当前位置:文档之家› 第九章 DEM与数字地形分析

第九章 DEM与数字地形分析

第九章 DEM与数字地形分析
第九章 DEM与数字地形分析

第9章 DEM 与数字地形分析

数字地面模型于1958年提出,特别是基于DEM 的GIS 空间分析方法的出现,使传统的地形分析方法产生了革命性的变化,数字地形分析方法逐步形成和完善。目前,基于DEM 的数字地形分析已经成为GIS 空间分析中最具特色的部分,在测绘、遥感及资源调查、环境保护、城市规划、灾害防治及地学研究各方面发挥越来越重要的作用。本章首先介绍了数字高程模型的基本概念和建立步骤,然后从基本坡面因子、特征地形因子、水文因子和可视域等方面简述数字地形分析的主要内容和研究方法。

9.1 基本概念

9.1.1

数字高程模型

数字高程模型(Digital Elevation Model ,简称DEM )是通过有限的地形高程数据实现对地形曲面的数字化模拟(即地形表面形态的数字化表示),它是对二维地理空间上具有连续变化特征地理现象的模型化表达和过程模拟。由于高程数据常常采用绝对高程(即从大地水准面起算的高度),DEM 也常常称为DTM (Digital Terrain Model )。“Terrain”一词的含义比较广泛,不同专业背景对“Terrain”的理解也不一样,因此DTM 趋向于表达比DEM 更为广泛的内容。

从研究对象与应用范畴角度出发,DEM 可以归纳为狭义和广义两种定义。从狭义角度定义,DEM 是区域表面海拔高程的数字化表达。这种定义将描述的范畴集中地限制在“地表”、“海拔高程”及“数字化表达”内,观念较为明确。从广义角度定义,DEM 是地理空间中地理对象表面海拔高度的数字化表达。这是随着DEM 的应用不断向海底、地下岩层以及某些不可见的地理现象(如空中的等气压面等)延伸,而提出的更广义的概念。该定义将描述对象不再限定在“地表面”,因而具有更大的包容性,有海底DEM 、下伏岩层DEM 、大气等压面DEM 等。

数学意义上的数字高程模型是定义在二维空间上的连续函数),(y x f H =。由于连续函数的无限性,DEM 通常是将有限的采样点用某种规则连接成一系列的曲面或平面片来逼近原始曲面,因此DEM 的数学定义为区域D 的采样点或内插点Pj 按某种规则ζ连接成的面片M 的集合:

}

,,1,,1,),,()({m i n j D H y x P P M DEM j j j j j i ==∈==ζ (9.1)

DEM 按照其结构,可分为规则格网DEM 、TIN 、基于点的DEM 和基于等高线的DEM 等。由于规则格网结构简单,算法设计明了,在实际运用中被广泛采用。本书中的DEM 仅指规则格网DEM 。

9.1.2 数字地形分析

数字地形分析(Digital Terrain Analysis, DTA ),是指在数字高程模型上进行地形属性计算和特征提取的数字信息处理技术。DTA 技术是各种与地形因素相关空间模拟技术的基础。

地形属性根据地形要素的关系特征和计算特征,可以归纳为地形曲面参数(parameters )、地形形态特征(features )、地形统计特征(statistics )和复合地形属性(compound attributes )。地形曲面参数具有明确的数学表达式和物理定义,并可在DEM 上直接量算,如坡度、坡向、曲率等。地形形态特征是地表形态和特征的定性表达,可以在DEM 上直接提取,其特点是定义明确,但边界条件有一定的模糊性,难以用数学表达式表达,如在实际的流域单元的划分中,往往难于确定流域的边界。地形统计特征是指给定地表区域的统计学上的特征。复合地形属性是在地形曲面参数和地形形态特征的基础上,利用应用学科(如水文学、地貌学和土壤学)的应用模型而建立的环境变量,通常以指数形式表达。

数字地形分析的主要内容有两方面,一是在复杂的现实世界地理过程中各影响因子和简单、高效、精确、易于理解的抽象与计算机实现中找到平衡。简单地说,就是提取描述地形属性和特征的因子,并利用各种相关技术分析解释地貌形态、划分地貌形态等。二是DTM 的可视化分析。数字地形分析中可视化分析的重点在于地形特征的可视化表达和信息增强,以帮助传达地形曲面参数、地表形态特征和复合地形属性的信息。

根据分析内容,常用的数字地形分析的方法有以下几种(图9.1): 1.提取坡面地形因子

地形定量因子是为有效地研究与表达地貌形态特征所设定的具有一定意义的参数或指标。从地形地貌的角度考虑,地表是由不同的坡面组成的,而地貌的变化,完全源于坡面的变化。常用的坡面地形因子有坡度、坡向、平面曲率、坡面曲率、地形起伏度、粗糙度、切割深度等。

2.提取特征地形要素 (1)流域分析

流域分析主要是根据地表物质运动的特性,特别是水流运动的特点,利用水流模拟的方法来提取水系、山脊线、谷底线等地形特征线,并通过线状信息分析其面域特征。 (2)可视域分析

可视性分析包括两方面内容,一个是两点之间的通视性(Intervisibility),另一个是可视域(ViewShed),即对于给定的观察点所覆盖的区域。

3.地形统计特征分析

地形统计分析是应用统计方法对描述地形特征的各种可量化的因子或参数进行相关、回归、趋势面、聚类等统计分析,找出各因子或参数的变化规律和内在联系,并选择合适的因

子或参数建立地学模型,从更深层次探讨地形演化及其空间变异规律。

图9.1

数字地形分析常用方法

地形统计特征分析

流域分析

可视域分析

提取坡度

提取坡面曲率

9.2DEM建立

9.2.1DEM建立的一般步骤

数字高程模型的建立过程是一个模型建立过程。从模型论角度讲,就是将源域(地形)表现在另一个域(目标域或DEM)中的一种结构,建模的目的是对复杂的客体进行简化和抽象,并把对客体(源域,DEM中为地形起伏)的研究转移到对模型的研究上来。

模型建立之初,首先要为模型构造一个合适的空间结构(spatial framework)。空间结构是为把特定区域内的空间目标镶嵌在一起而对区域进行的划分,划分出的各个空间范围称为位置区域或空间域。空间结构一般是规则的(如格网),或不规则的(如不规则三角网TIN)。

建立在空间结构基础上的模型是由n个空间域的有限集合组成。由于空间数据包含位置特征和属性特征,而属性特征是定义在位置特征上的,因此每一个空间域就是由空间结构到属性域的计算函数或域函数。模型的可计算性要求有两点,一是空间域的数量、属性域和空间结构是有限的,二是域函数是可计算的。构筑模型的一般内容和过程为:

