当前位置:文档之家› 建模基础知识

建模基础知识

建模基础知识
建模基础知识

第1章

建模基础知识

建模技术是CAD系统的核心技术,计算机集成制造系统(CIMS)的水平与集成在很大程度上取决于三维几何建模软件系统的功能与水平。对于现实世界中的物体,从人们的想象出发,利用交互的方式将物体的想象模型输入计算机,计算机以一定的方式将模型存储起来,这个过程称为建模。即首先研究物体的描述方法,得到一种想象模型(亦即外部模型),它表示了用户所理解的事物及事物间的关系,然后将这种模型转化为用符号或算法表示的形式,最后形成计算机内部的模型。因此,建模过程就是一个产生、存储、处理、表达现实世界的过程。在实际的产品设计中,建模可以分为几何建模和特征建模两种类型,分别介绍如下。

1.1 认识几何建模

几何建模是指形体的描述和表达是建立在几何信息和拓扑信息基础上的建模。其主要处理零件的几何信息和拓扑信息。几何信息一般是指物体在欧氏空间(欧氏几何所研究的空间称欧氏空间,它是现实空间的一个最简单并且相当确切的近似描述)中的形状、位置和大小,一般指点、线、面、体的信息。拓扑信息则是指物体各分量的数目及其相互间的连接关系。目前常用的三维几何建模包括线框、表面和实体建模。

1.线框建模

线框建模用一系列空间直线、圆弧和点表示形体,并在计算机内部生成相应的三维映像。通过修改点和边来改变形体的形状。与该模型相关的数学表达式是直线或曲线方程、点的坐标以

及边和点的连接信息。线框模型描述的是产品的轮廓外形。

在CAD/CAM 软件中,线框模型相当于投影视图中的轴测图,此类投影视图也属于平行投影,且只有一个投影面。当物体的3

个坐标面不与投影方向一致时,则物体

平行于3个坐标面的平面的轴测投影在

轴测投影面中都得到反映,因此,物体

的轴测投影才有较强的立体感。例如,

在Pro/E 的工程图环境中,打开【绘图视

图】对话框,并创建轴测图,如图1-1

所示。

线框建模所构造的实体模型只有离

散的边,而没有边与边的关系,与该模型相关的数学表达式是直线或曲线方程、点的坐标及边和点的连接关系。因

此,线框模型不适用于对物体进行完整信息描述的场合,但在有些情况下,例如评价物体外部形状、位置或绘制图纸,线框模型提供的信息是足够的,同时它具有较好的时间响应性,对于适时仿真技术或中间结果的显示是适用的。

2.表面(曲面)建模

表面建模用面的集合来表示物体,而用环(封闭的有向棱边)来定义面的边界。它是在线框模型的基础上增加了有关面的信息,以及面的连接信息。此类模型的数据结构是表结构,除给出边线及顶点的信息之外,还提供了构造三维立体各组成面的信息。此类建模方法主要适用于其表面不能用简单数学模型进行描述的物体,如手机、飞机、汽车、船舶等的一些外表面。

在Pro/E 中,表面建模的重点是曲面建模,用于构造复杂曲面的物体,如图1-2所示。需要注意的是,由于表面模型仍缺少体的信息以及体、面间的拓扑关系,因此无法计算和分析物体的整体性质,如物体的体积、重心等,也不能将它作为一个整体来考察它与其他物体相互关联的性质,如是否相交等。

3.实体建模

实体建模在表面模型的基础上明

确定义了在表面的哪一侧存在实体,增

加了给定点与形体之间的关系信息。它

能完整地表示物体的所有形状信息,具

有完整性、清晰性、准确性。在实体造

型系统中,可以得到所有与几何实体相

关的信息。有了这些信息,应用程序就

可以完成各种操作,如物性计算、有限

元分析、生成数控加工程序等。由实体 1. 选择此选项 2. 创建轴测视图

图1-1 创建轴测视图 曲面建模 渲染曲面模型

图1-2 曲面建模

建模构造的模型称为实体模型。

在Pro/E 中,实体建模是最常用的一

种建模方式,其特点是可以对实体信息进

行全面完整的描述,能够实现消隐、剖切、

有限元分析、数控加工、对实体着色、光

照及纹处理、外形计算等各种处理和操作,

如图1-3所示。 1.2 参数化特征建模概述

由于几何建模几乎全部建立在几何模

型基础上,缺少生产过程的信息特征,使信息传递、资源共享和CIMS 的实现较为困难,于是参数化特征建模技术应运而生。特征建模技术着眼于更好地表达产品完整的技术和管理信息,使产品的设计及加工的全过程通过计算机并行展开。特征的引用直接体现了设计意图及一定的制造意义,特征的出现使设计、分析、工艺准备、加工制造及检验等各个环节有机地联系在一起成为可能。因此,特征技术得到了迅速的发展。20世纪80年代末,出现了参数化、变量化的特征造型技术,并出现了以Pro/ENGINEER 为代表的基于参数化的特征造型系统,在产品建模领域产生了深远的影响,并在工业界得到了广泛的应用。

1.2.1 认识特征

特征指的是反映零件特点的、可按一定原则加以分类的产品描述信息。特征造型是以实体造型为基础的。引入特征概念的目的在于增加CAD/CAM 系统中几何实体的工程意义。基于特征的造型把特征作为产品零件定义的基本单元。如利用孔、槽、凸台等来描述形体的形状,将产品零件描述为特征的集合。特征与加工是相辅相成的,由特征造型系统提供的通用特征通常带有加工特性,如倒圆、倒角、孔、槽、型腔等。这些特征可称为加工特征,因为每一个特征都与一种特定的加工工艺匹配,如孔的创建意味着钻削,而腔体的创建意味着铣削加工。因此,由这些已有的加工特征的尺寸和位置信息可自动生成加工工艺编制。总的来说,特征造型有如下特点。

