当前位置:文档之家› MATLAB轴的强度与刚度校核

MATLAB轴的强度与刚度校核

MATLAB轴的强度与刚度校核
MATLAB轴的强度与刚度校核

Matlab三级项目

用matlab实现轴强度刚度的校核

专业:工程设计与分析

学号:110101010346

姓名:杨晨

指导老师:孙建亮

引言

传统校核过程的相对固定,以及冗繁的计算量使得程序化的实现成为了我的首选。为简化计算,在“工欲善其事,必先利其器”思想的指导下,我尝试写了这个多参数函数,与传统机械设计中的强度刚度校核理论相结合验证,结果无误。

理论基础

《材料力学》中提到了扭转剪应力、弯曲剪应力、弯曲正应力的各自计算方法。《机械设计》中关于轴的设计及刚度强度的校核过程。

常见的轴有转轴,心轴和传动轴。在上学期的机械设计课程设计中的减速器中所用的都为转轴。轴的材料主要采用碳素钢和合金钢,其中最常用的事45钢,应进行调质和正火处理,基本界面确定之后将用45钢进行调整和试运行。本次课程设计为了实现广泛性将不确定材料,因此所用系数因具体的材料,毛坯直径及热处理方法由机械设计手册查得。

在一般情况下,轴的工作能力主要决定于它的强度和刚度,对于高转速轴,有时还决定于它的振动稳定性。在设计轴时,除了要按这些工作能力准则进行设计计算或校核计算以外,在结构设计时还需要使其能满足其他一系列要求,例如轴上零件固定的要求、热处理要求、运转维护等。

所以,本软件的功用旨在使得以往复杂的算法程序化。使用者输入相关参数即可得出结果,而且可以重复计算,方便而且可靠。

同时,可以给出查表或者查数据所需的一些简单计算的结果,方便用户进行设计计算。并且,在一些需要用户人工选择的情况下,给出一定的参考值或者参考意见。

一、轴的强度设计

1.1按许用弯曲应力的计算

由弯矩所产生的弯曲应力b

σ应不超过许用弯曲应力,一般计算顺序

如下:

1.画出轴的空间受力简图,将轴上作用力分解为水平受力图和垂直受力图。求出水平面上和垂直面上的弯矩Mxy 图和Mxz 图。

2.作出弯矩M=22Mxz xy +M 图

3.作出转矩T 图。

4.应用公式M`=22)(T M α+M`图。(式中α是根据转矩性质而定的应力校正系数。对于不变的转矩,取α=[]b 1-σ/[]b 1+σ,对于脉动的轴,取α为[]b 1-σ/[]b 0σ,对于对称循环的转矩,取α=1. []b 1-σ[]b 1+σ[]b 0σ,分别为材料在静,脉动循环和对称循环应力状态下的需用弯曲应力。其值可由机械设计课本表7-3选取。

5.计算应满足下列条件。

2222

22()()4()21()[]W M T M T W W W M T αασασ+=+=

=+≤

d>={

[]b

11.0`-σM }3

/1。

1.2 安全系数的校核和计算

1.疲劳强度校核即计入应力集中、表面状态和尺寸影响以后的精确校核,绘出轴上弯矩M 图和T 图以后,选择轴上的危险切面进行校核。

2.计算公式为:

m

τa D τ-N τm

σa D σ-N στστστψτ(K τK S σψσK σK S S S S S S +?=

+?=

+=

))(1

1

2

2

其中各参数的取值可由<<机械设计>>教材中的表格查得

二 轴刚度的校核计算

轴在收到扭矩作用时会产生一个扭角,通常的校核方式是用轴的

各数据计算出轴的扭角,与轴的需用扭角对比,在轴的需用扭角范围内则合格。在软件中首先选定了轴的扭角范围,代入公式中求得轴的最小轴径,与实际轴径对比达到校核的目的。 计算公式为

44346min A 3

.5732101.8100010559n P

n P .d =??

???≥πψ

2.功能展示

1.打开Matlab ,选择Gui 进入软件,然后进行界面的布置。 由项目要求和机械设计课本可知,可以分别设置按弯曲应力和安全系数法校核。因此建立三个Push Butten 来完成校核和清除屏幕的功能。

以弯曲应力的校核来具体说明,call back程序如下:

输入机械设计课本的例题数据进行验证,校核结果为合格,如下所示:

