当前位置:文档之家› 高炉主要工艺参数计算公式_第三次讨论(10.13)

高炉主要工艺参数计算公式_第三次讨论(10.13)

高炉主要工艺参数计算公式_第三次讨论(10.13)
高炉主要工艺参数计算公式_第三次讨论(10.13)

高炉主要工艺参数计算公式

1、风口标准风速:V标=Q/(F*60)

式中V标--风口标准风速,m/s

Q――风量,m3/min

F――风口送风总面积,m2

2、风口实际风速:V实= V标*(T+273)*0.1013/ (0.1013+P)*(273+20)

式中V实--风口实际风速,m/s

V标--风口标准风速,m/s

T--风温,℃

P--鼓风压力,MPa

3、鼓风动能:E=0.412 * 1/n * O3/F2 * (T+273)2/(P+P0)2

式中E--鼓风动能,j/s

Q--风量,m3/min

n--风口数目,个

F--风口总截面积,m3

T--热风温度,℃

P--热风压力,MPa

P0--标准大气压,等于101325Pa

V――炉缸煤气量,m3

宝信疑问:O3是否就是Q3?Q:风量,m3/min;(是的)(动能公式按确认文件中宝信理解计算)

V――炉缸煤气量,m3,公式中未使用;(不用)

6、焦炭负荷:P=Q矿/Q焦

式中P--焦炭负荷

Q矿--矿石批重,kg

Q焦--焦炭(干基)批重,kg

7、综合负荷:P=Q矿/Q焦

式中P--综合负荷

Q矿--矿石批重,,kg

Q综焦--综合干焦量批重(干焦量十其它各种燃料量×折合干焦系数批重,)kg

宝信疑问:报表上的负荷采取焦炭负荷还是综合负荷;其中干基是否就是干焦(是的);(参照新发给你的报表)

8、休风率: u=t/T×100%

式中 u――休风率,%

t ——高炉休风停产时间,min

T——规定日历作业时间(日历时间减去计划达中休时间),min

9、生铁合格率

生铁合格率是指检验合格生铁占全部检验生铁的百分比。其计算公式为:

生铁合格率(%)= 生铁检验合格量(吨)×100%

生铁检验总量(吨)

生铁检验合格量是否同下面焦比中合格生铁产量一个概念???(不是,生铁检验合格量不进行折算,而焦比中合格生铁产量要进行折算)或者说它们的关系如何???

计算说明:

(1)高炉开工后,不论任何原因造成的出格生铁,均应参加生铁合格率指标的计算。

出格生铁是指什么???(指炼钢生铁S>0.070%,铸造铁生铁S>0.060%)是否指合格生铁量?(不是)报表上“出格铁”名词一并解释。

(2)用于炼钢的不合格铁水,不允许混罐,应按罐判定。

(3)入库前的混号铁,按出格铁计算。

10、生铁一级品率

生铁一级品率是指一级品生铁量占合格生铁总量的百分比。其计算公式为:

生铁一级品率(%)= 一级品生铁总量(吨)×100%

合格生铁检验总量(吨)

计算说明:一级品生铁量是指国标一类及一类以上的生铁量。以现行国家标准为例:炼钢生铁一级品是指硫属一类及一类以上为一级品;含钒生铁一级品是指硫属一类为一级品;铸造生铁和球墨铸造用生铁符合国家标准,硫属一类及一类以上为一级品。

宝信:要求有一级品生铁分析量;(新报表中有)

新报表格式中有的仅仅是这个名词而已,我们要判断标准,才能得出这个名词所指的量;生铁规格表:

在第三张报表中:有关三级铁率,请请提供公式,确保公式中用到的量要有;(删除三次铁率)

11、矿耗

是指生产每一吨合格生铁所消耗原料数量(包括烧结、球团、生矿、锰矿等)。其基本计算公式为:

矿耗(吨/吨)= 原料消耗总量(吨)

合格生铁产量(吨)

合格生铁产量是否同下面焦比的合格生铁产量一样折算???(是的)

12、焦比

焦比(即焦耗)是指高炉冶炼每一吨合格生铁所消耗的干焦炭量。由于高炉冶炼的铁种和使用的燃料不同,焦比要求用4个不同的指标表示。其计算公式分别为:焦比(千克/吨)=干焦耗用量(千克)

合格生铁产量(吨)

综合焦比(千克/吨)=综合干焦耗用量(千克)

合格生铁产量(吨)

计算说明:

(1)干焦耗用量是指扣除水分后的入炉焦炭量,不包括入炉前加工及运输等方面的损耗,但包括开炉、闷炉等所消耗的数量。

(2)干焦量= 湿焦量×(1一湿焦含水(%))。湿焦含水百分数要给出???(手动输入)

(3)综合干焦量= 干焦量十其它各种燃料量×折合干焦系数。各种燃料折干焦系数见表2-3-1。

(4)合格生铁折算量是以炼钢生铁为基数,将其它各牌号生铁统一折算成炼钢生铁的产量,其折合系数见表2-3-2。

表2-3一1 各种燃料折干焦系数

表2-3-2 各牌号生铁折合炼钢生铁系数

13、喷煤比

喷煤比是指高炉冶炼一吨合格生铁所消耗的煤量。其计算公式为:

喷煤比(千克/吨)= 煤耗用量(千克)

合格生铁量(吨)

合格生铁量同焦比中概念???(一样)

14、燃料比

燃料比是指高炉冶炼一吨合格生铁所消耗的燃料量。其计算公式为:

燃料比(千克/吨)= 燃料耗用总量(千克)

合格生铁量(吨)

合格生铁量同焦比中概念???(相同)

燃料包括:焦炭、喷煤、焦丁。

15、.高炉有效容积利用系数

高炉有效容积利用系数是指高炉每立方米有效容积平均每天(24小时)生产的合格生铁产量,一般都是按折算产量计算的。其计算公式为:

高炉有效容积利用系数(吨/米3?日)= 合格生铁折算产量(吨)

高炉有效容积(米3)×规定工作天数(日)计算说明:

(1)高炉有效容积(米3),无料钟式高炉有效容积是炉喉上沿至出铁口中心线之间的容积;

(2)规定工作天数= 日历天数一大、中修体风天数。

宝信疑问:报表上的冶炼强度是指综合冶炼强度还是焦炭冶炼强度???(参照新报表,新增加综合冶炼强度)公式中分子入炉综合干焦量(入炉干焦量)是指历来的累计量???(因为分母中实际工作天数按说明我们理解是累计的有效天数);按冶炼强度的定义,公式中入炉综合干焦量(入炉干焦量)取一天的累计量,实际工作天数就取1合适否???(是的)

16、休风率

休风率是指高炉休风时间占规定工作时间的百分比。其计算公式为:

休风率(%)= 休风时间(分)×100%

规定工作时间(分)

根据需要还可以计算慢风率指标,其计算公式为:

慢风率(%)= 慢风时间(分)×100%

规定工作时间(分)

计算说明:

(1)休风时间不包括大、中修停炉的休风时间。

(2)大修是指拆换高炉全部砌砖(包括炉底砖),拆换全部或部分炉壳和炉顶设备,更换全部冷却水箱,检修或更换其它一切设备。

(3)中修是指拆换高炉部分砌砖,拆换全部或部分炉喉砖和炉顶装置,检修或更换高炉附属设备的部件。

(4)规定工作时间(分)= 日历时间(分)一大、中修时间(分)。

(5)休风是指风压、风量降到零,高炉停止送风。慢风是指高炉由于某种原因,风量减到小于正常风量的80%。其划分标准见表2-3-3。

表2-3-3 高炉休、慢风划分标准

注:正常风量(或风压)是指在具体条件下适应于该高炉的适当风量(或风压)。17、.熟料率

熟料率是指入炉人造块矿占入炉矿石总量的百分比。它是反映高炉使用精料情况的指标。其计算公式为:

人造块矿使用率(%) = 入炉人造块矿量(吨) ×100%

入炉矿实物总量(吨)

计算说明:

(1)人造块矿包括烧结矿、球团矿。

(2)入炉矿总量包括人造块矿和天然矿。

18、综合品位

综合品位是指入炉各种矿石(包括人造块铁矿和天然铁矿石)的加权平均含铁量。

宝信疑问:烧结矿品位是怎么计算的???(原料过程机抛送)

19、冶炼强度

冶炼强度可分为综合冶炼强度和焦炭冶炼强度。它是指高炉平均每立方米有效容积在一天内所能燃烧的综合干焦量或干焦量。它反映炉料下降及冶炼的速度。其计算公式为:

综合冶炼强度(吨/米3?日)= 入炉综合干焦量(吨)

高炉有效容积(米3)×实际工作天数(日)

焦炭冶炼强度(吨/米3?日)= 入炉干焦量(吨)

高炉有效容积(米3)×实际工作天数(日)

计算说明:

实际工作天数= 日历天数一全部休风天数(包括大、中修休风)

宝信疑问:报表上的冶炼强度是指综合冶炼强度还是焦炭冶炼强度???公式中分子入炉综合干焦量(入炉干焦量)是指历来的累计量???(一天的累积量)(因为分母中实际工作天数按说明我们理解是累计的有效天数);按冶炼强度的定义,公式中入炉综合干焦量(入炉干焦量)取一天的累计量,实际工作天数就取1合适否???(是的)

30、渣铁比

渣铁比是指高炉每炼一吨生铁所产生的炉渣量。其计算公式为:

渣铁比(千克/吨)= 炉渣总量(千克)

实产生铁总量(吨)

计算说明:

(1)炉渣总量一般按测定重量计算。不能按测定重量计算的,可采用氧化钙平衡理论法计算,其计算公式为:

炉渣总量(吨)= 入炉氧化钙总量(吨)-煤气灰中氧化钙总量(吨)

高炉炉渣平均含氧化钙量(%)

入炉氧化钙总量(吨)= 入炉铁矿含氧化钙总量(吨)十入炉熔剂含氧化钙总量(吨)

焦炭和其它燃料含氧化钙总量(吨)

(2)渣铁比指标的母项为实产生铁总量,实产生铁总量为合格生铁量与出格生铁量之和。

31、灰铁比

灰铁比是指高炉每炼一吨生铁所产生的煤气灰量。其计算公式为:

灰铁比(千克/吨)= 煤气灰总量(千克)

实产生铁总量(吨)

计算说明:

(1)煤气灰总量按高炉除尘器清灰量与湿式(或电气)除尘清灰量之和计算。

(2)实产生铁总量为合格生铁量与出格生铁量之和。

32、高压率

高压率是指高炉炉顶高压(>0.03兆帕)操作时间占高炉工作时间的百分比。其计算公式为:

高压率(%)= 全部高压操作时间(时) ×100%

规定工作时间(时)-全部休风时间(时)

33、富氧率

富氧率是指富氧后鼓风中氧气含量增加的百分数。

富氧率(%)= (b一0.21) ×Q氧 ×100% (2)’

Q风+Q氧

式中Q风??冷风流量孔板显示值(米3/分);

Q氧一富氧量(米3/分);

b??工业氧浓度(%);

f??鼓风湿度(%)。

宝信疑问:上次公式中解释说明f:鼓风湿度(%),公式中没有用到???(按下面的公式计算)

B=﹛[Q风×(0.21+0.29f)+Q氧b]/(Q风+Q氧)-0.21﹜×100%

不考虑鼓风湿度时富氧率公式为:

B= (b-0.21)Q氧/(Q风+Q氧)×100%

式中B――富氧率,%

Q风――风量(冷风流量孔板显示值),m3/min

Q氧――富氧量, m3/min

0.21――鼓风中含氧率

b――氧气中含氧率,%

f ――鼓风湿度,%

34、生铁含硅标准偏差

σ〔Si 〕(%)指生铁含硅标准偏差

σ

=

式中: n —总炉次,

[Si ]i ——某炉生铁含硅量, [Si ] ——平均含硅量,

1n

i =∑ ——每炉次([Si ]i —[Si ])2

之和。

35、MS------焦炭或烧结矿各粒级加权平均粒度 36、L 4X ----炉腹测温8点中最低四点平均温度 宝信: 第一张报表:

1.请提供压差的公式及说明;(参照确认文件)

2.请提供报表上K 值的公式及说明;(参照确认文件)

3.有关TP (KPa ):认为是炉顶煤气压力,用炉顶四根煤气上升管的检测压力平均值代替;请尽快确定;确定 4.有关TT (℃):认为是炉顶煤气温度平均值,用炉顶四根煤气上升管的温度平均值代替;请尽快确定;确定 5.有关ηco (%)

一氧化碳利用率()

()CO CO CO CO +?=

220.100η

单位:%;

用炉顶上升煤气管的CO,CO 2成分百分含量计算; CO :一氧化碳百分含量, %; CO 2:二氧化碳百分含量, %; 请尽快确定;确定

6. 有关T 理

请尽快给出公式,或确认公式;我们已提交了一份公式确认文件;(参照确认文件)

7. 有关CCT

认为是十字测温中心五点温度平均值,请尽快确定; CCT-------十字测温中心温度 CCT2-----十字测温中心四点温度 报表中:二级量(高Si ,高S ),请提供判定标准;参照生铁规格表,报表高Si 项先预留,判定标准未定,