着眼于表达产品的完整的技术和生产管理信息。为建立产品的集成信息模型服务。 使设计工作在更高的层次上进行,设计人员的操作对象不再是原始的线条和体素,

而是产品的功能要求,如螺纹孔、定位孔、键槽等。

有助于加强产品设计、分析、工艺、准备、加工、检验各部门间的联系,更好地将

产品的设计意图贯彻到后续环节并且及时得到后者的意见反馈。

有助于推动行业内的产品设计和工艺方法的规范化、标准化和系列化。

Pro/E 是典型的特征造型系统,其中形状特征的分类面向较宽的应用领域,有一定的通用性,分以下几类特征。 实体建模 消隐实体模型

图1-3 实体建模

实体特征 指直接构造实体的特征,此类特征具有实际的体积和质量,是形成模型

的主体,可以通过增加材料或去除材料的方法获得,依据成型方法又可分为点放特征和草绘特征。其中点放特征是通过选取特征的类型和放置位置,并赋予必要的尺寸参数而形成的特征;而草绘特

征是在点放特征基础上,由草绘

生成的实体通过去除材料或

增加材料生成的特征,如图1-4

所示。

曲面特征 指曲面造型的各种

曲面特征,有基本曲面特征(圆

柱面、球面)以及扫描面、派生

曲面特征(有偏移曲面、复制曲

面、圆角曲面等)、自由曲面特征。定义方

式有曲线定义,边界定义、混合方式定义等,

如图1-5所示。

虚拟特征 虚拟特征是零件构建过程中所

需要的参考,相当于几何学中的辅助点、线

或面,由基准特征、曲面特征和修饰特征组

成。其中基准特征包括基准平面、基准轴、

基准点、基准坐标系和基准曲线等类型;曲面特征主要用于实体模型构建的参考;

而修饰特征主要用于实体必

要的修饰,以达到理想的设计

效果,如图1-6所示。

用户定义的特征 由用户自

定义或来自特征库。例如钣金

设计中的UDF 特征。

1.2.2 参数化概念

在现代的产品设计中,对于各类产品的设计总的可以分为参数化设计和变量化设计,这两种设计方法都是基于约束的实体造型方法,不仅强调基于特征的设计,而且全数据相关可实现尺寸驱动设计修改,此外,还可采用多种方法来解决几何约束和尺寸关系等问题。但是,由于这两种设计方法在约束和模型处理方式方面具有很大的不同,因此,其建模方法以及应用领域还具有以下主要区别。 创建点放特征 创建草绘特征 图1-4 点放特征和草绘特征

图1-5 曲面特征效果 创建修饰特征 基准特征 和曲面特征

图1-6 基准特征、曲面特征和修饰特征

1.约束处理的区别

由上面的介绍可知,参数化设计和变量化设计都是基于约束的实体造型系统,但是在具体的造型过程中,其各自的约束与模型形状、建模顺序以及工程关系管理等方面存在着很大的差别,具体介绍如下。

形状与尺寸的区别参数化在设计全过程中,将形状与尺寸联合起来一并考虑,通过尺寸约束来实现对几何形状的控制;变量化将形状约束与尺寸约束分开处理。

在非全约束时的区别在约束不完整时,参数化设计不允许后续操作;变量化由于可适应各种约束状况,操作者可以先决定所感兴趣的形状然后再给出一些必要的尺寸,而不必标全全部约束也可继续后续的操作。

工程关系管理的区别参数化的工程关系不直接参与约束管理,而是由单独的处理单元外置处理;变量化的工程关系可以作为约束直接与几何方程耦合,最后再通过约束解算器统一解算。由于参数化苛求全约束,每一个方程式必须是显函数,即所使用的变量必须在前面的方程式内已经定义过并赋值于某尺寸参数,其几何方程的求解只能是顺序求解;变量化因为适应各种约束条件,采用联立求解的数学方法,方程的求解顺序可任意。

表现形式的区别参数化解决的是全约束下的几何图形问题,表现形式是尺寸驱动几何;变量化解决的是任意约束下的产品设计问题,既能尺寸驱动,又可以实现约束驱动,即由工程关系来驱动几何形状的改变,这对产品的结构优化提供了极大的帮助。

2.处理方式的区别

参数化的造型过程要求严谨,由关键尺寸、形状尺寸、定位尺寸到参考尺寸无一遗漏。造型过程严格遵循软件的运行机制,不允许尺寸欠约束、逆序求解等。由于只有尺寸驱动这一种修改方法,对于如何修改尺寸达到自己的设计意图的考虑较为复杂。

变量化带给设计师的是,可以先设计出产品大概的形状造型,然后再根据实际需要和结构需要添加尺寸,从而令设计者的设计意图逐步实现。由于允许采用不完全尺寸约束,所以设计者只需要给出必要的设计条件,系统仍能保证设计的正确性和高效性。此时,系统将满足设计要求的几何形状放在第一位,从而可以使设计者更自由更宽松地进行设计。

由上述参数化和变量化的特点可知

参数化适用于一般系列化的机械零件设

1. 编辑该特征参数

计,变量化在做概念设计方面有优势,

适用于新产品的开发、老产品的创新等。

因此,参数化设计更适合于Pro/E软件

的建模特点,当修改参数的数值时,系

统在保持模型拓扑关系不变的情况下,

2. 参数化驱动

圆角特征变化

图1-7 参数化驱动模型效果

几何大小和相对比例将随着参数的修改而变化,如图1-7所示。

1.2.3 关联的概念

Pro/E 系统是一个功能定义系统,即造型是通过各种不同的设计专用功能来实现的,此类系统的参数比功能是采用符号的方式赋予形体尺寸,不像其他系统是直接指定一些固定数值于形体,这样设计师可任意建立形体上的尺寸和功能之间的关系,任何一个参数改变,其他相关的特征也会自动修整,这种特性即是关联性。所谓关联就是在任意层面上更改设计,系统就会自动在所有层面上做相应的改动。

