 3、上课认真听讲,认真做笔记。龙老师是一位博学的老师,上课内容涵盖许多知识。因此,上课应注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,实变函数这门课比较难,所以建议听课是一个全身心投入听、记、思相结合的过程。 4、课后复习,做作业,做练习。我们作为大三的学生,我们要学

会抓住零碎的时间复习实变函数课堂的学习内容,巩固学习。复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某些定理证明的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,理解并掌握其证明思路。做作业、做练习时,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。 所以,我们学习实变函数总的来说要把握课前、课时与课后的任务,学习内容要多下功夫掌握基本概念和原理及其证明思路,尽可能地掌握作业题目,在记忆的基础上理解,在完成练习中深化理解,在比较中构筑知识结构的框架,是提高学习实变函数课程效率的重要途径。 实变函数学习心得体会范文篇2 古语有云:微机原理闹危机,汇编语言不会编,随机过程随机过,量子力学量力学,实变函数学十遍。其它的不好说,这实变函数确实要多看几遍的。虽然我曾旁听过这门课,但是对于其中的种种总感觉模模糊糊,不甚明了。前几日在网上down了一个完整的教学视频,便想着把这门课重新来过,遂借着这片地方留下一些印记,好督促自己万不可半途而废。 1、集合列的极限有上下极限之分,只有当上下极限相等时,才称集合列存在极限。对于上极限可以这样定义: {x|x属于无穷多个An}.无穷多是用文字语言来进行形象的描述,那么转换成数学的语言应该是怎样的呢?类比数学分析中的聚点原理,我们可以假设若x属于某个Am,那么一定可以找到mm,使得x也属于m,如若不然,x就属于有限个集合,而不是无穷多个了。上述

材料科学基础第七章答案

第七章答案 7-1略 7-2浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么? 解:扩散是由于梯度差所引起的,而浓度差只是梯度差的一种。当另外一种梯度差,比如应力差的影响大于浓度差,扩散则会从低浓度向高浓度进行。 7-3欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,要求三价离子有什么样的浓度?试对你在计算中所做的各种特性值的估计作充分说明。已知CaO肖特基缺陷形成能为6eV。 解:掺杂M3+引起V’’Ca的缺陷反应如下: 当CaO在熔点时,肖特基缺陷的浓度为: 所以欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,M3+的浓度为 ,即 7-4试根据图7-32查取:(1)CaO在1145℃和1650℃的扩散系数值;(2)Al2O3在1393℃和1716℃的扩散系数值;并计算CaO和Al2O3中Ca2+和Al3+的扩散活化能和D0值。 解:由图可知CaO在1145℃和1650℃的扩散系数值分别为,Al2O3在1393℃和1716℃的扩散系数值分别为 根据可得到CaO在1145℃和1650℃的扩散系数的比值为: ,将值代入后可得,Al2O3的计算类推。

7-5已知氢和镍在面心立方铁中的扩散数据为cm2/s和 cm2/s,试计算1000℃的扩散系数,并对其差别进行解释。 解:将T=1000℃代入上述方程中可得,同理可知 。 原因:与镍原子相比氢原子小得多,更容易在面心立方的铁中通过空隙扩散。 7-6在制造硅半导体器体中,常使硼扩散到硅单晶中,若在1600K温度下,保持硼在硅单晶表面的浓度恒定(恒定源半无限扩散),要求距表面10-3cm深度处硼的浓度是表面浓度的 一半,问需要多长时间(已知D1600℃=8×10-12cm2/s;当时,)?解:此模型可以看作是半无限棒的一维扩散问题,可用高斯误差函数求解。 其中=0,,所以有0.5=,即=0.5,把=10-3cm,D1600℃=8×10-12cm2/s代入得t=s。 7-7 Zn2+在ZnS中扩散时,563℃时的扩散系数为3×10-4cm2/s;450℃时的扩散系数为1.0×10-4cm2/s,求:(1)扩散活化能和D0;(2)750℃时的扩散系数;(3)根据你对结构的了解,请从运动的观点和缺陷的产生来推断活化能的含义;(4)根据ZnS和ZnO相互类似,预测D随硫的分压而变化的关系。 解:(1)参考7-4得=48856J/mol,D0=3×10-15cm2/s; (2)把T=1023K代入中可得=cm2/s; 7-8实验测得不同温度下碳在钛中的扩散系数分别为2×10-9cm2/s(736℃)、5×10-9cm2/s (782℃)、1.3×10-8cm2/s(838℃)。(1)请判断该实验结果是否符合;(2)请计算扩散活化能,并求出在500℃时碳的扩散系数。