①采用合适的空间模型构造空间结构;

②采用合适的属性域函数;

③在空间结构中进行采样,构造空间域函数;

④利用空间域函数进行分析。

当空间结构为欧几里德平面,属性域是实数集合时,模型为一自然表面。将欧几里德平面充当水平的XY平面,属性域给出Z坐标(或高程),模型即为数字高程模型。

对于数字高程模型而言,空间结构的构造过程即为DEM的格网化过程(形成格网),属性值为高程,构造空间域函数即为内插函数的确定,利用空间域函数进行分析就是求取格网点的函数值。

9.2.2规则格网DEM的建立

DEM是在二维空间上对三维地形表面的描述。构建DEM的整体思路是首先在二维平面上对研究区域进行格网划分(格网大小取决于DEM的应用目的),形成覆盖整个区域的格网空间结构,然后利用分布在格网点周围的地形采样点内插计算格网点的高程值,最后按一定的格式输出,形成该地区的格网DEM(图9.1)。

图9.2 格网DEM建立流程

9.2.3 DEM内插方法

DEM建立过程中的关键环节是根据采样点的值内插计算格网点上的高程值。内插是指根据分布在内插点周围的已知参考点的高程值求出未知点的高程值,它是DEM的核心问题,贯穿于DEM的生产、质量控制、精度评定、分析应用的各个环节。

随着DEM的发展和完善,已经提出了多种高程内插方法。根据不同的分类标准,有不同的内插方法分类,例如按数据分布规律分类,有基于规则分布数据的内插方法、基于不规则分布的内插方法和适合于等高线数据的内插方法等;按内插点的分布范围,内插方法分为整体内插、局部内插和逐点内插法;从内插函数与参考点的关系方面,又分为曲面通过所有采样点的纯二维插值方法和曲面不通过参考点的曲面拟合插值方法;从内插曲面的数学性质来讲,有多项式内插、样条内插、最小二乘配置内插等内插函数;从对地形曲面理解的角度,内插方法有克立金法、多层曲面叠加法、加权平均法、分形内插等。表9.1对各种DEM内插分类方法进行了简要的总结和归纳。

本小节仅从内插点的分布范围来看,简要介绍整体内插法、局部内插法和逐点内插法。详细介绍参见第十章。

表9.1 DEM内插分类方法

整体内插是指在整个区域用一个数学函数来表达地形曲面。整体内插函数通常是高次多项式,要求地形采样点的个数大于或等于多项式的系数数目。整体内插方法有整个区域上函数的唯一性、能得到全局光滑连续的DEM、充分反映宏观地形特征等优点。但由于整体内插函数往往是高次多项式,它也有保凸性较差、不容易得到稳定的数值解、多项式系数的物理意义不明显、解算速度慢且对计算机容量要求较高、不能提供内插区域的局部地形特征等缺点。在DEM内插中,一般是与局部内插方法配合使用,例如在使用局部内插方法前,利用整体内插去掉不符合总体趋势的宏观地物特征。另外也可用来进行地形采样数据中的粗差检测。

局部分块内插是将地形区域按一定的方法进行分块,对每一分块,根据其地形曲面特征单独进行曲面拟合和高程内插。一般按地形结构线或规则区域进行分块,分块的大小取决于地形的复杂程度、地形采样点的密度和分布。为保证相邻分块之间的曲面平滑连接,相邻分块之间要有一定宽度的重叠,或者对内插曲面补充一定的连续性条件。这种方法简化了地形的曲面形态,使得每一分块可用不同的曲面表达,同时得到光滑连续的空间曲面。不同的分块单元可以使用不同的内插函数。常用的内插函数有线性内插、双线性内插、多项式内插、样条函数、多层曲面叠加法等。

逐点内插是以内插点为中心,确定一个邻域范围,用落在邻域范围内的采样点计算内插点的高程值。逐点内插本质上是局部内插,但与局部分块内插不同的是,局部内插中的分块范围一经确定,在整个内插过程中其大小、形状和位置是不变的,凡是落在该块中的内插点,都用该块中的内插函数进行计算,而逐点内插法的邻域范围大小、形状、位置乃至采样点个数随内插点的位置而变动,一套数据只用来进行一个内插点的计算。

逐点内插法要注意两个问题,一是选择合适的内插函数,内插函数决定着DEM精度、DEM连续性、内插点邻域的最小采样点个数和内插计算效率。二是确定内插点邻域,内插点的邻域大小和形状、邻域内参加内插计算的数据点的个数、采样点的权重、采样点的分布、附加信息等不仅会影响到DEM的内插精度,也影响到内插速度。逐点内插方法计算简单,内插效率较高,应用比较灵活,是目前较为常用的一类DEM内插方法。

在建立DEM时,要根据情况选择合适的、运算效率高的方法。而众多内插方法并不是独立的,而往往是相互结合使用,这在后续的章节里会讲到。

(N)

图9.5 地表单元坡度示意图

9.3 数字地形分析

地形分析是地形环境认知的一种重要手段,传统的地形分析是基于二维平面地图进行的。从基于纸质地图的地形分析发展到到基于数字地图的地形分析,计算机取代了大量的人工计算和绘制,地形分析的手段、功能发生了一次飞跃;可视化技术和虚拟现实技术的发展,使得建立三维实时、交互的仿真地形环境成为可能,同时也需要实现三维地形环境中的地形分析。特别是DEM 的出现和大量应用,使得从地形属性中提取各类地形参数和特征因子更加的简便和准确。

用来描述地形特征和空间分布的地形参数很多,不同的应用目的,不同的学科和领域对此的理解和分类也不同。本章将综合相关知识,着重介绍基本因子分析、地形特征提取、水文分析和可视域分析。

9.3.1 基本因子分析

本质上讲,DEM 是地形的一个数学模型,可以看成是一个或多个函数的集合。实际上许多地形因子就是从这些函数进行一阶或二阶推导出来的,也有的通过某种组合或复合运算得到。基本地形因子包括斜坡因子(坡度、坡向、坡度变化率、坡向变化率等)、面积因子(表面积、投影面积、剖面积)、体积因子(山体体积、挖填体积)和面元因子(相对高差、粗糙度、凹凸系数、高程变异等)。

本节将阐述一些常用的基本地形因子,为了方便起见,并从实际应用角度考虑,本节这些地形因子的计算都是基于格网DEM 。 1. 坡度

严格地讲,地表面任一点的坡度是指过该点的切平面与水平地面的夹角。坡度表示了地表面在该点的倾斜程度,在数值上等于过该点的地表

微分单元的法矢量n 与z 轴的夹角(如图9.5所

示),即:

Slope = )

(n

z n

z ArcCos ??