比如将某个零件进行修改,并且保存,

那么所有包括此零件的模型都会相应地发

生变化。例如修改某个零件的任意特征,

那么该零件所在的装配体也会发生相应的

变化,如图1-8所示。 1.2.4 基于特征的三维模型

“特征”或者“基于特征的”这些术语是当今CAD 领域中经常使用的专业术语,

在创建三维模型时,普遍认为这是一种更

直接、更有用的创建表达式。

一般来说,特征构成一个零件或者装配件的单元,虽然从几何形状上看,它包含作为一般三维模型基础的点、线、面或者实体单元,但更重要的是,它具有工程制造意义,也就是说基于特征的三维模型具有常规

几何模型所没有的附加的工程制

造等信息。 要基于特征创建模型,首先需

要创建或选取作为模型空间定位

的基准特征,包括基准面、基准线

或基准坐标系等;其次,选取草绘平面,并绘制特征截面,然后创建

出模型的基础实体;最后,在该基

础实体上,利用【拉伸】、【旋转】、【孔】、【筋】以及【扫描】等建模工具,创建相应的实体特征即可,

如图1-9所示。

此外,在建模过程中,基于特征的三维建模可以借助已有特征的边线或实体边为参照,辅助新特征的截面草图定位或直接使用已有特征的边线作为截面草图使用。总的来说,主要有以下3个优点。 1. 删除零件中的特征

2. 零件在装配体中的效果

图1-8 关联性效果 1. 选取基准平面绘制截面 面草图

2. 创建基础实体

3. 绘制特

征截面 4. 基于特征建模 图1-9 基于特征的三维建模

表达更符合工程技术人员的习惯、并且三维模型的创建过程与其加工过程十分相近,软件容易上手和深入。

添加特征时,可附加三维模型的工程制造等信息。

由于在模型的创建阶段,特征结合于零件模型中,并且采用来自数据库的参数化通用特征来定义几何形状,这样进行CAPP时,在设计阶段就可以很容易地创建出一个更为丰富的产品工艺,能够有效地支持其下工作的自动化,如模具和刀具等的准备、加工成本的早期评估等。

数学建模入门基本知识

数学建模知识 之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。 不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个 抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其在联系的数 学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。今天,数学以空前的广度和深度向其它科学技术领 域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。 特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。

二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了 使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统 运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差 分析,数据稳定性分析。 例题:一个笼子里装有鸡和兔若干只,已知它们共有8个头和22只脚,问该笼子中有多 少只鸡和多少只兔?

数学建模--个人认识和心得体会

数学建模--个人认识和心得体会

数学建模的体会思考 经过这段时间的学习,了解了更多的关于这门学科的知识,可以说是见识了很多很多,作为一个数学系的学生,一直都有一个疑问,数学的应用在那里。对了,就在这里,在这里,我看到了很多,也学到了很多,关于各个学科,各个领域,都少不了数学,都是用建模的思想,来解决实际问题,很神奇。 数学建模给了我很多的感触:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平

时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案……这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,还需要我们不停地去学习和查阅资料,除了我们要学习许多数学分支问题外,还要了解工厂生产、经济投资、保险事业等方面的知识,这些知识决不是任何专业中都能涉猎得到的。它能极大地拓宽和丰富我们的内涵,让我们感到了知识的重要性,也领悟到了“学习是不断发现真理的过程”

迈达斯桥梁建模基础介绍

迈达斯桥梁建模基础介绍 对于结构工程师来说,掌握一款简单易用的有限元计算软件对于工作效率的提升,是必不可少的。现在流行的各种通用以及专业有限元软件均具有良好的可视化功能,通过数据以及图形的交互功能,结构工程师可以更好的分析结构的受力情况,从而加深对于结构整体以及局部受力特性的认识。然而,并非所有的有限元计算软件都具有快捷、简便而人性化的操作界面以及程序语言,笔者曾使用Midas Civil、JQJS、桥梁博士、ANSYS及SAP等有限元程序进行桥梁结构分析,通过对比后发现,Midas Civil在进行线弹性静力分析,尤其是施工阶段分析时,相比其他几种有限元软件更加便捷,而目前全球市场化最好的大型有限元通用软件ANSYS由于其特有的程序化设计语言APDL,在进行高端结构分析时,具有明显优势。所以,对于刚刚接触有限元程序的桥梁结构工程师来说,笔者推荐选用Midas Civil作为起步软件,它人性化的界面设置以及与Excel良好的互通性将帮助使用者更快的走入有限元程序的大门。 下面将介绍Midas Civil用于桥梁结构分析的基本建模过程。 1 定义材料与截面特性 作为有限元计算的第一步工作,笔者习惯首先定义材料特性,迈达斯中提供了国内外常用的各种材料的材料特性,使用者可根据实际情况选择,对于跨径较大的桥梁上部结构来说,一般采用的混凝土为C50,而钢绞线一般选取Strand1860,选取方法如下所示(注意,普通钢筋材料特性无需在此添加):

点击右上角的添加键,弹出如下对话框,选取完成后点击适用键,如下图所示:

之后需要定义截面特性,这里需要注意的是,对于需要配置普通钢筋的截面,需采用设计截面,设计截面中提供了多种截面类型供使用者选择,但笔者认为更加便捷的定义方式为使用AutoCAD绘制截面,并另存为dxf格式,而后使用程序提供的截面特性计算器导入dxf 格式的截面,并进行截面特性计算,最后将其存为设计用数值截面导入迈达斯主程序中。

数学建模知识竞赛题库

数学建模知识竞赛题库 1.请问计算机中的二进制源于我国古代的哪部经典? D A.《墨经》 B.《诗经》 C.《周书》 D.《周易》 2.世界上面积最大的高原是?D A.青藏高原 B.帕米尔高原 C.黄土高原 D.巴西高原 3.我国海洋国土面积约有多少万平方公里? B A.200 B.300 C.280 D.340 4.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是B A.猫 B.飞鸽 C.海鸥 D.鹰 5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?B A.红色 B.蓝色 C.灰色 D.绿色 6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D ) A. [1 0 1] B. [1 1 1] C. [0 0 1] D. [0 0 0] 7.秦始皇之后,有几个朝代对长城进行了修葺? A A.7个 B.8个 C.9个 D.10个 8.中国历史上历时最长的朝代是?A A.周朝 B.汉朝 C.唐朝 D.宋朝 9我国第一个获得世界冠军的是谁?C A 吴传玉 B 郑凤荣 C 荣国团 D 陈镜开 10.我国最早在奥运会上获得金牌的是哪位运动员?B A.李宁 B.许海峰 C.高凤莲 D.吴佳怩

11.围棋共有多少个棋子?B A.360 B.361 C.362 D.365 12下列属于物理模型的是:A A水箱中的舰艇 B分子结构图 C火箭模型 D电路图 13名言:生命在于运动是谁说的?C A.车尔尼夫斯基 B.普希金 C.伏尔泰 D.契诃夫 14.饱食后不宜剧烈运动是因为B A.会得阑尾炎 B.有障消化 C.导致神经衰弱 D.呕吐 15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?A A.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役 17色盲患者最普遍的不易分辨的颜色是什么?A A.红绿 B.蓝绿 C.红蓝 D.绿蓝 18下列哪种症状是没有理由遗传的? A.精神分裂症 B.近视 C.糖尿病 D.口吃 19下面哪个变量是正无穷大变量?(A )

基本建模过程简介

Pro/ENGINEER Wildfire 基本建模过程简介 模块一概述 在本模块中,您将会学习到通常用于查看、建模、装配和记录Pro/ENGINEER 实体模型的基本建模过程。虽然特定公司的过程可能会有所不同,但大多数公司都使用此简化过程。在整个课程模块中都支持该过程,课程项目也一样。 本模块还将介绍各种基本Pro/ENGINEER 概念,包括基于特征建模和零件模型、组件和绘图之间的关联性。在后续模块中您会了解到有关这些内容及其它概念的细节。 目标 成功完成此模块后,您即可知道如何: ?通过查看毗邻零件的设计参数准备零件模型设计。 ?采用必需的设计参数创建新零件模型。 ?通过装配新零件模型和现有零件模型创建组件。 ?创建包括视图、尺寸和标题栏的新零件模型的2D 绘图。

Pro/ENGINEER Wildfire 基本建模过程 基本建模过程可归纳为四个高级步骤:

准备零件模型设计 通常,在创建新零件模型设计之前,有必要了解有关组件中其周围元件的信息。因此,可能需要在开始新设计前打开并检查这些零件。根据贵公司的情况,此准备阶段可与零件模型设计同时进行,也可以略过该过程。无论如何,了解毗邻的零件都会对新零件模型设计有所帮助。 创建新零件模型 新零件模型可通过基于实体特征的建模从概念中精确地捕获一种设计。利用零件模型可以图形方式查看产品在其制造前的状态。零件模型可用于: ?捕获质量属性信息。 ?改变设计参数以确定最佳方案。 ?以图形方式显现模型在制造之前的外观。 通过装配零件模型创建新组件 组件是通过一个或多个零件创建的。零件彼此之间的相对位置以及装配方式与其在实际产品中一样。组件可用于: ?检查零件之间是否相配。 ?检查零件之间是否干涉。 ?捕获材料清单信息。 ?计算组件的总重量。 创建零件或组件的绘图 零件或组件的建模完成后,通常需要通过创建其2D 绘图来记录该零件或组件。2D 绘图通常包含零件或组件的视图、尺寸和标题栏。绘图还可能包含注释、表和其它设计信息。并非所有公司都需要创建模型的绘图。

AutoCAD三维建模教程

AutoCAD三维建模教程:公告牌制作流程先来看看最终效果: 本题用的主要方法: 1、应用“拉伸”命令的“路径”选项; 2、灵活设置UCS。 3、应用视图转换。 下面,是本习题的详细绘图步骤讲解。 1、首先,绘制侧面框架一。

(1)绘制框架的轮廓线。利用“PL”或“L”命令绘制轮廓线,两条线夹角可控制在65度。 (2)圆角连接框架。利用“F”命令,圆角两对象。 (3)在A和b1点两点之间作一圆弧,圆弧高度可如图所示。 (4)删掉下方的横线Ab1。 接下来,利用多段线的合并命令将以上对象合并为一个整体。 2、绘制另一侧的框架及底部框架。

(1)设置视图。单击“视图”工具栏的“东南等轴测”按钮,将视点设置为“东南等轴测”。绕X轴旋转当前UCS,旋转角度为-90度。 (2)复制框架1,距离为250,得到框架2。效果如上图左所示。 (3)利用“PL”命令按图示尺寸绘制底部框架。 3、绘制上下部框架。