报表中“PT ℃”是指什么的温度???(铁水物理热) 报表中σ〔Si 〕(%)是指什么???怎么计算而来??? σ〔Si 〕(%)指生铁含硅标准偏差

σ

=

式中: n —总炉次,

[Si ]i ——某炉生铁含硅量, [Si ] ——平均含硅量,

1n

i =∑ ——每炉次([Si ]i —[Si ])2

之和。

注:判定标准或公式具有修改功能

压铸参数计算

压铸工艺参数的计算 从持压终了至开模这段时间,根据铸件厚薄、复杂结构选择。综合压铸过程的压铸工艺参数压力、速度、温度、时间选项择为:铸件壁厚、结构复杂,压力要大,留模时间要长;铸件壁薄、结构复杂,压射速度要快,模具温度要高; 留模时间=产品壁厚X产品壁厚 A、填充时间 填充时间=0.01x产品壁厚x产品壁厚 b、依据模具条件的高速速度 高速速度=(产品+溢流重量)/压室截面积X填充时间X铝液密度 C.依据机器能力的高速速度 模具临界速度=550X√(浇口截面积)2X压射缸截面积XACC压力X10/(压室截面积)3 (注:只考虑模具的浇口抵抗,充填抵抗时的实打速度) d.确认浇口速度 浇口速度=压室截面积/浇口截面积X高速速度 (一般为40-60m/s) 例题:产品壁厚:3mm,产品+溢流重量:510g,压室截面积:19.63cm2,浇口截面积:1.04cm2,铝液密度:2.6g/cm3,ACC压力:14MPa,压射缸截面积:(π/4)×112=95cm2。 a.填充时间=0.01×3×3=0.063s b.高速速度=(510/19.63×0.063×2.6)=1.59m/s c.模具临界速度=550X√(1.04)2×95×14×19/(19.63)3=7.58m/s d.浇口速度=(19.63/1.04)X1.59=30.01m/s (3)快慢速度转换行程 对于铝、镁合金来说,各个压射阶段的切换点尤为重要,比如低速在什么时候转入高速,高速什么时候转为增压等,直接影响到产品的表面和内部质量。 转换行程=空打行程-(产品+溢流重量/压室截面积X熔液密度)-余料厚度-1cm

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

混凝土热工计算公式

冬季施工混凝土热工计算步骤 冬季施工混凝土热工计算步骤如下: 1、混凝土拌合物的理论温度: T0=【0.9(mceTce+msaTsa+mgTg)+4.2T(mw+wsamsa-wgmg)+c1(wsamsaTsa+wgmgTg) -c2(wsamsa+wgmg)】÷【4.2mw+0.9(mce+msa+mg)】 式中 T0——混凝土拌合物温度(℃) mw、 mce、msa、mg——水、水泥、砂、石的用量(kg) T0、Tce、Tsa、Tg——水、水泥、砂、石的温度(℃) wsa、wg——砂、石的含水率(%) c1、c2——水的比热容【KJ/(KG*K)】及熔解热(kJ/kg) 当骨料温度>0℃时, c1=4.2, c2=0; ≤0℃时, c1=2.1, c2=335。 2、混凝土拌合物的出机温度: T1=T0-0.16(T0-T1) 式中 T1——混凝土拌合物的出机温度(℃) T0——搅拌机棚温度(℃) 3、混凝土拌合物经运输到浇筑时的温度: T2=T1-(at+0.032n)(T1-Ta) 式中 T2——混凝土拌合物经运输到浇筑时的温度(℃); tt——混凝土拌合物自运输到浇筑时的时间; a——温度损失系数 当搅拌车运输时, a=0.25 4、考虑模板及钢筋的吸收影响,混凝土浇筑成型时的温度: T3=(CcT2+CfTs)/( Ccmc+Cfmf+Csms) 式中 T3——考虑模板及钢筋的影响,混凝土成型完成时的温度(℃); Cc、Cf、Cs——混凝土、模板、钢筋的比热容【kJ/(kg*k)】; 混凝土取1 KJ/(kg*k); 钢材取0.48 KJ/(kg*k); mc——每立方米混凝土的重量(kg); mf、mc——与每立方米混凝土相接触的模板、钢筋重量(kg); Tf、Ts——模板、钢筋的温度未预热时可采用当时的环境温度(℃)。 根据现场实际情况,C30混凝土的配比如下: 水泥:340 kg,水:180 kg,砂:719 kg,石子:1105 kg。 砂含水率:3%;石子含水率:1%。 材料温度:水泥:10℃,水:60℃,砂:0℃,石子:0℃。 搅拌楼温度:5℃ 混凝土用搅拌车运输,运输自成型历时30分钟,时气温-5℃。 与每立方米混凝土接触的钢筋、钢模板的重量为450Kg,未预热。 那么,按以上各步计算如下: 1、 T0=【0.9(340×10+719×0+1105×0)+4.2×60×(180-0.03×719-0.01×1105)+2.1×0.03×719×0+2.1×0.01×1105×0-335×(0.03×719+0.01×1105)】/【4.2×180+0.9(340+719+1105)】=13.87℃ 2、 T1= T0-0.16(T0- T1)=13.87-0.16×(13.78-5)=12.45℃ 3、 T2= 12.45-(0.25×0.5+0.032×1)(12.45+5)=9.7℃

热工计算

一、窗节能设计分析 按《民用建筑热工设计规范》(GB50176-93)设计计算,设计依据: R o =R i +R+R e ……附2.4[GB50176-93] 在上面的公式中: R o :围护结构的传热阻(m2·K/W); R i :围护结构内表面换热阻,按规范取0.11m2·K/W; R e :围护结构外表面换热阻,按规范取0.04m2·K/W; R:围护结构热阻(m2·K/W); R=R 面板+R 中空层 =δ 面板/λ 面板 +R 中空层 =0.01/0.76+0.12 =0.133m2·K/W 在上面的公式中: δ 面板 :面板材料(玻璃)的总厚度(m); λ 面板 :面板材料的导热系数(W/m·K),按规范取0.76;

R 中空层 :中空玻璃中空空气层热阻值(m2·K/W),按规范取0.12; 故窗玻璃部分热阻 R o玻=R i +R+R e =0.11+0.133+0.04 =0.283m2·K/W 玻璃部分传热系数K 玻=1/ R o玻 =1/0.283 =3.5W/m2·K 常用普通铝型材传热系数K 铝 约=6.0 W/m2·K 整窗传热系数为玻璃和铝框传热系数按面积的加权平均值本工程铝框所占窗洞面积百分比=0.19 本工程玻璃所占窗洞面积百分比=0.71 故整窗传热系数K 窗=K 铝 X0.19 + K 玻 X0.71 =6.0X0.19+3.5X0.71 =3.6 W/m2·K 根据《公共建筑节能设计标准》GB50189-2005相关规定,本工程属于夏热冬冷地区。则外围护结构传热系数和遮阳系数应符合下表规定:

夏热冬冷地区围护结构传热系数和遮阳系数限值 本工程两主要立面窗墙比为0.47,故要求建筑外窗传热系数≤2.8. 根据上面计算,采用普通中空玻璃窗无法满足节能要求. 若采用6+9A+6LOW-E中空玻璃,非断热型材,外窗传热系数计算如下: 6+9A+6LOW-E中空玻璃传热系数约为1.5—2.1 W/m2·K,此处按最不利情况取为2.1 W/m2·K。 常用普通铝型材传热系数K 铝 约=6.0 W/m2·K 整窗传热系数为玻璃和铝框传热系数按面积的加权平均值 本工程铝框所占窗洞面积百分比=0.19 本工程玻璃所占窗洞面积百分比=0.71 故整窗传热系数K 窗=K 铝 X0.19 + K 玻 X0.71 =6.0X0.19+2.1X0.71 =2.6 W/m2·K<2.8 W/m2·K