(9.1)

当具体进行坡度提取时,常采用简化的差分公式,完整的数学表示为:

Slope = (9.2)

式中,f x 是X 方向高程变化率,f y 是Y 方向高程变化率。

地面坡度实质是一个微分的概念,地面上每一点都有坡度,它是一个微分点上的概念,是地表曲面函数z = f(x,y)在东西、南北方向上的高程变化率的函数。实际应用中,坡度有两种表示方式(如图9.6):

● 坡度(degree of slope):即水平面与地形面之间夹角。 ● 坡度百分比(percent slope ):即高程增量(rise )与水平增量(run )之比的百分数。

拟合曲面法是解求坡度的最常用的方法。拟合曲面法,一般采用二次曲面,即在3×3的DEM

栅格分析窗口中(如图9.7)进行,每个栅格中心为一个高程值,分析窗口在DEM 数据矩阵中连续移动完成整个区域的计算工作。常用的计算f x 、 f y 的方法是三阶反距离平方权,该算法也用于ArcView 和ARC/INFO 。其计算方法为:

????

??

?---++=

---++=+-----++++-+---++++-g z z z z z z f g z z z z z z f j i j i j i j i j i j i y j i j i j i j i j i j i x 8228221,1,11,11,1,11,11,11,1,11,11,1,1 (9.3)

式(9.3),g 为格网间距。 2. 坡向

坡向定义为:地表面上一点的切平面的法线矢量n 在水平面的投影xoy n

与过该点的正北

方向的夹角(如表7.1中的坡向示意图所示,x 轴为正北方向)。其数学表达公式为: )

(

Aspect x y

f f

arctg = (9.4)

对于地面任何一点来说,坡向表征了该点高程值改变量的最大变化方向。在输出的坡向数据中,坡向值有如下规定:正北方向为0°,顺时针方向计算,取值范围为0°~360°。

坡向可在DEM 数据中用式9.4直接提取。但应注意,由于式9.4求出坡向有与x 轴正向和x 轴负向夹角之分,此时就要根据f x 和f y 的符号来进一步确定坡向值(如表9.2所示)

图9.6 坡度的两种表示方法

注:上述情况假定所建立的DEM数据从南向北获取的,且x轴与正北方向重合,否则上述公式求得的坡向值,还应加上x轴偏离正北方向的夹角值。

采用这种方法求取的坡向分级比较详细,但实际应用中往往需要给予归并,在ArcView 和ArcGIS软件中,通常把坡向综合成九种坡向:平缓坡(-1)、北坡(0°- 22.5°, 337.5°- 360°)、东北坡(22.5° - 67.5°)、东坡(67.5° - 112.5°)、东南坡(112.5° - 157.5°)、南坡(157.5° - 202.5°)、西南坡(202.5° - 247.5°)、西坡(247.5° - 292.5°)、西北坡(292.5° - 337.5°)。

图9.8 原始DEM数据及实验区等高线图

图9.9 ARCVIEW软件下提取的坡度图

3. 曲率

曲率是对地形表面一点扭曲变化程度的定量化度量因子,地面曲率在垂直和水平两个方向上分量分别称为平面曲率和剖面曲率。地形表面曲率反映了地形结构和形态,同时也影响着土壤有机物含量的分布,在地表过程模拟、水文、土壤等领域有着重要的应用价值和意义。

剖面曲率是对地面坡度的沿最大坡降方向地面高程变化率的度量。数学表达式为:

2222221)(2q p q p t

q pqs r p K v +++++-

= (9.5)

平面曲率指在地形表面上,具体到任何一点P ,指用过该点的水平面沿水平方向切地形表面所得的曲线在该点的曲率值(图9.11所示)。平面曲率描述的是地表曲面沿水平方向的弯曲、变化情况,也就是该点所在的地面等高线的弯曲程度。从另一个角度讲,地形表面上一点的平面曲率也是对该点微小范围内坡向变化程度的度量。数学表达式为:

图9.10 由DEM 提取的坡向图

图9.11平面曲率示意

y (E )

2222221)(2q p q p t

p pqs r q K h ++++--

= (9.6)

曲率数学表达式中,利用离散的DEM 数据把地表曲面数学模拟为一个连续的曲面H(x,y),x 和y 地面点的平面坐标值,H(x,y)为地面点高程值,式中其它符号所表示的意义为:

x H

p ??=

,是x 方向高程变化率; y H q ??=

,是y 方向高程变化率; 22x H

r ??=

,对高程值在x 方向上的变化率进行同方向求算变化率,即x 方向高程变化率

的变化率;

y x H s ???=

2,对高程值在x 方向上的变化率进行y 方向上求算变化率,即x 方向高程变化

率在y 方向的变化率;

22y H

t ??=,对高程值在y 方向上的变化率同方向上求算变化率,即y 方向高程变化率的

变化率。

曲率因子的提取算法的基本原理为:在DEM 数据的基础上,根据其离散的高程数值,把地表模拟成一个连续的曲面,从微分几何的思想出发,模拟曲面上每一点所处的垂直于和平行于水平面的曲线,利用曲线曲率的求算方法的推导得出各个曲率因子的计算公式。利用公式求算出每一点的曲率值的关键在于确定得出式中各个参量的值,在DEM 中求算高程的微分分量有一套独特的算法,最常用是三阶反距离平方权差分。对每一个栅格点都确定一个3×3的分析窗口,其过程如图9.12所示。利用ArcView 所提取的剖面曲率与平面曲率图如图9.13和9.14所示。

4. 宏观地形因子

地形起伏度、地形表面粗糙度与地表切割深度等地形因子是描述和反映地形表面较大区

域内地形的宏观特征,在较小的区域内并不具备任何地理和应用意义。这些参数对于在宏观尺度上的水土保持、土壤侵蚀特征、地表发育、地貌分类等研究中具有重要的理论意义。基于栅格DEM 计算宏观地形因子时,关键在于确定分析半径的大小。不同地貌类型、不同分辨率的数据,计算宏观地形因子所取的分析半径大小是不一。因此,确定一个合适的分析窗口半径或分析区域,使得求取的宏观因子能够准确反映地面的起伏状况与水土流失特征,是提取算法的核心步骤和决定信息提取效果与有效性的关键。

⑴ 地线起伏度 地形起伏度是指,在所指定的分析区域内所有栅格中最大高程与最小高程的差。可表示为如下公式:

min max H H RF i -= (9.7)

式中,RFi 指分析区域内的地面起伏度,H max 指分析窗口内的最大高程值,H min 指分析窗口内的最小高程值。

地形的起伏是反映地形起伏的宏观地形因子,在区域性研究中,利用DEM 数据提取地形起伏度能够直观的反映地形起伏特征。在水土流失研究中,地形起伏度指标能够反映水土流失类型区的土壤侵蚀特征,比较适合区域水土流失评价的地形指标。