此段程序中运用了二维线性差值的方法,使计算更加精确缜密。材料的下拉列表配合着差值的方法,可以确定转轴和心轴的许用弯曲应力,经调试,程序可以运

行。再用清零按钮对输入动态文本框种的数据进行清除,方便二次计算。

安全系数法校核与弯曲应力的方法相同,在此不赘述。

三感想与总结

这次的三级项目中我遇到了前所未有的困难,一方面是由于机械设计及材料力学等学科的基础知识不扎实,另一方面是对matlab这个软件的了解和运用不够熟练。

由于是第一次独立设计这种界面也是第一次把曾经运算过的数据和方法用编程的方式使之变得更加简洁和方便操作,这让我对软件和数值计算有了新的了解和认识。从开始的茫然无知到翻阅以前的专业课本再到查阅资料,尝试编程和试运行,每一步都不容易,虽然最

后做出来的,由于时间的局限性,存在的问题还有很多,但是过程中

我是不断在尝试和成长的,Matlab课程虽然结束了,但是现在才明白自己该知道和学习的只是用于实践是远远不够的,课程的结束并不意味着学习的结束,我感觉matlab是个特别好用的软件,在今后的学习中,我会坚持提高自己,从了解这个软件到熟练运用它。现在大三下学期已经过半,经历了这次项目的参与制作我深深地认识到自己的不足,不管是学习态度或者是积极性,需要改正的地方还有很多。在大学生涯剩下的日子里,我会努力改正,坚持学习,成为一名合格的大学生。

四参考文献

机械设计,中国标准出版社,许立忠周玉林主编

MATLAB基础及应用第三版,机械工业出版社,于润伟朱晓慧主编材料力学,科学出版社,白象忠主编

基本计算轴心受力构件的强度和刚度计算

轴心受力构件的强度和刚度计算 1.轴心受力构件的强度计算 轴心受力构件的强度是以截面的平均应力达到钢材的屈服应力为承载力极限状态。轴心受力构件的强度计算公式为 f A N n ≤= σ (4-1) 式中: N ——构件的轴心拉力或压力设计值; n A ——构件的净截面面积; f ——钢材的抗拉强度设计值。 对于采用高强度螺栓摩擦型连接的构件,验算净截面强度时一部分剪力已由孔前接触面传递。因此,验算最外列螺栓处危险截面的强度时,应按下式计算: f A N n ≤= ' σ (4-2) 'N =)5 .01(1 n n N - (4-3) 式中: n ——连接一侧的高强度螺栓总数; 1n ——计算截面(最外列螺栓处)上的高强度螺栓数; ——孔前传力系数。 采用高强度螺栓摩擦型连接的拉杆,除按式(4-2)验算净截面强度外,还应按下式验算毛截面强度 f A N ≤= σ (4-4) 式中: A ——构件的毛截面面积。 2.轴心受力构件的刚度计算 为满足结构的正常使用要求,轴心受力构件应具有一定的刚度,以保证构件不会在运输和安装过程中产生弯曲或过大的变形,以及使用期间因自重产生明显下挠,还有在动力荷载作用下发生较大的振动。 轴心受力构件的刚度是以限制其长细比来保证的,即

][λλ≤ (4-5) 式中: λ——构件的最大长细比; [λ]——构件的容许长细比。 3. 轴心受压构件的整体稳定计算 《规范》对轴心受压构件的整体稳定计算采用下列形式: f A N ≤? (4-25) 式中:?——轴心受压构件的整体稳定系数,y cr f σ?= 。 整体稳定系数?值应根据构件的截面分类和构件的长细比查表得到。 构件长细比λ应按照下列规定确定: (1)截面为双轴对称或极对称的构件 ? ?? ==y y y x x x i l i l //00λλ (4-26) 式中:x l 0,y l 0——构件对主轴x 和y 的计算长度; x i ,y i ——构件截面对主轴x 和y 的回转半径。 双轴对称十字形截面构件,x λ或y λ取值不得小于t (其中b/t 为悬伸板件宽厚比)。 (2)截面为单轴对称的构件 以上讨论柱的整定稳定临界力时,假定构件失稳时只发生弯曲而没有扭转,即所谓弯曲屈曲。对于单轴对称截面,绕对称轴失稳时,在弯曲的同时总伴随着扭转,即形成弯扭屈曲。在相同情况下,弯扭失稳比弯曲失稳的临界应力要低。因此,对双板T 形和槽形等单轴对称截面进行弯扭分析后,认为绕对称轴(设为y 轴)的稳定应取计及扭转效应的下列换算长细比代替y λ [] 2 /122202022222)/1(4)()(2 1 z y z y z y yz i e λ λλλλλλ--+++= )/7.25//(2 202ωωλl I I A i t z +=