压铸机工艺参数

?压铸工艺参数分析(一) ? ? 为了便于分析压铸工艺参数,下面示出如图5-1和图5-2所示的卧式冷室压铸机压射过程图以及压射曲 线图。压射过程按三个阶段进行分析。 第一阶段(图5-1b):由0 -Ⅰ和Ⅰ-Ⅱ两段组成。0 -Ⅰ段是压射冲头以低速运动,封住浇料口,推动金属液在压射室内平稳上升,使压射室内空气慢慢排出,并防止金属液从浇口溅出;Ⅰ-Ⅱ段是压射冲头以较快的速度 运动,使金属液充满压射室前端并堆聚在内浇口前沿。 第二阶段(图5-1c):Ⅱ-Ⅲ段,压射冲头快速运动阶段,使金属液充满整个型腔与浇注系统。 第三阶段(图5-1d):Ⅲ-Ⅳ段,压射冲头终压阶段,压射冲头运动基本停止,速度逐渐降为0。 a)

图 5-1 卧式冷室压铸机压射过程图 图5-2 卧式冷室压铸机压射曲线图 s--冲头位移曲线P0--压力曲线v--速度曲线 1、压力参数 (1)压射力压射冲头在0-Ⅰ段,压射力是为了克服压射室与压射冲头和液压缸与活塞之间的摩擦阻力;Ⅰ-Ⅱ段,压射力上升,产生第一个压力峰,足以能达到突破内浇口阻力为止;Ⅱ-Ⅲ段,压射力继续上升,产生第二个压力峰;Ⅲ-Ⅳ段,压射力作用于正在凝固的金属液上,使之压实,此阶段有增压机构才能实现, 此阶段压射力也叫增压压射力。 (2)比压比压可分为压射比压和增压比压。 在压射运动过程中0-Ⅲ段,压射室内金属液单位面积上所受的压射力称为压射比压;在Ⅲ-Ⅳ段,压射室内金属液单位面积上所受的增压压射力称为增压比压。比压是确保铸件质量的重要参数之一,推荐选用的增

压比压如表5-1所示。 表5-1 增压比压选用值(单位:MPa) (3)胀型力压铸过程中,充填型腔的金属液将压射活塞的比压传递至型(模)具型腔壁面上的力称为胀型力。主胀型力的大小等于铸件在分型面上的投影面积(多腔模则为各腔投影面积之和),浇注系统、溢流、排气系统的面积(一般取总面积的30%)乘以比压,其计算公式如下 F主=APb/10 式中F主-主胀型力(KN); A-铸件在分型面上的投影面积(cm2); Pb-压射比压(MPa)。 分胀型力(F分)的大小是作用在斜销抽芯、斜滑块抽芯、液压抽芯锁紧面上的分力引起的胀型力之和。 (4)锁型(模)力锁型(模)力是表示压铸机的大小的最基本参数,其作用是克服压铸填充时的胀型力。在压铸机生产中应保证型(模)具在胀型力的作用下不致胀开。压铸机的锁型(模)力必须大于胀型力才是 可靠的,锁型(模)力和胀型力的关系如下: F锁≥K(F主+F分) 式中F锁--压铸机应有的锁型(模)力(KN); K--安全系数,一般取1.25; F主--主胀型力(KN); F分--分胀型力(KN)。 在压铸生产过程中,锁型(模)力大小的选择直接反映到压铸分型面处有否料液飞溅、铸件内组织的密度、有否气孔、成形是否完整、有否飞边及毛刺等。调整时,在保证铸件合格的前提下尽量减小锁型(模)力。 为简化选用压铸机时各参数的计算,可根据压铸机具体的工作性能作出“比压、投影面积与胀型力关系图”,参见图5-3。在已知型(模)具分型面上铸件总投影面积∑A和所选用的压射比压Pb后,能从图中直接查出 胀型力。

切削力计算

一切削力的来源,切削合力及其分解,切削功率 研究切削力,对进一步弄清切削机理,对计算功率消耗,对刀具、机床、夹具的设计,对制定合理的切削用量,优化刀具几何参数等,都具有非常重要的意义。金属切削时,刀具切入工件,使被加工材料发生变形并成为切屑所需的力,称为切削力。切削力来源于三个方面: 克服被加工材料对弹性变形的抗力; 克服被加工材料对塑性变形的抗力; 克服切屑对前刀面的摩擦力和刀具后刀面对过渡表面与已加工表面之间的摩擦力。 切削力的来源 上述各力的总和形成作用在刀具上的合力Fr(国标为F)。为了实际应用,Fr可分解为相互垂直的Fx(国标为Ff)、Fy(国标为Fp)和Fz(国标为Fc)三个分力。在车削时: Fz——切削力或切向力。它切于过渡表面并与基面垂直。Fz是计算车刀强度,设计机床零件,确定机床功率所必需的。 Fx——进给力、轴向力或走刀力。它是处于基面内并与工件轴线平行与走刀方向相反的力。Fx是设计走刀机构,计算车刀进给功率所必需的。 Fy——切深抗力、或背向力、径向力、吃刀力。它是处于基面内并与工件轴线垂直的力。Fy用来确定与工件加工精度有关的工件挠度,计算机床零件和车刀强度。它与工件在切削过程中产生的振动有关。 切削力的合力和分力 消耗在切削过程中的功率称为切削功率Pm(国标为Po)。切削功率为力Fz和Fx 所消耗的功率之和,因Fy方向没有位移,所以不消耗功率。于是 Pm=(FzV+Fxnwf/1000)×10-3 其中:Pm—切削功率(KW); Fz—切削力(N); V—切削速度(m/s); Fx—进给力(N); nw—工件转速(r/s); f—进给量(mm/s)。

压铸工艺参数分析(精)

压铸工艺参数分析 压铸工艺参数分析 为了便于分析压铸工艺参数,下面示出如图5-1和图5-2所示的卧式冷室压铸机压射过程图以及压 射曲线图。压射过程按三个阶段进行分析。 第一阶段(图5-1b):由0 -Ⅰ和Ⅰ-Ⅱ两段组成。0 -Ⅰ段是压射冲头以低速运动,封住浇料口,推动金属液在压射室内平稳上升,使压射室内空气慢慢排出,并防止金属液从浇口溅出;Ⅰ-Ⅱ段是压射冲头以较快的速度运动,使金属液充满压射室前端并堆聚在内浇口前沿。 第二阶段(图5-1c):Ⅱ-Ⅲ段,压射冲头快速运动阶段,使金属液充满整个型腔与浇注系统。 第三阶段(图5-1d):Ⅲ-Ⅳ段,压射冲头终压阶段,压射冲头运动基本停止,速度逐渐降为0。 a) c) 图5-1 卧式冷室压铸机压射过程图