⑵ 地形粗糙度

地表粗糙度,一般定义为地表单元的曲面面积S 曲面与其在水平面上的投影面积S 水平之比。用数学公式表达为:

R = S 曲面 / S 水平 (9.8)

地表粗糙度能够反映地形的起伏变化和侵蚀程度的宏观地形因子。在区域性研究中,地

图9.12 地面曲率提取步骤流程图

ellsize h g c b a t y y y y y C *82()2('

''''++-++=

表粗糙度是衡量地表侵蚀程度的重要量化指标,在研究水土保持及环境监测时研究地表粗糙度也有很重要的意义。

实际应用时,当分析窗口为3×3时,可采用下面近似公式求解:

R = 1/cos(S) (9.9)

此时,基于DEM 的地表粗糙度的提取主要分为以下两个步骤:

① 根据DEM 提取坡度因子S ;

② 根据公式R = 1/cos(S) 计算地表粗糙度。

⑶ 地表切割深度

地表切割深度是指地面某点的邻域范围的平均高程与该邻域范围内的最小高程的差值。可用以下公式表示:

min H H D mean i -= (9.10)

式中,D i 指地面每一点的地表切割深度,H mean 指一个固定分析窗口内的平均高程,H min

指一个固定分析窗口内的最低高程。

地表切割深度直观的反映了地表被侵蚀切割的情况,并对这一地学现象进行了量化,是研究水土流失及地表侵蚀发育状况时的重要参考指标,其提取算法可参照地表起伏度的提取。

9.3.2 地形特征分析

虽然地表形态各式各样,但地形点、地形线、地形面等地形结构的基本特征构成了地形的骨架,因此一般的地形特征提取主要是指地形特征点、线、面的提取,并进而通过基本要素的组合进行地表形态分析。特征地形要素的提取更多地应用较为复杂的技术方法,其中山谷线、山脊线的提取采用了全域分析法,成为数字高程模型地学分析中很具特色的数据处理内容。

1. 地形特征点提取

地形特征点主要包括山顶点(peak )、凹陷点(pit )、脊点(ridge )、谷点(channel )、鞍点(pass ),平地点(plane )等。利用DEM 提取地形特征点,可通过一个3×3或更大的栅格窗口,通过中心格网点与8个邻域格网点的高程关系来进行判断会获取。即在一个局部区域内,用x 方向和y 方向上关于高程z 的二阶导数的正负组合关系来判断(见表9.3)。该方法假设DEM 表面为z = f(x,y),但由于真实地表与数学表面的差别,在利用该方法在DEM 上提取特征点,结果常产生伪特征点。

9.3中的关于地形特征点的判断是在局部区域内利用x ,y 方向的凹凸性判断的,该

判断法十分适合利用在DEM 上判断地形特征点。在DEM 中可以利用差分的方法得到2

2x z

??和

22x z

??的值。

除上述算法外,在一个3×3的栅格窗口中,也可以直接利用中心格网点与8个邻域格网点的高程关系来进行判断地形特征点。具体方法为:

假设有一个如图9.10所示的3×

3窗口。则:如果(Z i ,j -1 - Z

i ,

j )(Z i ,j -1 - Z i ,j )>0

(1)当Z i ,j +1> Z i ,j 则VR (i ,j )= -1 (2)当Z i ,j +1< Z i ,j 则VR (i ,j )= 1

如果(Z i -1,j - Z i ,j )(Z i +1,j - Z i ,j )(3)当Z i +1> Z i ,j 则VR (i ,j )= -1 (4)当Z i +1< Z i ,j 则VR (i ,j )= -1

如果(1)和(4)或(2)和(3)同时成立,则VR (i ,j )= 2 如果以上条件都不成立,则VR (i ,j )= 0

(i,j+1)

图9.15 差分算法示意图

其中,

()

?

?

?

?

?

?

?-

=

,表示其他点

,表示鞍点

,表示脊点

,表示谷点,

2

1

1

j

i

VR

2.山脊线和山谷线提取

山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有重要的意义。另一方面,对于水文物理过程研究而言,由于山脊、山谷分别表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。这一特性又使得山脊线和山谷线在许多工程应用方面有着特殊的意义。

在对山脊线、山谷线的提取方法中,基于规则格网DEM的方法是主要。从原理上来分,主要分为以下四种:

(1)基于图像处理技术的原理

因为规则格网DEM数据事实上是一种栅格形式的数据,可以利用数字图像处理中的技术来设计算法。利用数字图像处理技术设计的算法大都采用各种滤波算子进行边缘提取。基于该原理有一种简单移动窗口的算法,其主要思路是:

①计一个2×2窗口以对DEM格网阵列进行扫描;

②第一次扫描中,将窗口中的具有最低高程值的点进行标记,自始至终未被标记的点即为山脊线上的点;

③第二次扫描中,将窗口中的具有最高高程值的点进行标记,自始至终未被标记的点

即为山谷线上的点。

以上方法存在两个主要缺陷:

①取特征点时必须排除DEM中噪声的影响;

②特征点连接成线时的算法设计较为困难。

(2)基于地形表面几何形态分析原理

基于地形表面几何形态分析原理的典型算法就是断面极值法。其基本思想就是地形断面曲线上高程的极大值点就是分水点,而高程的极小值点就是汇水点。该方法的基本过程为:

①找出DEM的纵向与横向的两个断面上的极大、极小值点,作为地形特征线上的备选点;

②根据一定的条件或准则将这些备选点划归各自所属的地形特征线。

这种算法存在两个主要缺陷:

①由于这种方法对地形特征线上的点的判定与其所属的地形特征线的判定是分开进行的,在确定地形特征线时,全区域采用一个相同的曲率阈值作为判定地形特征线上点的条件。因此它忽略了每条地形特征线必然存在的曲率变化现象。当阈值选择较大时,会丢失许多地形特征线上的点,导致后续跟踪的地形特征线间断且较短;如果选择过小,会产生地形特征线上点的误判,给后续地形特征线的跟踪带来困难。

②由于该方法只选择纵、横两个断面来去确定高程变化的极值点,因此它所确定的地形特征线具有一定的近似性,与实际的地形特征线有一定的差异,有时候还会出现遗漏。

(3)基于地形表面流水物理模拟分析原理的算法

这种算法的基本思想是:按照流水从高至低的自然规律,顺序计算每一栅格点上的汇水量,然后按汇水量单调增加的顺序,由高到低找出区域中的每一条汇水线。根据得到的汇水线,通过计算找出各自汇水区域的边界线,就得到了分水线。