传动轴设计计算

传动轴设计计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

编号: 传动轴设计计算书 编制:日期: 校对:日期: 审核:日期: 批准:日期: 一.计算目的 我们初步选定了传动轴,轴径选取Φ27(详见《传动轴设计方案书》),动力端选用球面滚轮万向节,车轮端选用球笼万向节。左、右前轮分别由1根等速万向节传动轴驱动。通过计算,校核选型是否合适。 二.计算方法 本车传动轴设计不是传统载货车上从变速器到后驱动桥之间长轴传动设计,而是半轴传动设计。而且传动轴材料采用高级优质合金钢,且热处理工艺性好,使传动轴的静强度和疲劳强度大为提高,因此计算中许用应力按照半轴设计采用含铬合金钢,如40Cr、 42CrMo、40MnB,其扭转屈服极限可达到784 N/mm2左右,轴端花键挤压应力可达到196 N/mm2。 传动轴校核计算流程:

轴管直径的校核 校核: 两端自由支撑、壁厚均匀的等截面传动轴的临界转速 22 2 8 1.2x10 n e l d D+ = (r/min) 式中L传动轴长,取两万向节之中心距:mm D为传动轴轴管外直径:mm d为传动轴轴管内直径:mm 各参数取值如下:D=φ27mm,d=0mm 取安全系数K=n e /n max ,其中n max 为最高车速时的传动轴转速, 取安全系数K=n e /n max =~。 实际上传动轴的最大转速n max =n c /(i g ×i ),r/min 其中:n c -发动机的额定最大转速,r/min; i g -变速器传动比;

i 0-主减速器传动比。 轴管的扭转应力的校核 校核扭转应力: τ= ] [1644τπ≤) -(d D DT J (N/mm 2) ][τ……许用应力,取][τ=539N/mm 2[高合金钢(40Cr 、40MnB 等)、中频淬火抗 拉应力≥980 N/mm 2,工程应用中扭转应力为抗拉应力的~,取该系数为,由此可取扭转应力为539 N/mm 2,参考GB 3077-88] 式中: Tj ……传动系计算转矩,N ·mm ,2/k i i T T d g0g1x ema j η= N ·m T emax -发动机最大转矩N ·mm ; i g1-变速器一档传动比或倒档传动比; i g0-主减速器传动比 k d -动载系数 η-传动效率 传动轴花键齿侧挤压应力的校核 传动轴花键齿侧挤压应力的校核 ][)2 )(4(2121j j ZL D D D D T σσ≤-+= (N/mm 2 )

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3 =[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

轴的设计计算

轴的设计计算 【一】能力目标 1.了解轴的功用、分类、常用材料及热处理。 2.能合理地进行轴的结构设计。 【二】知识目标 1.了解轴的分类,掌握轴结构设计。 2.掌握轴的强度计算方法。 3.了解轴的疲劳强度计算和振动。 【三】教学的重点与难点 重点:轴的结构设计 难点:弯扭合成法计算轴的强度 【四】教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。【五】教学任务及内容 任务知识点 轴的设计计算 1. 轴的分类、材料及热处理 2. 轴的结构设计 3. 轴的设计计算 (一)根据承受载荷的情况,轴可分为三类 1、心轴工作时只受弯矩的轴,称为心轴。心轴又分为转动心轴(a)和固定心轴(b)。 2、传动轴工作时主要承受转矩,不承受或承受很小弯矩的轴,称为传动轴。

3、转轴工作时既承受弯矩又承受转矩的轴,称为转轴。 (二)按轴线形状分: 1、直轴 (1)光轴 作传动轴(应力集中小) (2)阶梯轴 优点:1)便于轴上零件定位;2)便于实现等强度 2、曲轴 另外还有空心轴(机床主轴)和钢丝软轴(挠性轴)——它可将运动灵活地传到狭窄的空间位置。如牙铝的传动轴。 二、轴的结构设计 轴的结构设计就是确定轴的外形和全部结构尺寸。但轴的结构设计原则上应满足如下要求: 1)轴上零件有准确的位置和可靠的相对固定; 2)良好的制造和安装工艺性; 3)形状、尺寸应有利于减少应力集中; 4)尺寸要求。