图5-2 卧式冷室压铸机压射曲线图 s--冲头位移曲线 P0--压力曲线 v--速度曲线 1、压力参数 (1)压射力压射冲头在0-Ⅰ段,压射力是为了克服压射室与压射冲头和液压缸与活塞之间的摩擦阻力;Ⅰ-Ⅱ段,压射力上升,产生第一个压力峰,足以能达到突破内浇口阻力为止;Ⅱ-Ⅲ段,压射力继续上升,产生第二个压力峰;Ⅲ-Ⅳ段,压射力作用于正在凝固的金属液上,使之压实,此阶段有增压机构才能实现,此阶段压射力也叫增压压射力。 (2)比压比压可分为压射比压和增压比压。 在压射运动过程中0-Ⅲ段,压射室内金属液单位面积上所受的压射力称为压射比压;在Ⅲ-Ⅳ段,压射室内金属液单位面积上所受的增压压射力称为增压比压。比压是确保铸件质量的重要参数之 一,推荐选用的增压比压如表5-1所示。 表5-1 增压比压选用值(单位:MPa) (3)胀型力压铸过程中,充填型腔的金属液将压射活塞的比压传递至型(模)具型腔壁面上的力称为胀型力。主胀型力的大小等于铸件在分型面上的投影面积(多腔模则为各腔投影面积之和),浇注系统、溢流、排气系统的面积(一般取总面积的30%)乘以比压,其计算公式如下 F主=APb/10 式中 F主-主胀型力(KN); A-铸件在分型面上的投影面积(cm2);

压铸工艺流程图示

上海旭东压铸技术咨询培训资料 压铸工艺参数 一、压铸工艺流程图示 2,压铸模安装 17,终检验 5,涂料配制

上海旭东压铸技术咨询培训资料压铸工艺参数 二、压射压力 注:t1 金属液在压室中未承受压力的时间;P1为一级(慢速)t2 金属液于压室中在压射冲头的作用下,通过内浇口充填型腔的时间;P2为二级(快速) t3 充填刚刚结束时的舜间;P3为三级(增压) t4 最终静压力;P4为补充压实铸件 4P y P b= Лd2 式中:P b 比压(Mpa); Py 机器的压射力(N); (压射力=压射缸直径×蓄压器压射时间最小压力) d 压室(冲头)直径(MM) 选择比压考虑的的主要因素 上海旭东压铸技术咨询培训资料压铸工艺参数

比压 因素选择条件 高低 壁厚薄壁厚壁压铸件结构形状复杂简单 工艺性差些好些 结晶温度范围大小压铸合金特性流动性差好 密度大小 比强度大小 阻力大小浇注系统散热速度快慢 公布合理不太合理排溢系统截面积大小 内浇口速度快慢 温度合金与压铸模具温度大小 ●压铸各种合金常用比压表(Mpa) 铸件壁厚≤3(mm) 铸件壁厚>3(mm)合金结构简单结构复杂结构简单结构复杂 锌合金20-30 30-40 40-50 50-60 铝硅、铝铜合金25-35 35-45 45-60 60-70 铝、镁合金30-40 40-50 50-65 65-75 镁合金30-40 40-50 50-65 65-80 铜合金40-50 50-60 60-70 70-80 ●压力损失折算系数K 直浇道导入口截面F1, K值与内浇铸口截面F2之比>1 =1 <1 立式冷室压铸机 0.66-0.70 0.72-0.74 0.76-0.78 卧式冷室压铸机0.88

混凝土热工计算步骤及公式

冬季混凝土施工热工计算 步骤仁 出机温度T,应由预拌混凝土公司计算并保证,现场技术组提出混凝土 到现场得出罐温度要求。 计算入模温度T 2: (1) 现场拌制混凝土采用装卸式运输工具时 T 2=T-AT y (2) 现场拌制混凝土采用泵送施工时: T 2=T-AT b (3) 采用商品混凝土泵送施工时: T 2=T-AT-AT b 其中,AT y . 分别为采用装卸式运输工具运输混凝土时得温度降低

与采用泵管输送混凝土时得温度降低,可按下列公式计算: ATy= ( a ti+O> 032n) X (L- Ta) 3.6 I)w 叫= =4u)x x AT. x x d h C r x p r x D7 0.04 + — L L L 式中: T 2——混凝土拌合物运输与输送到浇筑地点时温度(°C) △ Ty——采用装卸式运输工具运输混凝土时得温度降低CC) △Tb——采用泵管输送混凝土时得温度降低(°C) AT.——泵管内混凝土得温度与环境气温差(°C),当现场拌制混凝土 采用泵送工艺输送时:AL= T-「;当商品混凝土采用泵送工艺输送时:△ T F T- T- Ta T a ——室外环境气温(°C) t.——混凝土拌合物运输得时间(h) t2——混凝土在泵管內输送时间(h) n ——混凝土拌合物运转次数 Q ——混凝土得比热容[kj/(kg ?K)] p c ——混凝土得质量密度(kg/m 3) 一般取值2400 X b ——泵管外保温材料导热系数[W/ (ni ?k)] d b ---泵管外保温层厚度(m) D L ——混凝土泵管内径(m) D w ——混凝土泵管外围直径(包括外围保温材料)(m) CD ——透风系数,可按规程表A. 2. 2-2取值 a ——温度损失系数(h"1);采用混凝土搅拌车时:a 二0、25;采用开敞式 大型自卸汽车时:a 二0、20;采用开敞式小型自卸汽车时:a 二0、30;采用封 闭式自卸汽车时:a=:o 、1;采用手推车或吊斗时:a 二0、50 步骤2:考虑模板与钢筋得吸热影响,计算成型温度T3 CdiuT 2 + Cfin(Tf + Csin^Ts C(nk + Cjnif + C.v/n.v Cc --- 混凝土比热容(kj/kg ?K)普通混凝土取值0、96 C f --- 模板比热容(kj/kg ?K)木模2、51,钢模0、48 C s ——钢筋比热容(kj/kg ?K)o 、48 me --- 每混凝土重量(kg) 2500 m f --- 每m 3混凝土相接触得模板重量(kg) T3=

混凝土热工计算步骤及公式(完整资料).doc

【最新整理,下载后即可编辑】 冬季混凝土施工热工计算 步骤1: 出机温度T 1应由预拌混凝土公司计算并保证,现场技术组提出混凝土到现场的出罐温度要求。 计算入模温度T 2: (1)现场拌制混凝土采用装卸式运输工具时 T 2=T 1-△T y (2)现场拌制混凝土采用泵送施工时: T 2=T 1-△T b