算法采用了DEM的整体追踪分析的思路与方法,分析结果具有系统性好,还便于进行相应的径流成因分析,但是,该方法也存在以下两个明显的缺陷:

①由于该算法所计算的汇水量与高程有关,计算的结果必然是高程值大的地形特征线上的点的汇水量小,高程值小的地形特征线上的点的汇水量大。因此,可能导致低处非地形特征线上的点的汇水量也较大而被误认为地形特征线上的点;而位于高处的地形特征线上的点会因为汇水量小而被排除;这就造成用该算法所确定的地形特征线(汇水线)的两端效果很差。

②由于该算法降格汇水区域的公共边界视为分水线,因此它所确定的分水线均为闭合曲

线,这与实际的地形特征线(山脊线)不符。 (4) 基于地形表面几何形态分析和流水物理模拟分析相结合

由于基于地形表面几何形态分析原理和基于地形表面流水物理模拟的算法均存在一定的缺陷,因此可将两者结合起来以实现地形特征线的提取。这种算法的基本思路是:首先采取较稀疏的DEM 格网数据,按流水物理模拟算法去提取区域内概略的地形特征线;然后用其引导,在其周围邻近区域对地形进行几何分析,来精确的确定区域的地形特征线。

这一算法的关键在于:求出已提取的概略的地形特征线与DEM 格网线的交点,在该交点附近的一个小区域内,对DEM 数据进行几何分析,即找出该区域内与概略的地形特征线正交方向地形断面上高程变化的极值点,该点即为地形特征线的精确位置。这一算法的基本过程可归纳为:①概略DEM 的建立;②地形流水物理模拟;③概略地形特征线提取;④地形几何分析;⑤地形特征线精确确定。

(5) 平面曲率与坡位组合法 即首先利用DEM 数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。该种方法提取的山脊、山谷的宽度可由选取平面曲率的大小来调节,方法简便效果好。

9.3.3

流域分析

1. 流域定义

降水汇集在地面低洼处,在重力作用下经常或周期性地沿流水本身所造成的槽形谷地流动,形成所谓的河流。河流沿途接纳很多支流,水量不断增加。干流和支流共同组成水系。每一个河流或每一个水系都从一部分陆地面积上获得补给,这部分陆地面积就是河流或水系的流域,也就是河流或水系在地面的集水区。把两个相邻集水区之间的最高点连接成的不规则曲线,就是两条河流或水系的分水线,因此,流域也可以说是河流分水线以内的地表范围。

图9.17 DEM 提取的山脊线

图9.18 DEM 提取的山谷线

高程格网和栅格数据运算用于流域分析,以获取流域和河网等在水文过程中非常重要的地形要素。

2.流域提取

在格网DEM实现流域地形分析,需要顺序执行如下的步骤:

第一步:DEM洼地填充。由于数据噪音、内插方法的影响,DEM数据中常常包含一些“洼地”,“洼地”将导致流域水流不畅,不能形成完整的流域网络,因此在利用模拟法进行流域地形分析时,要首先对DEM数据中的洼地进行处理。填充洼地最常用的方法是之一是把其单元值加高至周围的最低单元值。

第二步:水流方向确定(flow direction)。水流方向是指水流离开格网时的流向。流向确定目前有单流向和多流向两种,但在流域分析中,常是在3?3局部窗口中找出八个周边单元中一个最陡的坡度在流域分析中(如图9.19),水流方向矩阵是一个基本量,这个中间结果要保存起来,后续的几个环节都要用到水流方向矩阵。

原始

DEM

与中心格网高差中心单元流向图9.19 3?3窗口中心单元流向确定

第三步:水流累积矩阵生成(flow accumulation)。水流累积矩阵是指流向该格网的所有的上游格网单元的水流累计量(将格网单元看作是等权的,以格网单元的数量或面积计),它是基于水流方向确定的,是流域划分的基础。流水累计矩阵的值可以是面积,也可以是单元数,取决于具体的软件,如ArcView中采用的是格网单元数。两者之间的关系是面积= 格网单元数目?单位格网面积。

无洼地DEM、水流方向矩阵、流水累计矩阵是DEM流域分析的三个基础矩阵。

第四步:流域网络提取(stream networks)。流域网络是在水流累计矩阵基础上形成的,它是通过所设定的阈值,即沿水流方向将高于此阈值的格网连接起来,从而形成流域网络。

9.3.4可视性分析

可视性分析也称通视分析,它实质属于对地形进行最优化处理的范畴。比如设置雷达站、电视台的发射站、道路选择、航海导航等,在军事上如布设阵地(加炮兵阵地、电子对抗阵地)、设置观察哨所、铺架通信线路等。

可视性分析的基本因子有两个,一个是两点之间的通视性,另一个是可视域,即对于给定的观察点所覆盖的区域。

1.判断两点之间的可视性的算法

基于栅格DEM判断两点间通视有多种算法,常用的主要有以下两种。

(1)比较常见的一种算法基本思路如下

①确定过观察点和目标点所在的线段与XY平面垂直的平面S;

②求出地形模型中与平面S相交的所有边;

③判断相交的边是否位于观察点和目标点所在的线段之上,如果有一条边在其上,则

察点和目标点不可视。

(2)另一种算法是“射线追踪法”

这种算法的基本思想是对于给定的观察点V和某个观察方向,从观察点V开始沿着观察方向计算地形模型中与射线相交的第一个面元,如果这个面元存在.则不再计算。显然这

A′

图9.21 A—A′两点间的通视剖面图

(深色实线条为可视区,浅色虚线为不可视区)

种力法既可用于判断两点相互间是否可视,又可以用于限定区域的水平可视汁算。

在ArcView中分析某区域内A与A’两点间的通视情况,在观察点到目标点之间将会出现一条视线,其中可视的部分为浅色,不可视的部分为深色(如图9.20)。同时,ArcView

A′

图9.20 A-A′间的通视情况示意

会自动绘出A—A′两点间的通视剖面图(如图9.21)。

2.计算可视域的算法

基于规则格网DEM的可视域算法在G1S分析中应用较广。在规则格网DEM中,可视域经常是以离散的形式表示,即将每个格网点表示为可视或不可视,这就是“可视矩阵”。

计算基于规则格网DEM的可视域,一种简单的方法就是沿着视线的方向,从视点开始到目标格网点,计算与视线相交的格网单元(边或面),判断相交的格网单元是否可视,从而

确定视点与目标视点之间是否可视。显然这种方法存在大量的冗余计算。总的来说,由于规则格网DEM的格网点一般都比较多,相应的时间消耗比较大。针对规则格网DEM的特点,比较好的处理方法是采用并行处理。

在ArcView中分析在某区域内基于观察点的可视范围如图9.22所示。可视区分析不仅显示了在一个区域内从一个或多个观察点可以观察到的区域范围,而且显示了对于一个可视位置,有多少观察点可以看到此位置。在输出的Viewshed数据中,可视的栅格赋值为1(灰

图9.22 可视区分析

色),不可视的栅格赋值为0(透明)。

复习思考题

一、思考题(基础部分)

1.不同类型地理信息描述地形起伏特征分别采用什么方法,各有何优缺点?