先设置视图。单击“视图”工具栏的“三点”按钮。单击点C指定坐标新原点,单击点b2指定X轴正向,单击点C’指定Y轴正向。 启用“直线”命令,指定点F的坐标50,0,0,输入距离250,得到直线FG。 同理,得到直线HJ。 4、绘制拉伸圆。

绘制顶部的拉伸圆。 先设置视图。单击“UCS”工具栏的“Y”按钮,指定旋转角度为-90。 启用“圆”命令,作圆心在C点,圆半径为5的圆。 同理,在C’点也作一等半径圆。 绘制公告牌横杆的拉伸圆。 旋转视图到当前作图面上。单击“UCS”工具栏的“X”按钮,指定旋转角度为90。 启用“圆”命令,绘制横杆的两个拉伸圆。 绘制底部支架的拉伸圆。 启用“三点”设置视图命令,指定新原点为R40圆弧圆心,指定点A为X轴正向,指定点E 为Y轴正向。 单击“UCS”工具栏的“X”按钮,绕X轴旋转当前UCS,旋转角度为-90。 用“圆”命令画底部支架的拉伸圆。 5、拉伸实体对象。

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

UML统一建模语言课程教学大纲

《UML统一建模语言》课程教学大纲1.课程概况

2.教学内容及要求 第一章UML与面向对象 教学内容 (1)UML概述 (2)UML组成 (3)面向对象 教学要求 (1)了解UML的发展和组成 (2)理解建模的意义 (3)掌握UML的四层结构 (4)理解UML视图和图的关系 (5)掌握UML模型元素内容 (6)理解UML通用机制 (7)理解面向对象基本概念 (8)了解面向对象开发 (9)熟悉面向对象开发的优点 (10)掌握面向对象开发三层设计 教学重点难点 建模的意义;UML的四层结构;模型元素;通用机制;视图和图的关系;面向对象相关知识。 第二章用例图 教学内容 (1)用例的基本概念,参与者,用例,泛化,用例之间的关系 (2)如何发现参与者、用例 (3)用例描述的格式要求 (4)绘制用例图 教学要求 (1)理解用例的基本概念 (2)能够很好的识别参与者与用例 (3)掌握用例之间的关系 (4)理解泛化在用例图中的使用 (5)熟练掌握用例图的绘制 (6)熟练掌握用例描述的格式要求 教学重点难点 用例的基本概念,绘制用例图;用例描述的格式要求;识别参与者与用例。 第三章类图、对象图和包图 教学内容 (1)面向对象的基本概念 (2)类图的基本概念

(3)对象图的基本概念 (4)包图的基本概念 教学要求 (1)了解面向对象的基本概念 (2)掌握类的设计原则 (3)理解类图的基本概念 (4)掌握类间的关系 (5)了解对象图和包图的概念 (6)熟练使用建模工具建模类图 教学重点难点 类的设计原则;类图的基本概念;类之间关系的模型表示及含义;熟练使用建模工具建模类图。 第四章活动图 教学内容 (1)活动图的标记符 (2)其他标记符 (3)使用建模工具为活动图建模 教学要求 (1)理解活动图的功能 (2)掌握活动图基本标记符 (3)掌握条件的使用 (4)掌握分叉和汇合的使用 (5)掌握泳道概念及其标记符的使用 (6)理解对象流概念及其标记符 (7)熟练掌握使用建模工具为活动图建模 教学重点难点 活动图的功能;活动图的基本标记符;使用建模工具为活动图建模;分叉和汇合; 泳道的概念及其标记符的使用;对象流的概念。 第五章交互图 教学内容 (1)交互图概述 (2)顺序图概述 (3)通信图概述 (4)时序图概述 教学要求 (1)理解什么是交互图 (2)使用交互图有什么优点 (3)能够使用交互图为用例建模 (4)了解组合结构图描述的内容 (5)理解组合结构图的作用

数学建模基础教程

数学建模新手“必读教程” 第一部分基本知识: 一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解

数学建模入门基本知识

数学建模知识 ——之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤

1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差分析,数据稳定性分析。

C三维绘图教程与案例很实用

C三维绘图教程与案例 很实用 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

CAD 绘制三维实体基础 1、三维模型的分类及三维坐标 AutoCAD除具有强大的二维绘图功能外,还具备基本的三维造型能力。若物体 系; 并无复杂的外表曲面及多变的空间结构关系,则使用AutoCAD可以很方便地建立物 2、三维图形的观察方法; 体的三维模型。本章我们将介绍AutoCAD三维绘图的基本知识。 三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模型的真实性表现出来。 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于绘制。 表面模型(Surface Model) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮挡光线,因而表面模型可以被渲染及消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 实体模型图11-1 线图11-2 表面

实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔运算,对实体装配进行干涉检 查,分析模型的质量特性,如质心、体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图 11-3所示是实体模型。 11.2 三维坐标系实例——三维坐标系、长方体、倒角、删除面 AutoCAD的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS)和用户坐标系(UCS)。图11-4表示的是两种坐标系下的图标。图中“X”或“Y”的剪头方向表示当前坐标轴X轴或Y轴的正方向,Z轴正方向用右手定则判定。 缺省状态时,AutoCAD的坐标系是世界坐标系。世界坐标系是唯一的,固定不变的,对于二维绘图,在大多数情况下,世界坐标系就能满足作图需要,但若是创建三维模型,就不太方便了,因为用户常常要在不同平面或是沿某个方向绘制结构。如绘制图11-5所示的图形,在世界坐标系下是不能完成的。此时需要以绘图的平面为XY坐标平面,创建新的坐标系,然后再调用绘图命令绘制图形。 图11-3 实体模型 图11-4 表示坐标系 世界坐