(一)轴上零件的定位和固定 轴上零件的定位是为了保证传动件在轴上有准确的安装位置;固定则是为了保证轴上零件在运转中保持原位不变。作为轴的具体结构,既起定位作用又起固定作用。 1、轴上零件的轴向定位和固定:轴肩、轴环、套筒、圆螺母和止退垫圈、弹性挡圈、螺钉锁紧挡圈、轴端挡圈以及圆锥面和轴端挡圈等。 2、轴上零件的周向固定:销、键、花键、过盈配合和成形联接等,其中以键和花键联接应用最广。 (二)轴的结构工艺性 轴的结构形状和尺寸应尽量满足加工、装配和维修的要求。为此,常采用以下措施: 1、当某一轴段需车制螺纹或磨削加工时,应留有退刀槽或砂轮越程槽。 2、轴上所有键槽应沿轴的同一母线布置。 3、为了便于轴上零件的装配和去除毛刺,轴及轴肩端部一般均应制出45o的倒角。过盈配合轴段的装入端常加工出带锥角为30o的导向锥面。 4、为便于加工,应使轴上直径相近处的圆角、倒角、键槽、退刀槽和越程槽等尺寸一致。 (三)提高轴的疲劳强度 轴大多在变应力下工作,结构设计时应尽量减少应力集中,以提高其疲劳强度。 1、结构设计方面轴截面尺寸突变处会造成应力集中,所以对阶梯轴相邻轴段直径不宜相差太大,在轴径变化处的过渡圆角半径不宜过小。尽量避免在轴上开横孔、凹槽和加工螺纹。在重要结构中可采用凹切圆角、过渡肩环,以增加轴肩处过渡圆角半径和减小应力集中。为减小轮毂的轴压配合引起的应力集中,可开减载槽。 2、制造工艺方面提高轴的表面质量,降低表面粗糙度,对轴表面采用碾压、喷丸和表面热处理等强化方法,均可显著提高轴的疲劳强度。

刚度校核

刚度校核 l.轴的弯曲刚度校核计算 2.轴的扭转刚度校校计算 l.轴的弯曲刚度校核计算 常见的轴大多可视为简文梁。若是光轴,可直接用材料力学中的公式计算其挠度或偏转角;若是阶梯轴,如果对计算精容要求不高,则可用当量直径法作近似计算。把阶梯轴看成是当量直径为dv的光轴,然后再按材料力学中的公式计算。当量直径为 式中:l i——阶梯轴第i段的长度,mm; d i——阶梯轴第i段的直径,mm; L——阶梯轴的计算长度;m。; Z——阶梯轴计算长度内的轴段数。 当载荷作用干两支承之间时,L=l(l为支承跨距);当载荷作用于悬臂端时,L=l+K(K为轴的悬臂长度)。 轴的弯曲刚度条件为: 挠度 偏转角 式中:[y]——轴的允许挠度,mm,见表15-5; [θ]——轴的允许偏转角,rad,见表15-5。

表15-5 轴的允许挠度及允许偏转角 2.轴的扭转刚度校校计算 轴的扭转变形用每米长的扭转角p来表示。圆轴扭转角P的计算公式为: 光轴 阶梯轴 式中:T——轴所受的扭矩,N·mm; G——轴的材料的剪切弹性模量,MPa,对于钢材,G=8.1*104MPa; I p——轴截面的极惯性矩,mm4,对于圆轴,I p= d4/32 L——阶梯轴受扭矩作用的长度,mm; T i、l i、I pi——分别代表阶梯轴第i段上所受的扭矩、长度和极惯性矩,单位同前; z——阶梯轴受扭矩作用的轴段数。 轴的扭转刚度条件为

?≤[?] ( °)/m 式中[?] 为轴每米长的允许扭转角,与轴的使用场合有关。对于一般传动轴,可取[?]=0.5-1( °)/m;对于精密传动轴,可取[?]=0.25-0.5( °)/m;对于精度要求不高的轴,[?]可大于1( °)/m。 表15-4 抗弯,抗扭截面系数计算公式 注:近似计算时,单,双键槽一般可忽略,花键轴截面可视为直径等于平均直径的圆截面。

范钦珊版材料力学习题全解第4章圆轴扭转时的强度与刚度计算.

解:1、轴的强度计算M T τ 轴max = x = 1 3 ≤ 60 × 10 6 Wp1 π d 16 T1 ≤ 60 × 10 6 × 2、轴套的强度计算π × 66 3 × 10 ?9 = 3387 N ? m 16 习题 4-6 图τ 套 max = Mx T2 = ≤ 60 × 106 3 68 4 ? Wp2 πD ??1 ? ( ? 16 ? 80 ? 6 ?? 17 ? 4 ? π × 80 3 ?9 T2 ≤ 60 × 10 × × 10 ?1 ? ??? = 2883 N ? m 16 ??? 20 ??? 3、结论Tmax ≤ T2 = 2883 N ? m = 2.883 kN ? m 4-7 图示开口和闭口薄壁圆管横截面的平均直径均为 D、壁厚均为δ ,横截面上的扭矩均为 T = Mx。试:习题 4-7 图1.证明闭口圆管受扭时横截面上最大剪应力 6 τ max ≈ τ max ≈ 2M x δπ D2 3M x 2.证明开口圆管受扭时横截面上最大剪应力δ 2πD 3.画出两种情形下,剪应力沿壁厚方向的分布。解:1.证明闭口圆管受扭时横截面上最大剪应力由于是薄壁,所以圆环横截面上的剪应力可以认为沿壁厚均匀分布(图 a1),于是有习题 4-7 解图Mx = ∫ A D D ? τd A = ? τ ? π Dδ 2 2 由此得到δπ D 2 δπ D2 2.证明开口圆管受扭时横截面上最大剪应力根据狭长矩形扭转剪应力公式,有3M x 3M x 3M x τ max = = = 2 2 hb π D ?δ δ 2π D τ= 2M x 即:τ max = 2M x 3.画出两种情形下,剪应力沿壁厚方向的分布两种情形下剪应