2.说明数字高程模型(DEM)的分类体系。

3.DEM在GIS空间数据与空间分析中的地位与作用是什么?

4.简述DEM数据源及其特点。

5.说明坡度、坡向、剖面曲率、平面曲率的概念、提取方法及地学意义。

6.简述规则格网DEM和TIN的数字地形分析的主要内容,并比较它们的异同。

二、思考题(拓展部分)

1.编程实现基于规则格网DEM的坡度、坡向的提取。

2.设有以下信息源:地形图、航空像片、土壤普查资源、降雨强度分布图、土地利用现状

图,要求:①写出该信息源涉及地区>25度以上坡耕地可退耕地的面积与分布工程方案。

②如果地面的侵蚀模数可表达为E=(A+b)c*lnD*E,其中A—坡度;B—植被盖度;C—

土地利用参数(梯田=0.7;坡耕地=1.5;其他=0.8);D—土壤抗蚀参数(武成黄土=1;

马兰黄土=2;离土黄土=2.6;全新世黄土=3.1);E—降雨侵蚀力(0—1),编程求算该地区总侵蚀量。

3.给定某小流域的野外实测的高程离散数据,请思考选择合适的内插模型,构建该流域数

字高程模型,在此基础上,选用自己熟悉的地理信息系统软件,求算其沟壑密度,并画出流程图。

GIS的核心之一:数字地形分析

第9章 DEM 与数字地形分析 数字地面模型于1958年提出,特别是基于DEM 的GIS 空间分析方法的出现,使传统的地形分析方法产生了革命性的变化,数字地形分析方法逐步形成和完善。目前,基于DEM 的数字地形分析已经成为GIS 空间分析中最具特色的部分,在测绘、遥感及资源调查、环境保护、城市规划、灾害防治及地学研究各方面发挥越来越重要的作用。本章首先介绍了数字高程模型的基本概念和建立步骤,然后从基本坡面因子、特征地形因子、水文因子和可视域等方面简述数字地形分析的主要内容和研究方法。 9.1 基本概念 9.1.1 数字高程模型 数字高程模型(Digital Elevation Model ,简称DEM )是通过有限的地形高程数据实现对地形曲面的数字化模拟(即地形表面形态的数字化表示),它是对二维地理空间上具有连续变化特征地理现象的模型化表达和过程模拟。由于高程数据常常采用绝对高程(即从大地水准面起算的高度),DEM 也常常称为DTM (Digital Terrain Model )。“Terrain”一词的含义比较广泛,不同专业背景对“Terrain”的理解也不一样,因此DTM 趋向于表达比DEM 更为广泛的内容。 从研究对象与应用范畴角度出发,DEM 可以归纳为狭义和广义两种定义。从狭义角度定义,DEM 是区域表面海拔高程的数字化表达。这种定义将描述的范畴集中地限制在“地表”、“海拔高程”及“数字化表达”内,观念较为明确。从广义角度定义,DEM 是地理空间中地理对象表面海拔高度的数字化表达。这是随着DEM 的应用不断向海底、地下岩层以及某些不可见的地理现象(如空中的等气压面等)延伸,而提出的更广义的概念。该定义将描述对象不再限定在“地表面”,因而具有更大的包容性,有海底DEM 、下伏岩层DEM 、大气等压面DEM 等。 数学意义上的数字高程模型是定义在二维空间上的连续函数),(y x f H =。由于连续函数的无限性,DEM 通常是将有限的采样点用某种规则连接成一系列的曲面或平面片来逼近原始曲面,因此DEM 的数学定义为区域D 的采样点或内插点Pj 按某种规则ζ连接成的面片M 的集合: } ,,1,,1,),,()({m i n j D H y x P P M DEM j j j j j i ==∈==ζ (9.1) DEM 按照其结构,可分为规则格网DEM 、TIN 、基于点的DEM 和基于等高线的DEM 等。由于规则格网结构简单,算法设计明了,在实际运用中被广泛采用。本书中的DEM 仅指规则格网DEM 。 9.1.2 数字地形分析 数字地形分析(Digital Terrain Analysis, DTA ),是指在数字高程模型上进行地形属性计算和特征提取的数字信息处理技术。DTA 技术是各种与地形因素相关空间模拟技术的基础。 地形属性根据地形要素的关系特征和计算特征,可以归纳为地形曲面参数(parameters )、地形形态特征(features )、地形统计特征(statistics )和复合地形属性(compound attributes )。

arcgis生成DEM+利用dem做地形分析

在arcgis中中,进行如下操作: 1、创建TIN 打开3d analyst模块,利用creat /modify TIN---creat TIN from features命令(height source 选择高程字段),先将等高线转为TIN; 2、从TIN中创建栅格表面 打开3d analyst模块,利用convert---TIN to raster命令(attribute选择elevation,cell size自定义,若为大比例尺数据可以选择5或10,可以参考相关研究文献),生成栅格表面,即DEM; (备注:矢量化的等高线必须比研究区的范围大些,创建TIN并生成Raster后,再用研究区边界来裁切,这样的DEM数据才能满足精度要求) 3、地形因子分析 打开3d analyst模块,利用surface analysis---slope命令,生成坡度数据; 打开3d analyst模块,利用surface analysis---aspect命令,生成坡向数据; 打spatial analyst模块,利用neighborhood tatistics命令进行邻域分析,先将statistic type设为最大值,输出栅格为A,再将statistic type设为最小值,输出栅格为B,利用raster calculator 生成地形起伏度数据,公式为[A]-[B]; 以上的地形数据,可以根据需要进行reclassfy重分类处理,分类标准参考相关文献,就可以获取所需的地形因子统计数据。 制图时,用view---layout view,添加比例尺、指北针、图例,就可以整饰出图