(3)采用商品混凝土泵送施工时: T 2=T 1-△T y -△T b 其中,△T y 、△T b 分别为采用装卸式运输工具运输混凝土时的温度降低和采用泵管输送混凝土时的温度降低,可按下列公式计算: △Ty=(αt 1+0.032n )×(T 1- Ta) 式中: T 2——混凝土拌合物运输与输送到浇筑地点时温度(℃) △T y ——采用装卸式运输工具运输混凝土时的温度降低(℃) △T b ——采用泵管输送混凝土时的温度降低(℃) △T 1——泵管内混凝土的温度与环境气温差(℃),当现场拌制混凝土采用泵送工艺输送时:△T 1= T 1- T a ;当商品混凝土采用泵送工艺输送时:△T 1= T 1- T y - T a T a ——室外环境气温(℃) t 1——混凝土拌合物运输的时间(h ) t 2——混凝土在泵管内输送时间(h ) n ——混凝土拌合物运转次数 C c ——混凝土的比热容[kj/(kg ·K)] ρc ——混凝土的质量密度(kg/m 3) 一般取值2400 λb ——泵管外保温材料导热系数[W/(m ·k )] d b ——泵管外保温层厚度(m ) D L ——混凝土泵管内径(m ) D w ——混凝土泵管外围直径(包括外围保温材料)(m ) ω——透风系数,可按规程表A.2.2-2取值 α——温度损失系数(h -1);采用混凝土搅拌车时:α=0.25;采用开敞式大型自卸汽车时:α=0.20;采用开敞式小型自卸汽车时:α=0.30;采用封闭式自卸汽车时:α=0.1;采用手推车或吊斗时:α=0.50 步骤2:考虑模板和钢筋的吸热影响,计算成型温度T3 T3=s s f f c c s s s f f f c c m C m C m C T m C T m C T m C ++++2 C c ——混凝土比热容(kj/kg ·K )普通混凝土取值0.96 C f ——模板比热容(kj/kg ·K )木模2.51,钢模0.48

冬季施工混凝土热工计算

冬季施工混凝土热工计算 一、混凝土拌合物的理论温度计算 To=[0.9(Mce*Tce+Mcm*Tcm+Mg*Tg)+4.2*Tw(Mw-Wcm*Mcm-Wg*Mg)-C1(Wcm*Mcm*Tcm+Wg*Mg*Tg)-C2(Wcm*Mcm+Wg*Mg)]÷[4.2*Mw+0.9(Mce+Mcm+Mg)] ——(公式1) To—混凝土拌合物温度(℃) Mw、Mce、MCm、Mg—水、水泥、砂、石的用量(kg) Tw、Tce、Tcm、Tg—水、水泥、砂、石的温度(℃) Wcm、Wg—砂、石的含水率 C1、C2—水的比热容[kj/(kg.k)]及冰的溶解[kj/(kg.k)] 当骨料温度>0℃时,C1=4.2,C2=0 ≤0℃时, C1=2.1, C2=335 墙体混凝土配合比为: 水泥:砂:石:水(每立方量)=419:618:1100:190 砂含水量为5%,石含水量为0% 热水温度为80℃,水泥温度为5℃,砂温度为3℃,石温度为3℃。 根据公式1 To=[0.9(419×5+618×3+1100×3)+4.2×80(190-0.05×618)-4.20.05×618×3-2.1×0.05×618-335×0.05×618]÷ [4.2×190+0.9(419+618+1100)]=18.06 ℃ 二、混凝土拌合物的出机温度计算: T1= To-0.16(To-Tp) ——(公式2)

T1—混凝土拌合物出机温度(℃) Tp—搅拌机棚内温度(℃) 根据公式2 T1=18.06-0.16(18.06-6)=16.13℃ 三、混凝土拌合物经运输到浇筑时的温度计算 T2= T1-(a×t i+0.032n)×(T1+Th)——(公式3) T2—混凝土拌合物经运输到浇筑时温度(℃) t i—混凝土拌合物自运输到浇筑时的时间(h) n—混凝土拌合物转运次数 Th—混凝土拌合物运输时的环境温度(℃) a—温度损失系数(h-1) 当混凝土用搅拌车运输时:a=0.25 根据公式3 T2=16.13-(0.25×0.6+0.032×2)(16.13+5)=11.6℃ 四、考虑模板和钢筋的吸热影响,混凝土浇筑成型时的温度 计算: T3=(C1×M1×T1-C2×M2×T2-C3×M3×T3)/(C1×M1+C2×M2+C3×M3)——(公式4) T3—混凝土浇筑成型时的温度(℃) C1、C2、C3—混凝土、模板、钢材的比热容[kj/(kg.k)] 混凝土的比热容取1 kj/(kg.k) 钢材的比热容取0.48 kj/(kg.k)

建筑热工设计计算公式及参数

附录一建筑热工设计计算公式及参数 (一)热阻的计算 1.单一材料层的热阻应按下式计算: 式中R——材料层的热阻,㎡·K/W; δ——材料层的厚度,m; λc——材料的计算导热系数,W/(m·K),按附录三附表3.1及表注的规定采用。 2.多层围护结构的热阻应按下列公式计算: R=R1+R2+……+Rn(1.2) 式中R1、R2……Rn——各材料层的热阻,㎡·K/W。 3.由两种以上材料组成的、两向非均质围护结构(包括各种形式的空心砌块,以及填充保温材料的墙体等,但不包括多孔粘土空心砖), 其平均热阻应按下式计算: (1.3) 式中——平均热阻,㎡·K/W; Fo——与热流方向垂直的总传热面积,㎡; Fi——按平行于热流方向划分的各个传热面积,㎡;(参见图3.1); Roi——各个传热面上的总热阻,㎡·K/W Ri——内表面换热阻,通常取0.11㎡·K/W; Re——外表面换热阻,通常取0.04㎡·K/W; φ——修正系数,按本附录附表1.1采用。

图3.1 计算图式 修正系数φ值附 表1.1 /λ1 注:(1)当围护结构由两种材料组成时,λ2应取较小值,λ1应取较大值,然后求得两者的比值。 (2)当围护结构由三种材料组成,或有两种厚度不同的空气间层时,φ值可按比值 /λ1确定。 (3)当围护结构中存在圆孔时,应先将圆孔折算成同面积的方孔,然后再按上述规定计算。 4.围护结构总热阻应按下式计算: Ro=Ri+R+Re(1.4) 式中Ro——围护结构总热阻,㎡·K/W; Ri——内表面换热阻,㎡·K/W;按本附录附表1.2采用; Re——外表面换热阻,㎡·K/W,按本附录附表1.3采用; r——围护结构热阻,㎡·K/W。 内表面换热系数αi及内表面换热阻Ri值附表1.2