最新统一建模语言UML复习题

山东理工大学成人高等教育统一建模语言UML复习题 一、判断题 ()1、用例图中包含关系是指一个用例继承了另一个用例。 ()2、顺序图中每个对象向下方向伸展的虚线是对象的生命线。 ()3、协作图是对象图的扩展。 ()4、顺序图所表达的是基于时间顺序的动态交互。 ()5、用例是从用户的观点对系统行为的一个描述。 ()6、UML无法体现历史状态。 ()7、状态图中状态一般分成顺序子状态和随机子状态。 ()8、状态图是以实心圆点开头,以公牛眼结束的。 ()9、在用例图中,Actor仅代表与目标系统进行交互的人。 ()10、 Controlled Unit是可以进行版本控制的模型元素,在ROSE中,模型文件本身被打包存储为.cat文件从而成为受控单元,Logical View和Use CaseView被打包成.mdl文件而成为受控单元。 ()11、RSA支持模型驱动(Model-Driven Development)的开发。 ()12、在状态图中,内部转换可导致进入转换和离开转换的执行。 ()13、UML是一种直观化、明确化、构建和文档化软件产物的通用语言。 ()14、在两个用例中,如果一个用例拥有另一个用例的所有结构、行为和关系,并在此基础上增加了新的特性,则此两个用例之间可以用泛化关系表示。 ()15、UML适用于以体系结构为中心的开发过程,但不适合在具有迭代特征的开发过程中使用。 ()16、在UML状态图中,历史状态用于存储以前的状态。 ()17、Use Case Realization 和相应的Use Case之间是一种泛化关系。 ()18、分析机制(Analysis mechanisms)通常用于分析阶段,通过提供对系统复杂行为(如安全性、持久存储等)的简短描述来减少分析的复杂性并改善软件在各开发阶段一致性。 ()19、在RUP中,识别设计元素(Identify Design Elements)是精化体系结构(Refine the Architecture)活动中的一个步骤。 ()20、在ROSE中,从Browser窗口删除图形元素和从Diagram窗口中删除模型元素的效果相同。 ()21、RSA中的浏览图(Browse Diagram)和主题图(Topic Diagram)同属于查询图(Query Diagram)。

我要自学网-3DSMAX基础建模教程板书

《3DSMAX基础建模教程》资料总结: 第一课:现成三维体建模 1-1、3DS max简介: 菜单栏、工具栏、视图区、动画区、命令面板、视图控制区 1-2、3DS max的视图控制: 1-3、3DS max的标准基本体: 创建标准基本体时,可以进行参数修改;仍然第二次选取后,要通过修改面板来进行参数修改。 1-4、处女作___凉亭: Shift+移动=复制 1-5、3DS max扩展基本体: L-Ext=L形墙;C-Ext=C形墙。 扩展基本体里用得最多的切角长方体: 1、长度代表Y轴,宽度代表X轴,高度代表Z轴。 2、圆角控制圆角的大小;圆角分段控制圆角的圆滑度。 1-6、实例___沙发: 利用四个切角长方体的组合来制做完成。 1-7、实例___床头柜: 床头柜的实体尺寸50、50、60。 1、自定义→单位设置→“公制”选项改成毫米;“系统单位设置”:一个单位=1.0毫米。 2、拉手:用扩展基本体中的“软管”画出,“软管”有三处设置要修改,“直径”改37,“高 度”改50,“周期数”改1。 1-8、渲染视图: 保存图片,一般选择TIF文件:图像清晰,文件小,且是印刷打定的格式。 F9是渲染上一个视图,工具栏中的快速渲染才是渲染当前视图。 第二课:二维转三维(上) 2-1、3DS max的图形: 用线条建模,也就是通常的二维转三维。 1、样条线中的截面,本身不是一个线条,他是对立体截出的一个线条。 选取一个立体,点取,然后在修改面板里点取“创建图形”。 2、创建线,能过单击创建直线,单击点不放生产曲线。撤销当前的点,返回上一个点,按 Backspace撤销键。 3、“挤出”命令,修改器→网格编辑→挤出。

建模基础知识

第1章 建模基础知识 建模技术是CAD系统的核心技术,计算机集成制造系统(CIMS)的水平与集成在很大程度上取决于三维几何建模软件系统的功能与水平。对于现实世界中的物体,从人们的想象出发,利用交互的方式将物体的想象模型输入计算机,计算机以一定的方式将模型存储起来,这个过程称为建模。即首先研究物体的描述方法,得到一种想象模型(亦即外部模型),它表示了用户所理解的事物及事物间的关系,然后将这种模型转化为用符号或算法表示的形式,最后形成计算机内部的模型。因此,建模过程就是一个产生、存储、处理、表达现实世界的过程。在实际的产品设计中,建模可以分为几何建模和特征建模两种类型,分别介绍如下。 1.1 认识几何建模 几何建模是指形体的描述和表达是建立在几何信息和拓扑信息基础上的建模。其主要处理零件的几何信息和拓扑信息。几何信息一般是指物体在欧氏空间(欧氏几何所研究的空间称欧氏空间,它是现实空间的一个最简单并且相当确切的近似描述)中的形状、位置和大小,一般指点、线、面、体的信息。拓扑信息则是指物体各分量的数目及其相互间的连接关系。目前常用的三维几何建模包括线框、表面和实体建模。 1.线框建模 线框建模用一系列空间直线、圆弧和点表示形体,并在计算机内部生成相应的三维映像。通过修改点和边来改变形体的形状。与该模型相关的数学表达式是直线或曲线方程、点的坐标以