DEM地形信息提取对比研究_以坡度为例

第33卷第5期 2008年9月 测绘科学 Science of Surveying and M app ing Vol .33No .5 Sep. 作者简介:姜栋(19792),女,山东青岛人,在读硕士,地图制图与地理信息系统专业,研究方向:GI S 与遥感应用。E 2mail:dandili on1017@1631com 收稿日期:2007204228 基金项目:北京市教委科技重点项目(编号:05531830);北京自然科学基金资助项目(基金号:6032003);北京市属市管高等学校人才强教计划资助项目,PHR (I HLB ) D E M 地形信息提取对比研究 ———以坡度为例 姜 栋① ,赵文吉① ,朱红春② ,张有全 ① (①首都师范大学三维信息获取与应用教育部共建实验室,北京 100037;②山东科技大学地科学院,山东青岛 266510) 【摘 要】由于DE M 数据本身多尺度因素,加之地形、地貌特征具有宏观性与区域分异性的特点,直接的信息提 取往往很难达到预期的目的。利用DE M 制作坡度图高效、省力,但其精度有很大的不确定性,同时DE M 制作过程中的误差传播、转移对坡度信息的影响缺少系统的判断依据。选取位于陕北黄土高原上的两个不同地区作为实验样区,在不同DE M 生产的基础上,以高精度的1∶10000DE M 为准值,通过对1∶5万和1∶1万DE M 提取定量地形要素的叠合、比较与统计分析,探讨具有不同地貌类型的区域1∶5万DE M 提取地形信息的精度及其统计意义上的数量百分比关系。【关键词】数字高程模型;坡度;精度【中图分类号】P282 【文献标识码】A 【文章编号】1009-2307(2008)05-0177-03DO I:1013771/j 1issn 1100922307120081051063 1 引言 近年来,DE M 数据生产和分析方法方面取得了巨大进步,但是从不同地形复杂度、不同空间分辨率及不同比例尺的DE M 提取地形信息,特别是地面坡度的精度研究几乎与坡度及DE M 在各领域的广泛应用严重脱节。1∶5万地形图因自身的制图综合和DE M 生产过程中产生的误差,使得基于1∶5万地形图的DE M 对实际地面的描述和模拟产生了极大的误差,利用此DE M 提取的地面坡度势必会使栅格单元内的实际地形复杂度及坡度组成均一化,由此提取的坡度无法真实反映实地地形地貌。研究DE M 提取地面坡度的精度,探求不同空间尺度坡度提取结果的精度对比,并能够得到由低分辨率到高分辨率提取结果的转换关系,实现误差纠正,为广大用户提供基于DE M 提取地面坡度的应用适宜性与结果可信性的基本判别标准、换算标准,十分必要,且相当紧迫。 前人在DE M 的建立、地形信息的提取及地形信息精度方面的研究取得了显著成果。111 地形信息提取及提取精度分析研究方面 一些地形因子可以基于DE M 求取。前人从不同角度进行地形因子方面的研究表明:地形因子的求取可以有多种算法、方法。 坡度和坡向是进行地形特征分析和可视化的基本因子,也是研究集水单元的重要因子。结合其他因子,坡度和坡向可以在各个领域得到广泛应用。Fl orinsky (1998)不仅对坡度、坡向的算法精度作了系统分析,而且进行了平面曲率和剖面曲率方面的分析。提取坡度、坡向的精度依赖于DE M 数据精度、计算方法和DE M 分辨率及地形复杂度。前人研究成果表明:高精度的DE M 能提取精度相对高的坡 度、坡向数据。坡度、坡向数据精度随DE M 分辨率的增大而降低;坡度、坡向与DE M 高程值的标准偏差和平均高程之间呈线性相关。在其他条件相同情况下,坡度的减小在地形复杂地区较单一地形快。汤国安基于不同比例尺的DE M 地形因子精度方面研究表明,1∶50000比例尺DE M 所提取的坡度、地面曲率及沟壑密度均比1∶10000DE M 小,通过对不同比例尺DE M 提取地面坡度精度的研究还建立了 黄土丘陵区1∶50000与1:10000DE M 的坡度转换对比[1,13] 。112 D E M 建立与D E M 精度分析研究方面 DE M 的建立,一般利用同比例尺地形图数字化获取高程与平面数据,然后选择合适的内插方法构建TI N ,再内插 TI N 得到不同栅格分辨率的规则格网DE M [2] 。前人在DE M 建立方面的研究表明:数字化获取的数据与野外实测数据有较大的误差,地形图数字化过程中产生的误差影响DE M 的精度,不同的数据模型、不同的内插算法、不同的空间采样方法及不同的栅格分辨率均对DE M 及其应用精度有不同程度的影响[2]。Suhut (1972)很有深度地揭示了在DE M 建立过程中不同内插技术和数字化过程中可能产生的误差。王光霞等人近来在DE M 精度评估方法的研究与实践方面做出了创新性的成果[3,4]。 2 研究区概况 本次研究在实验样区的选择上,遵循科学性、典型性、数据的可获取性和完整性以及实用性的原则,选取位于陕北的黄土高原上的两个不同区域作为实验样区,它们分别属于典型的黄土丘陵沟壑区和黄土丘陵地形区。 样区一位于陕西省无定河中游左岸,属于典型的黄土丘陵沟壑区代表流域。样区内土壤侵蚀极为剧烈,土地类型复杂,自分水岭至沟底可分为梁峁坡、沟谷坡和沟谷底三部分。梁峁坡坡面较完整,顶部较平坦,坡度多在5°以下,坡长10m 220m;梁峁坡上部,坡度多在20°以下,坡长20m 230m;梁峁坡中下部地形比较复杂,坡度在20°230°之间,坡长15m 220m 。 样区二位于咸阳地区西北角,泾河上游右岸,地形属黄土高原沟壑区,是陕北高原的一部分。样区自然特点是:塬高、沟深、坡陡,水土流失以塬面周边的重力侵蚀为主。按其地形分为:塬面、沟坡、沟谷、河谷(川道)四种类型。其中塬面宽阔平坦,一般在5°以下,是农业生产基地;沟坡多为旧式台田,部分为耕地或牧草地,坡度为10°230°;河谷均呈“V ”字型,坡度为40°270°,陡峭破碎,侵蚀剧烈;河谷分布在泾、黑、南三河沿岸,坡度平缓,水

DEM分析及景观分析

实现平台:ArcGIS 9.3和Fragstats3.3,实验源数据为ASCII数据:srtm3和水流方向数据FlowDir,在ArcMap中将ASCII数据转换为栅格数据,保存为DEM 和FlowDir: 1.基本地形参数 坡度Sl ope 实现流程: 1)在Arc Map 中加载DEM数据; 2)以DEM为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】→ 【Surface】→【Slope】工具,在窗口中设置相应的输出路径,并将输出 单位为Degree,其它为默认值,得到Slope图层。 坡向Aspect 实现流程: 1)在Arc Map 中加载DEM数据; 2)以DEM为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】 →【Surface】→【Aspect】工具,设置相应的输出路径,得到Aspect 图层。 坡度变率SOS 1)在ArcMap中,加载已经生成的Slope数据; 2)以Slope为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】 →【Surface】→【Slope】工具,在窗口中设置相应的输出路径,并将 输出单位为Degree,其它为默认值,得到SOS图层。 坡向变率SOA(纠正结果) 1)在ArcGIS中加载Aspect数据; 2)以Aspect作为输入数据,执行【ArcToolBox】→【Spatial Analyst Tools】→【Surface】→【Slope】,得到SOA;