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

主轴刚度校核

主轴校核 通常只作刚度验算 1. 弯曲变形验算 (1)端部桡度y ≤[Y] ≤0.0002L L —跨距,前后支承间的轴向距离 (2)前支承处倾角θB ≤[θ] ≤0.001rad (3) 大齿轮处倾角θ≤[θ] ≤0.001rad 2.扭转变形验算 扭转角φ≤1° 支承简化与受力分析 )(109554max mm N n N T j ?=?? ?=η N--电机功率; η--机械效率取(0.75~0.85); nj--主轴计算转速 )(2'max N d T F c =?= , 其中=?=max 5.0D d )('35.0'N F F c f =?= )('5.0'N F F c p =?= 由'4.0max F a D a F ?+= 作用在主轴端部的作用力

)(2max N d T P F f z =?= = , 其中d f —齿轮分度圆直径 分解成水平面受力图:Fp ; Fz 1=Fz ×cos θ; M=F f ×d/2 分解成垂直面受力图:Fc ; Fz 2=Fz ×sin θ (注意各力和力矩的方向,和公式示图相反加负号) Ⅰ刚性支承、弹性主轴 (指导书P34) 由传动力Fz 引起的变形: 主轴端部桡度:=+????- =)(6.a l L I E c b a P y (1-1) 大齿轮处倾角:=-????=)(31a b L I E b a P θ (2-1) 前支承处倾角:=??+???-=L I E b a b a P 6) 2(2θ (3-1) 由切削力Fp(Fc)引起的变形: 主轴端部桡度:=+??= )(32 c L I E c P y (1-2) 大齿轮处倾角:=-???-=)3(6221a L L I E c P θ (2-2) 前支承处倾角:=???=I E L c P 32θ (3-2) 由切削力矩M 引起的变形: 主轴端部桡度:=+???=)32(6c L L I E c M y (1-3) 大齿轮处倾角:=-??-=)2(6221a L L I E M θ (2-3) 前支承处倾角:=??= I E L M 32θ (3-3) 抗弯截面惯性矩=- ??= 44 )1(64 0d d d I π d —主轴平均直径;do —主轴内孔直径 材料弹性模量:E=2.1×105(MPa ) Ⅱ刚性主轴、弹性支承

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

轴的设计计算

轴的设计计算 轴的计算通常都是在初步完成结构设计后进行校核计算,计算准则是满足轴的强度和刚度要求。 一、轴的强度计算 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于仅仅承受扭矩的轴(传动轴),应按扭转强度条件计算; 对于只承受弯矩的轴(心轴),应按弯曲强度条件计算; 对于既承受弯矩又承受扭矩的轴(转轴),应按弯扭合成强度条件进行计算,需要时还应按疲劳强度条件进行精确校核。 此外,对于瞬时过载很大或应力循环不对称性较为严重的轴,还应按峰尖载荷校核其静强度,以免产生过量的塑性变形。 下面介绍几种常用的计算方法: 按扭转强度条件计算。 1、按扭转强度估算轴的直径 对只受转矩或以承受转矩为主的传动轴,应按扭转强度条件计算轴的直径。若有弯矩作用,可用降低许用应力的方法来考虑其影响。 扭转强度约束条件为: [] 式中:为轴危险截面的最大扭剪应力(MPa); 为轴所传递的转矩(N.mm); 为轴危险截面的抗扭截面模量(); P为轴所传递的功率(kW); n为轴的转速(r/min); []为轴的许用扭剪应力(MPa);