及边和点的连接信息。线框模型描述的是产品的轮廓外形。 在CAD/CAM 软件中,线框模型相当于投影视图中的轴测图,此类投影视图也属于平行投影,且只有一个投影面。当物体的3 个坐标面不与投影方向一致时,则物体 平行于3个坐标面的平面的轴测投影在 轴测投影面中都得到反映,因此,物体 的轴测投影才有较强的立体感。例如, 在Pro/E 的工程图环境中,打开【绘图视 图】对话框,并创建轴测图,如图1-1 所示。 线框建模所构造的实体模型只有离 散的边,而没有边与边的关系,与该模型相关的数学表达式是直线或曲线方程、点的坐标及边和点的连接关系。因 此,线框模型不适用于对物体进行完整信息描述的场合,但在有些情况下,例如评价物体外部形状、位置或绘制图纸,线框模型提供的信息是足够的,同时它具有较好的时间响应性,对于适时仿真技术或中间结果的显示是适用的。 2.表面(曲面)建模 表面建模用面的集合来表示物体,而用环(封闭的有向棱边)来定义面的边界。它是在线框模型的基础上增加了有关面的信息,以及面的连接信息。此类模型的数据结构是表结构,除给出边线及顶点的信息之外,还提供了构造三维立体各组成面的信息。此类建模方法主要适用于其表面不能用简单数学模型进行描述的物体,如手机、飞机、汽车、船舶等的一些外表面。 在Pro/E 中,表面建模的重点是曲面建模,用于构造复杂曲面的物体,如图1-2所示。需要注意的是,由于表面模型仍缺少体的信息以及体、面间的拓扑关系,因此无法计算和分析物体的整体性质,如物体的体积、重心等,也不能将它作为一个整体来考察它与其他物体相互关联的性质,如是否相交等。 3.实体建模 实体建模在表面模型的基础上明 确定义了在表面的哪一侧存在实体,增 加了给定点与形体之间的关系信息。它 能完整地表示物体的所有形状信息,具 有完整性、清晰性、准确性。在实体造 型系统中,可以得到所有与几何实体相 关的信息。有了这些信息,应用程序就 可以完成各种操作,如物性计算、有限 元分析、生成数控加工程序等。由实体 1. 选择此选项 2. 创建轴测视图 图1-1 创建轴测视图 曲面建模 渲染曲面模型 图1-2 曲面建模

maya建模基础技巧

maya是现在最为流行的顶级三维动画软件,很多朋友都在学习使用,这里我们就整理带来了maya建模的基础技巧:(CG工具箱整理) 重点一: 关于工程文件 1.介绍: 工程文件是在制作maya开始就要做建立的项目文件,工程项目文件里包括了maya场景文件夹/输入/输出文件夹及其他关乎maya制作项目的所有文件集合。 2.创建: File_project_new 3.注意: 1.整个maya使用当中不要使用中文字,如果工程文件路径设置了,但还是连接不到场景文件夹 (scene),就要看是否是工程文件路径中出现了非英文字体。 2.换电脑或者打开其他maya文件前一定要进行工程文件设置,确保工程文件路径正确后再在进行场景 模型工作; 3.如果输入到maya中的图片显示错误,首先要检查的是工程文件的路径是否正确。 重点二: 关于图片输入 1.介绍: 图片输入是在塑造maya模型前需要进行的工作,作为模型的参考图片,图片存储的路径是工程项目文件中的sourceimages文件夹,图片名称为非中文。

2.方法: 1.Maya四视图分别输入四张参考图片,在视图菜单中的view_image plane_import image,; 2.修改图片属性是在import image下面的image plane attributes; 3.修改图片属性还可以在channel box中inputs中图片节点中的alpha gain 修改图片的透明度, center x/y/z修改图片位置,width/height修改图片高宽大小。 4.删除图片,在模型塑造到中等程度后,就可以在场景中把图片删除掉,操作方法为:菜单 window_hypergraph(超级节点编辑器),编辑器菜单graph_input and output connections(输入输 出连接),选中相机节点的输入节点(图片)后删除掉即可。 3.注意: 1.为避免在塑造模型的过程中不经意中修改了图片,就需要把图片保存在层里面,具体方法为在 channel box中,layer下,图片显示为R(只显示不操作); 重点三: 关于复制 1.介绍: 复制在maya中有复制和镜象,复制是A生成为B的分离关系,镜象是+A和-A 的连接关系,

数学建模基础知识竞赛策划书

安徽大学江淮学院数学建模协会 ----数学建模基础知识竞赛 策 划 书 主办单位:安徽大学江淮学院委员会 安徽大学江淮学院社团管理部承办单位:安徽大学江淮学院数学建模协会

活动背景 鉴于亲爱的学弟学妹,对于数学建模这一新接触的有关应用数学的活动形式的不了解,安徽大学江淮学院数学建模协会正在积极筹划一场关于数学建模基础知识竞赛,旨在增强同学们对于数学建模的了解,积极参与数学建模活动,把自己成长为:文能提笔安天下,武能骑虎定乾坤的文武全才。下面是对于本次竞赛活动的简要介绍。 活动内容 本次活动分为初赛和决赛两个阶段: 初赛: 活动形式:以论文形式上交 上交时间:2013.12.9日18:00—18:30 上交地点:主教学楼一楼大厅 论文要求:论文的标题采用四号黑体,一级目录采用小四黑体,正文采用五号字体,行间距为单倍行距。论文题目自选,A4纸打印,字数至少两千字。 注:论文内容是关于数学建模相关的基础知识(如:数学建模的发展史,用到的相关软件:matlab、lingo等),同学们可以在网上查找,将查找的资料组织成自己的语言写成论文。 决赛: 参赛选手:从初赛的论文中选出优秀作品的团队参加决赛