曲率Curvature 全曲率Curvature All 平面曲率Plan Curvature 平面曲率Plan Curvature 实现流程: 1)在ArcGIS中加载测试数据DEM; 2)以DEM作为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】→【Surface】→【Curvature】; 3)在曲率对话框中设置相应的曲率、剖面曲率和平面曲率的输出路径及名称,其余为默认值。 坡长Sl opeLength 上游坡长UpstreamSlopeLength 实现流程: 1)在Arc Map 中加载FlowDir数据; 2)以执行FlowDir作为输入数据,执行【Arc Tool Box】→【Spatial Analyst Tools】→【Hydrology】→【Flow Length】; 3)对话框Direction of Measurement选项选择Upstream 来求上游波长, 设置相应的输出路径,保存为Upstr_Len。 下游坡长DownstreamSlopeLength 实现流程: 1)在Arc Map 中加载FlowDir数据; 2)以执行FlowDir作为输入数据,执行【Arc Tool Box】→【Spatial Analyst Tools】→【Hydrology】→【Flow Length】; 3)对话框Direction of Measurement选项选择Downstream 来求下游坡 长,设置相应的输出路径。

基于DEM的皖西南地区地貌类型分析

基于DEM的皖西南地区地貌类型分析 摘要:地貌作为地理信息的重要贡献组成要素,它决定着自然地理单元的形成和地面物质与能量的再分配。该研究利用GIS图像处理技术方法,通过对皖西南地区数字高程模型数据进行处理,提取了研究区有关坡度、坡向、地形起伏度等的地貌特征要素,并进行定位表达与特征统计分析,结果获得了对本区地貌特征的定位与定量化的总体认识,为研究区的农业规划、水土流失、土壤侵蚀、地质灾害等研究提供了新的空间信息基础平台。 关键词:皖西南地区(Southwest Anhui);地貌形态;地理信息系统(GIS); 数字高程模型(DEM) 引言 安庆市作为皖西南中心城市,安徽省“皖江开发”的重点城市之一,长江沿岸著名的港口城市,将作为研究皖西南地貌类型的重点,本篇论文就是基于安庆市地貌类型研究皖西南地貌类型。地貌作为地理信息的重要贡献组成要素,通过海拔、坡度、坡向、起伏度等特征组合构成形态与分布多样的地表景观,并对区域生态环境与资源的地域优势种类分布、利用方式和利用程度等具有主导作用]1[。而地貌学的发展,也逐渐从以往的定性描述转入数理定量分析研究阶段]2[。但按传统研究方法,由于地貌数据庞大、计算繁琐使定量地貌研究发展缓慢,而今随着计算机与空间技术的迅猛发展,特别是具有强大的空间数据获取与管理、分析、计算等功能的3S技术的应用,为地貌定量研究提供了有力的技术支持。 GIS数字地形分析是以数字高程模型为主的产生式分析,数字高程模型(简称DEM)表示区域D上的三维向量有限序列,用函数的形式描述为: Vi=(Xi,Yi,Ei)(i=1,2,…,n) 式中,Xi、Yi是平面坐标;Ei是(Xi,Yi)对应点的高程。DEM是GIS进行地形分析的基础数据。利用DEM数据可快速地进行各种地形因子的提取,主要包括坡度、坡向、粗糙度等的计算和通视分析、地形特征提取、水系特征提取、水文分析、道路分析等]3[。它记录了精确的空间三维定位信息.利用DEM为基本的数据依托进行地形要素的提取与分析,无疑是获取所需地表信息的有效手段。

DEM分析与可视化

一.软件平台ArcGIS或MapGIS(软件测试部分): (1)数据处理:拓扑构建、误差校正、地图投影 (2)数据管理:属性表创建、属性表关联、图形与属性数据挂接、属性表导出 (3)空间分析:查询检索、叠加分析、缓冲区分析 (4)数字高程模型:GRID及TIN模型创建,DEM分析(包括坡度、坡向、粗糙度、可视性、洪水淹没、流域地貌等分析)(5)数据转换:ArcGIS、MapGIS、MapInfo、AutoCAD等数据间格式转换 实验四基于ArcGIS的DEM分析与可视化 一、实验目的 1、掌握利用ArcGIS三维分析模块进行创建表面的基本方法 2、掌握地形特征信息的提取方法,能利用ArcGIS软件基于DEM对山脊线和山谷线的提取,显示粗糙度 3、掌握三维场景中表面及矢量要素的立体显示其原理与方法,熟练掌握ArcGIS软件表面及矢量要素杂场景中的三维显示及其叠加显示 4、熟练掌握ArcScene三维场景中要素、表面的多种可视化方法。 二、主要实验器材(软硬件、实验数据等) 计算机硬件:性能较高的PC;计算机软件:ArcGIS9.3软件;实验数据:《ArcGIS地理信息系统空间分析实验教程》随书光盘或其他中 三、实验内容与要求 1、地形特征信息提取 实验数据:dem 要求:利用所给区域DEM数据,提取该区域山脊线、山谷线栅格数据层。 具体操作: 1.打开arcmap,添加dem数据,点击DEM数据,打开Arctoolbox,使用Spatial Analysis tools\Surface Analysis\Aspect工具,提取DEM的坡向数据层,命名为A。 2.点击数据层A,使用Spatial Analysis tools\Surface Analysis\Slope工具,提取数据层A的坡度数据,命名为SOA1。(地面坡向变率,是指在地表的坡向提取基础之上,进行对坡向变化率值的二次提取,亦即坡向之坡度(Slope of Aspect, SOA)。它可以很好的反映等高线弯曲程度。) 3.求取原始DEM数据层的最大高程值,记为H;使用空间分析工具集中的栅格计算器(Raster Calculator),公式为(H—DEM),得到与原来地形相反的数据层,即反地形DEM 数据。记为“-DEM”。 4.基于“-DEM”数据,使用Spatial Analysis tools\Surface Analysis\Aspect工具,提取-DEM的坡向数据层,命名为-A。。 5. 点击数据层-A,使用Spatial Analysis tools\Surface Analysis\Slope工具,提取反地形的坡向变率,记为SOA2。 6.使用空间分析工具集中的栅格计算器(Raster Calculator),公式为SOA=(([SOA1]+[SOA2])-Abs([SOA1]+[SOA2]))/2,这样就可以求出没有误差的DEM的坡向变

相关主题
文本预览
相关文档 最新文档