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

泛函分析知识点

泛函分析知识点 知识体系概述 (一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子 1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得?x,y,z ∈X,下列距离公理成立: (1)非负性:d(x,y)≥0,d(x,y)=0?x=y; (2)对称性:d(x,y)=d(y,x); (3)三角不等式:d(x,y)≤d(x,z)+d(z,y); 则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间 例1 离散的度量空间 例2 序列空间S 例3 有界函数空间B(A) 例4 可测函数空M(X) 例5 C[a,b]空间 即连续函数空间 例6 l 2 第二节 度量空间中的极限,稠密集,可分空间 1. 开球 定义 设(X,d )为度量空间,d 是距离,定义 U(x 0, ε)={x ∈X | d(x, x 0) <ε} 为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限 定义 若{x n }?X, ?x ∈X, s.t. ()lim ,0n n d x x →∞ = 则称x 是点列{x n }的极限. 3. 有界集 定义 若()(),sup ,x y A d A d x y ?∈=<∞,则称A 有界 4. 稠密集 定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。 5. 可分空间 定义 如果X 有一个可数的稠密子集,则称X 是可分空间。 第三节 连续映射 1.定义 设X=(X,d),Y=(Y, ~ d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意

【材料科学基础】必考知识点第一章

2020届材料科学基础期末必考知识点总结 第一章材料中的原子排列 第一节原子的结合方式 1.原子结合键 (1)离子键与离子晶体 原子结合:电子转移,结合力大,无方向性和饱和性; 离子晶体;硬度高,脆性大,熔点高、导电性差。如氧化物陶瓷。 (2)共价键与原子晶体 原子结合:电子共用,结合力大,有方向性和饱和性; 原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。如高分子材料。 (3)金属键与金属晶体 原子结合:电子逸出共有,结合力较大,无方向性和饱和性; 金属晶体:导电性、导热性、延展性好,熔点较高。如金属。 金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。 (3)分子键与分子晶体 原子结合:电子云偏移,结合力很小,无方向性和饱和性。 分子晶体:熔点低,硬度低。如高分子材料。 氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O (4)混合键。如复合材料。 2. 结合键分类 (1)一次键(化学键):金属键、共价键、离子键。 (2)二次键(物理键):分子键和氢键。 3.原子的排列方式 (1)晶体:原子在三维空间内的周期性规则排列。长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。长程无序,各向同性。 第二节原子的规则排列 一晶体学基础 1 空间点阵与晶体结构 (1)空间点阵:由几何点做周期性规则排列所形成的三维阵列。 特征:a 原子的理想排列;b 有14种。 其中: 空间点阵中的点-阵点。它是纯粹的几何点,各点周围环境相同。 描述晶体中原子排列规律的空间格架称之为晶格。 空间点阵中最小的几何单元称之为晶胞。 (2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。 特征:a 可能存在局部缺陷;b 可有无限多种。 2.晶胞 (1)――-:构成空间点阵的最基本单元。 (2)选取原则: a 能够充分反映空间点阵的对称性; b 相等的棱和角的数目最多; c 具有尽可能多的直角; d 体积最小。 (3)形状和大小 有三个棱边的长度a,b,c及其夹角α,β,γ表示。 (4)晶胞中点的位置表示(坐标法)。 3. 晶向指数与晶面指数 晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。

相关主题
文本预览
相关文档 最新文档