活动形式:数学建模基础知识竞赛(主要是关于计算机基础知识)活动时间:2013.12.12日18:00 活动地点:北区学术报告厅 参与人员:全院全体学生 一.宣传安排 1、以海报形式宣传 2、通知各班班长进行本班宣传 3,校园主干道LED屏幕 二.活动流程 1、2013.12.9日18:00主教学楼一楼大厅收论文 2、2013.12.12日18:00数学建模基础知识竞赛,秘书部做 好签到工作 3、本次比赛以团队形式参加,每队3人(设队长一名)。从 初赛的论文中选出优秀作品的团队进入决赛,决赛题目分为必答题、可答题、抢答题。 三、后续工作 1、赛后场地清理,设备归还 2、学员后期提交培训心得 注意事项

cad三维建模基础教程

cad三维建模基础教程 cad三维建模基础教程: 11.1三维几何模型分类 在AutoCAD中,用户可以创建3种类型的三维模型:线框模型、表面模型及实体模型。这3种模型在计算机上的显示方式是相同的,即以线架结构显示出来,但用户可用特定命令使表面模型及实体模 型的真实性表现出来。 11.1.1线框模型(WireframeModel) 线框模型是一种轮廓模型,它是用线(3D空间的直线及曲线)表 达三维立体,不包含面及体的信息。不能使该模型消隐或着色。又 由于其不含有体的数据,用户也不能得到对象的质量、重心、体积、惯性矩等物理特性,不能进行布尔运算。图11-1显示了立体的线框 模型,在消隐模式下也看到后面的线。但线框模型结构简单,易于 绘制。 11.1.2表面模型(SurfaceModel) 表面模型是用物体的表面表示物体。表面模型具有面及三维立体边界信息。表面不透明,能遮挡光线,因而表面模型可以被渲染及 消隐。对于计算机辅助加工,用户还可以根据零件的表面模型形成 完整的加工信息。但是不能进行布尔运算。如图11-2所示是两个表 面模型的消隐效果,前面的薄片圆筒遮住了后面长方体的一部分。 11.1.3实体模型 实体模型具有线、表面、体的全部信息。对于此类模型,可以区分对象的内部及外部,可以对它进行打孔、切槽和添加材料等布尔 运算,对实体装配进行干涉检查,分析模型的质量特性,如质心、 体积和惯性矩。对于计算机辅助加工,用户还可利用实体模型的数 据生成数控加工代码,进行数控刀具轨迹仿真加工等。如图11-3所 示是实体模型。

11.2三维坐标系实例——三维坐标系、长方体、倒角、删除面 AutoCAD的坐标系统是三维笛卡儿直角坐标系,分为世界坐标系(WCS)和用户坐标系(UCS)。图11-4表示的是两种坐标系下的图标。 图中“X”或“Y”的剪头方向表示当前坐标轴X轴或Y轴的正方向,Z轴正方向用右手定则判定。 世界坐标系 缺省状态时,AutoCAD的坐标系是世界坐标系。世界坐标系是唯 一的,固定不变的,对于二维绘图,在大多数情况下,世界坐标系 就能满足作图需要,但若是创建三维模型,就不太方便了,因为用 户常常要在不同平面或是沿某个方向绘制结构。如绘制图11-5所示 的图形,在世界坐标系下是不能完成的。此时需要以绘图的平面为 XY坐标平面,创建新的坐标系,然后再调用绘图命令绘制图形。 用户坐标系 任务:绘制实体。 目的:通过绘制此图形,学习长方体命令、实体倒角、删除面命令和用户坐标系的建立方法。 知识的储备:基本绘图命令和对象捕捉、对象追踪的应用。 绘图步骤分解: 1.绘制长方体 调用长方体命令: 实体工具栏: 下拉菜单:[绘图][实体][长方体] 命令窗口:BOX' AutoCAD提示: 指定长方体的角点或[中心点(CE)]<0,0,0>:在屏幕上任意点单击

数学建模所需要的知识

学习数学建模需要哪些书籍及软件 我也要参加今年九月份的数学建模比赛,以下是我们老师给我们的几点建议,希望对你有些帮助。 赛前学习内容 1建模基础知识、常用工具软件的使用 一、掌握建模必备的数学基础知识(如初等数学、高等数学等),数学建模中常用的但尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。 二、,针对建模特点,结合典型的建模题型,重点学习一些实用数学软件(如Mathematica 、Matlab、Lindo 、Lingo、SPSS)的使用及一般性开发,尤其注意同一数学模型可以用多个软件求解的问题。 例如, 贷款买房问题: 某人贷款8 万元买房,每月还贷款880.87 元,月利率1%。 (1)已经还贷整6 年。还贷6 年后,某人想知道自己还欠银行多少钱,请你告诉他。(2)此人忘记这笔贷款期限是多少年,请你告诉他。 这问题我们可以用Mathematica 、Matlab、Lindo 、Lingo 等多个不同软件包编程求解 2 建模的过程、方法 数学建模是一项非常具有创造性和挑战性的活动,不可能用一些条条框框规定出各种模型如何具体建立。但一般来说,建模主要涉及两个方面:第一,将实际问题转化为理论模型;第二,对理论模型进行计算和分析。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如下图1来表示。 3常用算法的设计 建模与计算是数学模型的两大核心,当模型建立后,计算就成为解决问题的关键要素了,而算法好坏将直接影响运算速度的快慢答案的优劣。根据竞赛题型特点及前参赛获奖选手的心得体会,建议大家多用数学软件(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS 等)设计算法,这里列举常用的几种数学建模算法. (1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法,通常使用Mathematica、Matlab 软件实现)。 (2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)。 (3)线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件实现)。 (4)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,通常使用Mathematica、Maple 作为工

相关主题
文本预览
相关文档 最新文档