对实心圆轴,,以此代入上式,可得扭转强度条件的设计式: 式中:C为由轴的材料和受载情况决定的系数。 当弯矩相对转矩很小时,C值取较小值,[]取较大值;反之,C取较大值,[]取较小值。 应用上式求出的值,一般作为轴受转矩作用段最细处的直径,一般是轴端直径。若计算的轴段有键槽,则会削弱轴的强度,作为补偿,此时应将计算所得的直径适当增大,若该轴段同一剖面上有一个键槽,则将d增大5%,若有两个键槽,则增大10%。 此外,也可采用经验公式来估算轴的直径。如在一般减速器中,高速输入轴 的直径可按与之相联的电机轴的直径估算:;各级低速轴的轴径可按同级齿轮中心距估算,。 几种轴的材料的[]和C值 轴的材料Q2351Cr18Ni9Ti354540Cr,35SiMn,2Cr13,20CrMnTi []12~2012~2520~3030~4040~52 160~135148~125135~118118~107107~98 2、按弯扭合成强度条件校核计算

MATLAB轴的强度与刚度校核

Matlab三级项目 用matlab实现轴强度刚度的校核 专业:工程设计与分析 学号:110101010346 姓名:杨晨 指导老师:孙建亮

引言 传统校核过程的相对固定,以及冗繁的计算量使得程序化的实现成为了我的首选。为简化计算,在“工欲善其事,必先利其器”思想的指导下,我尝试写了这个多参数函数,与传统机械设计中的强度刚度校核理论相结合验证,结果无误。 理论基础 《材料力学》中提到了扭转剪应力、弯曲剪应力、弯曲正应力的各自计算方法。《机械设计》中关于轴的设计及刚度强度的校核过程。 常见的轴有转轴,心轴和传动轴。在上学期的机械设计课程设计中的减速器中所用的都为转轴。轴的材料主要采用碳素钢和合金钢,其中最常用的事45钢,应进行调质和正火处理,基本界面确定之后将用45钢进行调整和试运行。本次课程设计为了实现广泛性将不确定材料,因此所用系数因具体的材料,毛坯直径及热处理方法由机械设计手册查得。 在一般情况下,轴的工作能力主要决定于它的强度和刚度,对于高转速轴,有时还决定于它的振动稳定性。在设计轴时,除了要按这些工作能力准则进行设计计算或校核计算以外,在结构设计时还需要使其能满足其他一系列要求,例如轴上零件固定的要求、热处理要求、运转维护等。 所以,本软件的功用旨在使得以往复杂的算法程序化。使用者输入相关参数即可得出结果,而且可以重复计算,方便而且可靠。

同时,可以给出查表或者查数据所需的一些简单计算的结果,方便用户进行设计计算。并且,在一些需要用户人工选择的情况下,给出一定的参考值或者参考意见。 一、轴的强度设计 1.1按许用弯曲应力的计算 由弯矩所产生的弯曲应力b σ应不超过许用弯曲应力,一般计算顺序 如下: 1.画出轴的空间受力简图,将轴上作用力分解为水平受力图和垂直受力图。求出水平面上和垂直面上的弯矩Mxy 图和Mxz 图。 2.作出弯矩M=22Mxz xy +M 图 3.作出转矩T 图。 4.应用公式M`=22)(T M α+M`图。(式中α是根据转矩性质而定的应力校正系数。对于不变的转矩,取α=[]b 1-σ/[]b 1+σ,对于脉动的轴,取α为[]b 1-σ/[]b 0σ,对于对称循环的转矩,取α=1. []b 1-σ[]b 1+σ[]b 0σ,分别为材料在静,脉动循环和对称循环应力状态下的需用弯曲应力。其值可由机械设计课本表7-3选取。 5.计算应满足下列条件。 2222 22()()4()21()[]W M T M T W W W M T αασασ+=+= =+≤

轴的强度校核例题及方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化

结构的位移计算和刚度校核

第6章 结构位移计算和刚度校核 到上节课为止,我们把五种静定杆件结构的计算问题全讨论过了。我们知道内力计算问题属强度问题→是结力讨论的首要任务。 讲第一章时,结力的第二大任务:刚度问题,而要解决…,首先应该… 杆件结构位移计算 (结构变形+刚度位移) → { 刚度校核 截面设计 确定P max 又是超静定结构计算的基础(双重作用)。另外本章主要讨论各种杆件结构的位移 计算问题。 结构位移计算的依据是虚功原理,所以本章先讨论刚体、变形体的虚功原理,然后推导出杆件结构位移计算的一般公式,再讨论各种具体结构的位移计算。 §6-1概述 一、 结构的位移 画图:梁、刚架、桁架 (内力N 、Q 、M ——拉伸、剪切、弯曲) 截面C 线位移:C ? 角位移:C ? 结点的线位移: 两点(截面)相对线位移: 杆件的角位移: AB ? 两截面相对角位移: 两杆件相对角位移: 1、位移定义:由于结构变形或其它原因使结构各点的位置产生(相对)移动(线位移),使杆件横截面产生(相对)转动(角位移)。 截面C 线位移:C ?。一般 分解 成水平、垂直两方向: CH ?、CV ? 角位移:C ?