热工计算汇总

11.热工计算 11.1.计算引用的规范、标准及资料 《建筑幕墙》 GB/T21086-2007 《民用建筑热工设计规范》 GB50176-93 《公共建筑节能设计标准》 GB50189-2005 《民用建筑节能设计标准(采暖居住建筑部分)》 JGJ26-95 《夏热冬暖地区居住建筑节能设计标准》 JGJ75-20031 《居住建筑节能设计标准意见稿》 [建标2006-46号] 《建筑门窗玻璃幕墙热工计算规程意见稿》 [建标2004-66号] 《建筑玻璃应用技术规程》 JGJ113-2003 《玻璃幕墙光学性能》 GB/T18091-2000 《建筑玻璃可见光、透射比等以及有关窗玻璃参数的测定》 GB/T2680-94 11.2.计算中采用的部分条件参数及规定 11.2.1.计算所采纳的部分参数 按《建筑门窗玻璃幕墙热工计算规程意见稿》采用 11.2.1.1.各种情况下都应选用下列光谱: S(λ):标准太阳辐射光谱函数(ISO 9845-1); D(λ):标准光源光谱函数(CIE D65,ISO 10526); R(λ):视见函数(ISO/CIE 10527); 11.2.1.2.冬季计算标准条件应为: 室内环境计算温度:T in =20℃; 室外环境计算温度:T out =0℃; 内表面对流换热系数:h c =3.6W/(m2·K); 外表面对流换热系数:h e =23W/(m2·K); 室外平均辐射温度:T rm =T out 太阳辐射照度:I s =300W/m2;

11.2.1.3.夏季计算标准条件应为: 室内环境温度:T in =25℃; 室外环境温度:T out =30℃; 内表面对流换热系数:h c =2.5W/(m2·K); 外表面对流换热系数:h e =19W/(m2·K); 室外平均辐射温度:T rm =T out ; 太阳辐射照度:I s =500W/m2; 11.2.1.4.计算传热系数应采用冬季计算标准条件,并取I s =0W/m2; 11.2.1.5.计算遮阳系数、太阳能总透射比应采用夏季计算标准条件,并取T out =25℃; 11.2.1.6.抗结露性能计算的标准边界条件应为: 室内环境温度:T in =20℃; 室外环境温度:T out =-10℃或T out =-20℃ 室内相对湿度:RH=30%或RH=50%或RH=70%; 室外风速:V=4m/s; 11.2.1.7.计算框的太阳能总透射比g f 应使用下列边界条件: q in =α·I s q in :通过框传向室内的净热流(W/m2); α:框表面太阳辐射吸收系数; I s :太阳辐射照度=500W/m2; 11.2.2.最新规范《公共建筑节能设计标准》的部分规定11.2.2.1.结构所在的建筑气候分区应该按下面表格取用:

压铸工艺参数与铸件质量的关系.doc

压铸工艺参数与铸件质量的关系 一、压铸工艺参数 压铸工艺参数主要有压力,速度、温度和时间。这些参数是相辅相成,而又相互制约的。 1.压力——在压铸中,压力可用压射力和压射比压来表达 (1)压射力——是压铸机压射油缸推动压射活塞运动的力 P 压= 024 P D π P 压——压射力(N) P 0——压射油缸内工作液的压力(MPa) D ——压射油缸内径(mm) (2)压射比压——压射时压室内金属液单位面积上所承受的压力 2 4d P P π压= P ——压射比压(MPa) d ——压室(冲头)直径(mm) 压射比压的调整(内浇口面积不变时)主要是调整压铸机的压射力或改变压室的直径。 (3)选择压射比压所考虑的主要因素见下表 压射比压过小,会使充填时间增长,降低压射速度,使压铸件出现流痕、花纹,轮廓不清,甚至出现冷隔、缩松、缩孔;压射比压过大,铸件产生飞边和气孔。 2.速度 速度分为压射速度和充填速度 (1)压射速度是压射冲头推动金属液时的移动速度(也称冲头速度)。在压射运动中压射速度分为慢(低)压射速度和快压射速度。 压铸开始时采用慢压射速度以利于排除压室内的气体和减少压力损失。

快压射速度大小直接影响金属的充填速度。 (2)充填速度 充填速度是金属液在压力作用下通过内浇口进入型腔的线速度,又称内浇口充填速度。 充填速度的调节一般用调整压射冲头速度,更换压室直径和改变内浇口面积来实现,即:冲头面积×冲头速度=内浇口截面积×充填速度。 通常选用内浇口充填速度范围:锌合金为25~50m/s,铝合金30-60m/s,镁合金为40-100 m/s。一般要求不高的压铸件、厚壁、简单件取小值,要求质量高与受力件和壁薄、复杂件取大值。 充填速度过大,产生喷射,易堵塞排气道,出现气孔。充填速度不够则会容易产生铸件轮廓不清、流痕和花纹,甚至会出现冷隔和缺肉等缺陷。 3.温度 温度有浇注温度与模具温度。 (1)浇注温度 一般指金属液浇入压射室至填充型腔时间段内的平均温度。通常在保证填充成型和达到质量要求的前提下,采用尽可能低的温度;一般以高于压铸合金液相温度10-20℃为宜,各种合金温度选择范围如下: 锌合金为410℃-450℃; 铝合金为620℃-720℃; 镁合金为610℃-680℃; 选择时应考虑如下因素:合金流动性,铸件复杂程度、壁厚,模具热容量大小与散热的快慢。浇注温度高低直接关系到裂纹、冷隔、缩孔、缩松和粘模等缺陷的产生。 (2)模具温度 模具温度直接影响到铸件质量和压铸模的寿命,在生产前要进行预热,在压铸过程要保持一定的温度,压铸型的预热温度和工作温度选择参考下表。 铸型预热及工作温度不够,容易产生铸件欠铸、冷隔、流痕;温度过高则易产生粘模,铸件表面出现气泡等缺陷。 4.时间 (1)充填时间 金属液从内浇口开始进入型腔到充满型腔所需时间称为充填时间。充填时间与比压、内浇口速度、内浇口截面面积有关: T? =/ F Q V T——充填时间(S); Q——进入铸型金属液体积(M3);

散热量计算公式

一、标准散热量 标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。 那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。 二、工程上采用的散热量与标准散热量的区别 标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。因此,在对工程热工计算中必须按照工程上的散热量来进行计算。 在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,

所对应的计算温差△T=50摄氏度。欧洲标准散热量是在温差△T=50摄氏度的散热量。 那么怎么计算散热器在不同温差下的散热量呢? 散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。△T=(进水温度+出水温度)/2-室内温度。 现在我就介绍几种简单的计算方法 (一)根据散热器热工检测报告中,散热器与计算温差的关系式来计算。 Q=m×△T的N次方 例如74×60检测报告中的热工计算公式(10柱): Q=5.8259×△T1.2829 (1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时: △T=(95摄氏度+70摄氏度)/2-18摄氏度=64.5摄氏度 Q=5.8259×64.51.2829=1221.4W(10柱) 每柱的散热量为122.1W/柱 (2)当进水温度为80摄氏度,出口温度60摄氏度,室内温度20摄氏度时: △T=(80摄氏度+60摄氏度)/2-20摄氏度=50摄氏度 Q=5.8259×501.2829=814.6W(10柱) 每柱的散热量为81.5W/柱 (3)当进水温度为70摄氏度,出口温度50摄氏度,室内温度18摄氏度时:

压铸工艺参数的计算调整

压铸工艺参数的计算调整. .压铸工艺参数的计算与工艺调整

前提:针对目前国内压铸行业使用非实时监控的压铸机具多这一现状. 合理设定压铸参数尤为重要 关键词: 1.吉制点的确定. .2.压射速度的确定

3.增压的确定 4实例分析 ★在压铸过程中,通常的压射功能为:慢压射,一级快压射,二级快压射和增压。其中一级快压射主要用于锤头跟踪,但也可用于由慢到快的过渡压射,根据客户及铸件的需要,强调使用过渡压射时,也可做到锤头跟踪单独控制(此为特供机),增压与二级快压射相连,大吨位的压铸机增压起始吉制独立控制。 ★例:在DCC160压铸机上生产的一个压铸件. 浇铸全重:330g(含浇排系统). 铸件重量150g(内浇口以上). 铸件投影面积:11X7=77cm2. 浇注总投影面积:77X200%=154cm2. 铸件材料:ADC12. 本例铸件内浇口实际截面积:2.7X1.1+18X1.7=60.3mm2. 平均壁厚:2mm. 一.吉制点确定: ①.△点对应入料筒的B点,当采用短入料筒时△向△方向移动,同时△始终保持对1211. 应B点. ②.△点:当料温低或充填率低亦或薄壁铸件时, △接近对应A点,反

之接近△点. 322③.△点:通过计算L来确定,通常锤头压射到△点时,合金液达到C点,如果需要提前33H及滞后充填, △相应右移及左移. 3 ④.△点:对应模具分型面,(同时不能超过射出行程的极限) 4⑤为了确定△点,需要计算L H3 M=A*L*ρ ----------------------------------⑴p H M:铸件重量(内浇口以上,含集渣包) A:锤头截面积pρ:合金液体密度

混凝土热工计算步骤及公式精编版

冬季混凝土施工热工计算 步骤1: 出机温度T1应由预拌混凝土公司计算并保证,现场技术组提出混凝土到现场的出罐温度要求。 计算入模温度T2: (1)现场拌制混凝土采用装卸式运输工具时 T2=T1-△T y (2)现场拌制混凝土采用泵送施工时: T2=T1-△T b (3)采用商品混凝土泵送施工时:

T 2=T 1-△T y -△T b 其中,△T y 、△T b 分别为采用装卸式运输工具运输混凝土时的温度降低和采用泵管输送混凝土时的温度降低,可按下列公式计算: △T y=(αt 1+0.032n )×(T 1- T a) 式中: T 2——混凝土拌合物运输与输送到浇筑地点时温度(℃) △T y ——采用装卸式运输工具运输混凝土时的温度降低(℃) △T b ——采用泵管输送混凝土时的温度降低(℃) △T 1——泵管内混凝土的温度与环境气温差(℃),当现场拌制混凝土采用泵送工艺输送时:△T 1= T 1- T a ;当商品混凝土采用泵送工艺输送时:△T 1= T 1- T y - T a T a ——室外环境气温(℃) t 1——混凝土拌合物运输的时间(h ) t 2——混凝土在泵管内输送时间(h ) n ——混凝土拌合物运转次数 C c ——混凝土的比热容[kj/(kg ·K)] ρc ——混凝土的质量密度(kg/m 3) 一般取值2400 λb ——泵管外保温材料导热系数[W/(m ·k )] d b ——泵管外保温层厚度(m ) D L ——混凝土泵管内径(m ) D w ——混凝土泵管外围直径(包括外围保温材料)(m ) ω——透风系数,可按规程表A.2.2-2取值 α——温度损失系数(h -1);采用混凝土搅拌车时:α=0.25;采用开敞式大型自卸汽车时:α=0.20;采用开敞式小型自卸汽车时:α=0.30;采用封闭式自卸汽车时:α=0.1;采用手推车或吊斗时:α=0.50 步骤2:考虑模板和钢筋的吸热影响,计算成型温度T3 T3=s s f f c c s s s f f f c c m C m C m C T m C T m C T m C ++++2 C c ——混凝土比热容(kj/kg ·K )普通混凝土取值0.96 C f ——模板比热容(kj/kg ·K )木模2.51,钢模0.48 C s ——钢筋比热容(kj/kg ·K )0.48

玻璃熔窑设计第四章热工计算

玻璃熔窑设计第四章热 工计算 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第4章总工艺计算 耗热量的计算 已求得的数据 ①原料组成见表4-1 表4-1原料组成单位:质量分数(%) ②碎玻璃用量占配合料的20%。 ③配合料(不包含碎玻璃)水分:4%。 ④玻璃熔化温度1465℃ 湿粉料中形成氧化物的数量见表3-2 表4-2形成玻璃液的各氧化物的量单位:质量分数(%)

湿粉料逸出气体组成见表4-3 表4-3逸出气体组成

配合料用量的计算 碎玻璃量粉料量=20 80 (4-1) 即:碎玻璃量=20 80 ×粉料量 即1㎏粉料中需要加入㎏碎玻璃,可以得到玻璃液:%×1+= 因此,熔制成为1㎏玻璃液需要粉料量: G粉=1 =0.9530 G粉= 0.25 1.0493 =0.2383 熔化成1㎏玻璃液需要的配合料量为:+= 生成硅酸盐耗热量(以1㎏湿粉料进行计算,单位kJ/kg)由CaCO3生产CaSiO3时反应耗热量q1: q1==×(++)/100= 由MgCO3生成MgSiO3时反应耗热量q2: q2==×++/100= 由CaMg(CO3)2生成CaMg(SiO3)2时反应耗热量q3: q3==×(+)/100= 由NaCO3生成NaSiO3时耗热量q4: q4==×100=

由Na2SO4生成NaSO3时耗热量q5: q5=×100= 1㎏湿粉料生成硅酸盐耗热量: q0=q1+q2+q3+q4+q5 =++++=(kJ) 玻璃形成过程的热量平衡(以生成1㎏玻璃液计,单位是kJ/kg,从0℃算起) ①支出热量 a.生成硅酸盐耗热量:qⅠ=q0G粉=×= b.形成玻璃耗热量:q Ⅱ=347G 粉(1-气)kJ =347××(1-×)= c.加热玻璃液到1465℃耗热量:q Ⅲ=C 玻t玻 C玻=+×10-4t玻=+×10-4×1465=qⅢ=C玻t玻=×1465= d.加热逸出气体到1465℃耗热量:q Ⅳ= 气G粉C气t熔 式中V气=粉=熔=1465℃ C气=C CO2(CO2%+SO2%)+C H2O H2O% =×(+)%+×% = qⅣ=气G粉C气t熔=××××1645 = e.蒸发水分耗热量:q Ⅴ=2491G 粉G水 qⅤ=2491G粉G水=2491××4%= 共计支出热量:q支=qⅠ+qⅡ+qⅢ+qⅣ+qⅤ=++++ = ②收入热量(设配合料入窑温度为36℃) a.由碎玻璃入窑带入的热量:q Ⅵ=C 碎玻璃G碎玻璃t碎玻璃 C碎玻璃=+×10-4×36= qⅥ=C碎玻璃G碎玻璃t碎玻璃=××36= b.由粉料入窑带入的热量:q Ⅶ=C 粉G粉t粉

相关主题
文本预览
相关文档 最新文档