2、位移的分类:6种 绝对位移:点(截面)线位移——分解成水平、垂直两方向 截面角位移: 杆件角位移: 相对位移:两点(截面)相对线位移——沿连线方向 两截面相对角位移: 两杆件相对角位移: 统称为: 广义位移:角、线位移;相对、绝对位移 Δki:k:产生位移的方向;i:引起位移原因。如ΔA P、Δat、ΔA C 广义力:集中力、力偶、分布荷载,也可以是上述各种力的综合 二、引起位移的原因 1、荷载作用:(荷载→内力→变形→位移) 2、温度改变:静定结构,温度改变,→0应力非0应变→结构变形 (材料胀缩引起的位移性质同) 3、支座移动;(无应力,无应变,但几何位置发生变化) {刚体位移(制造误差同) 变形位移 三、计算位移的目的 1)刚度验算:最大挠度的限制 (框架结构弹性层间位移限值1/450) 2)为超静定结构的弹性分析打下基础 3)预先知道变形后的位置,以便作出一定的施工措施: (起重机吊梁、板)(屋架安装)(建筑起拱)(屋窗、门、过梁)(结构要求高,精密)四、计算位移的有关假定(简化计算) 1)弹性假设 2)小变形假设 建立平衡、应变与位移、位移与荷载成线性关系 3)理想约束(联结,不考虑阻力摩擦) 变形体系{ 线性变形体系(线弹性体系) 荷载和位移呈线性关系,且荷载全撤除后位移将全部消 失,无残余变形,(可用位移叠加原理) 非线形变形体系 (分段线形叠加) 4)位移叠加原理(类似内力、反力叠加)

车床《主轴刚度校核》

主轴校核 通常只作刚度验算(P110) 1. 弯曲变形验算 (1)端部桡度y ≤[Y] ≤0.0002L L —跨距,前后支承间的轴向距离 (2)前支承处倾角θB ≤[θ] ≤0.001rad (3) 大齿轮处倾角θ≤[θ] ≤0.001rad 2.扭转变形验算 扭转角φ≤1° 支承简化与受力分析 )(109554max mm N n N T j ?=?? ?=η (P115) N--电机功率; η--机械效率取(0.75~0.85); nj--主轴计算转速 )(2'max N d T F c =?= , 其中=?=max 5.0D d )('35.0'N F F c f =?= )('5.0'N F F c p =?= 由'4.0max F a D a F ?+= 作用在主轴端部的作用力

)(2max N d T P F f z =?= = , 其中d f —齿轮分度圆直径 分解成水平面受力图:Fp ; Fz 1=Fz ×cos θ; M=F f ×d/2 分解成垂直面受力图:Fc ; Fz 2=Fz ×sin θ Ⅰ刚性支承、弹性主轴 (指导书P78,表5-22) 由传动力Fz 引起的变形: 主轴端部桡度:=-????- =)(6.a l L I E c b a P y (1-1) 大齿轮处倾角:=-????=)(31a b L I E b a P θ (2-1) 前支承处倾角:=??+???-=L I E b a b a P 6) 2(2θ (3-1) 由切削力Fp(Fc)引起的变形: 主轴端部桡度:=+???= )(32 c L L I E c P y (1-2) 大齿轮处倾角:=-???-=)3(6221a L L I E c P θ (2-2) 前支承处倾角:=???=I E L c P 32θ (3-2) 由切削力矩M 引起的变形: 主轴端部桡度:=+???=)32(6c L L I E c M y (1-3) 大齿轮处倾角:=-??-=)2(6221a L L I E M θ (2-3) 前支承处倾角:=??=I E L M 32θ (3-3) 抗弯截面惯性矩=- ??= 44 )1(64 0d d d I π d —主轴平均直径;do —主轴内孔直径 材料弹性模量:E=2.1×105(MPa ) (注意各力和力矩的方向,和公式示图相反加负号) Ⅱ刚性主轴、弹性支承(指导书P111,表6-23)

传动轴设计计算

编号: 传动轴设计计算书 编制:日期: 校对:日期: 审核:日期: 批准:日期:

一.计算目的 我们初步选定了传动轴,轴径选取Φ27(详见《传动轴设计方案书》),动力端选用球面滚轮万向节,车轮端选用球笼万向节。左、右前轮分别由1根等速万向节传动轴驱动。通过计算,校核选型是否合适。 二.计算方法 本车传动轴设计不是传统载货车上从变速器到后驱动桥之间长轴传动设计,而是半轴传动设计。而且传动轴材料采用高级优质合金钢,且热处理工艺性好,使传动轴的静强度和疲劳强度大为提高,因此计算中许用应力按照半轴设计采用含铬合金钢,如40Cr、42CrMo、40MnB,其扭转屈服极限可达到784 N/mm2左右,轴端花键挤压应力可达到196 N/mm2。 传动轴校核计算流程:

1.1 轴管直径的校核 校核: 两端自由支撑、壁厚均匀的等截面传动轴的临界转速 22 2 8 1.2x10 n e l d D+ =(r/min) 式中L传动轴长,取两万向节之中心距:mm D为传动轴轴管外直径:mm d为传动轴轴管直径:mm 各参数取值如下:D=φ27mm,d=0mm 取安全系数K=n e/n max,其中n max为最高车速时的传动轴转速,取安全系数K=n e/n max=1.2~2.0。 实际上传动轴的最大转速n max=n c/(i g×i0),r/min 其中:n c-发动机的额定最大转速,r/min; i g-变速器传动比; i0-主减速器传动比。

1.2 轴管的扭转应力的校核 校核扭转应力: τ= ][164 4τπ≤) -(d D DT J (N/mm 2) ][τ……许用应力,取][τ=539N/mm 2[高合金钢(40Cr 、40MnB 等)、中频淬火抗拉 应力≥980 N/mm 2,工程应用中扭转应力为抗拉应力的0.5~0.6,取该系数为0.55,由此可取扭转应力为539 N/mm 2,参考GB 3077-88] 式中: T j ……传动系计算转矩,N ·mm ,2/k i i T T d g0g1x ema j η= N ·m T emax -发动机最大转矩N ·mm ; i g1-变速器一档传动比或倒档传动比; i g0-主减速器传动比 k d -动载系数 η-传动效率 1.3 传动轴花键齿侧挤压应力的校核 传动轴花键齿侧挤压应力的校核 ][)2 )(4(2121j j ZL D D D D T σσ≤-+= (N/mm 2 ) 式中:T j -计算转矩,N ·mm ; D 1,D 2-花键的外径和径,mm ; Z ………花键齿数 L ………花键有效长度

轴的强度计算与设计A

§11—4-1 轴的强度计算 一、按扭转强度条件计算 适用:①用于只受扭矩或主要承受扭矩的传动轴的强度计算; ②结构设计前按扭矩初估轴的直径d min 强度条 : Mpa (11-1) 件 设计公式:mm (11-2) 轴上有键槽需要按一定比例修正:一个键槽轴径加大3~5%;二个键槽轴径加大7~11%。 ——许用扭转剪应力(N/mm2) C——轴的材料系数,与轴的材料和载荷情况有关。 对于空心轴:(mm)(11-3) ,d1—空心轴的内径(mm) 二、按弯扭合成强度条件计算: 条件:已知支点、扭距,弯距可求时 步骤: 1、作轴的空间受力简图(将分布力看成集中力,)轴的支承看成简支梁,支点作用于轴承中点,将力分解为水平分力和垂直分力; 2、求水平面支反力R H1、R H2作水平内弯矩图; 3、求垂直平面内支反力R V1、R V2,作垂直平面内的弯矩图; 4、作合成弯矩图;

5、作扭矩图; 6、作当量弯矩图; ——为将扭矩折算为等效弯矩的折算系数。 ∵弯矩引起的弯曲应力为对称循环的变应力,而扭矩所产生的扭转剪应力往往为非对称循环变应力 ∴与扭矩变化情况有关: ——扭矩对称循环变化 ——扭矩脉动循环变化 ——不变的扭矩 ,,分别为对称循环、脉动循环及静应力状态下的许用弯曲应力。 7、校核轴的强度——M emax处;M e较大,轴径d较小处。 Mpa (11-4) W——抗弯截面模量mm3,见附表11不同截面的W。 设计公式:(mm)(11-5) 如果计算所得d大于轴的结构设计d结构,则应重新设计轴的结构。 对于心轴:T=0,Me=M:转动心轴,许用应力用; 固定心轴,许用应力用——弯曲应力为脉动循环。 三、轴的安全系数校核计算 1、疲劳强度校核——精确计算(比较重要的轴) 要考虑载荷性质、应力集中、尺寸因素和表面质量及强化等因素的影响。根据结构设计选择Me较大,并有应力集中的几个截面,计算疲劳强度安全系数

第四章 扭转的强度与刚度计算

41 一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75.3695509550=?==n N M A A (N ·m ) 351 300 1195509550=?===n N M M B C B (N ·m ) 468 300 7.1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分 别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C B m (d ) (e ) 图19-5 (b )

相关主题
文本预览
相关文档 最新文档