当前位置:文档之家› 拉格朗日插值法 matlab

拉格朗日插值法 matlab

拉格朗日插值法 matlab
拉格朗日插值法 matlab

function f = Language(x,y,x0)

%求已知数据点的拉格朗日插值多项式

%已知数据点的x坐标向量: x

%已知数据点的y坐标向量: y

%插值点的x坐标: x0

%求得的拉格朗日插值多项式或在x0处的插值: f

x=[0.0 0.4 0.8 1.2 1.6];%input x data(可替换为自己的数据)

y=[0 0.428392 0.742101 0.910314 0.970348];%input y data(可替换为自己的数据)

x0=[0.3 0.5];%input x0 data(可替换为自己的数据)

syms t l;

if(length(x) == length(y))

n = length(x);

else

disp('x和y的维数不相等!');

return; %检错

end

p=sym(0);

for (i=1:n)

l=sym(y(i));

for(k=1:i-1)

l=l*(t-x(k))/(x(i)-x(k));

end;

for(k=i+1:n)

l=l*(t-x(k))/(x(i)-x(k));

end;

p=p+l;

end

simplify(p);%简化多项式

f = subs (p,'t',x0); %计算插值点的函数值

f = vpa(f,6); %将插值多项式的值化成6位精度的小数end

拉格朗日插值法_matlab

MATLAB结课作业 姓名:郭海阳 班级:机械093 学号:2009111006 成绩: 时间:2012/6/8

一.任务。用matlab编写拉格朗日插值算法的程序并且以 (x=-2.00,f(x)=17.00 x=0.00,f(x)=1.00 x=1.00,f(x)=2.00 x=2.00,f (x)=17.00)为数据基础,在整个插值区间上采用拉格朗日插值算法计算f(x=0.6),写出程序源代码,输出计算结果 二.算法。x0=-2.00;x1=0.00;x2=1.00;x3=2.00; y0=17.00;y1=1.00;y2=2.00;y3=17.00; x=0.6 y=(x-x1).*(x-x2).*(x-x3)/((x0-x1).*(x0-x2).*(x0-x3))*y0+(x-x0).*(x-x2 ).*(x-x3)/((x1-x0).*(x1-x2).*(x1-x3))*y1+(x-x0).*(x-x1).*(x-x3)/((x2-x0).*(x2-x1).*(x2-x3))*y2+(x-x0).*(x-x1).*(x-x2)/((x3-x0).*(x3-x1).*( x3-x2))*y3; disp('y=');disp(y); 结果为:x = 0.6000 y= 0.2560 三.程序。function s=Lagrange(x,y,x0) %lagrange插值,x,y为已知的插值点及其函数值 %x0为要求的插值点的x值 nx=length(x); ny=length(y); if nx~=ny warning('矢量x与y的长度应该相等') return end m=length(x0); %按照公式,对要求的插值点矢量x0的每个元素进行计算 for i=1:m t=0.0; for j=1:nx u=1.0; for k=1:nx if k~=j u=u*(x0(i)-x(k))/(x(j)-x(k)); end end t=t+u*y(j); end

约束优化算法拉格朗日乘子法

拉格朗日乘子法 约束优化问题的标准形式为: min (),..()0,1,2,...,()0,1,2,...,n i j f x x R s t g x i m h x j l ∈≤=== ,,:n i j f g h R R →其中 约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。 1. 罚函数法 罚函数法(内点法)的主思想是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。 它只适用于不等式约束: min (),..0,1,2,...,n i f x x R s t g i m ∈≤= 它的可行域为: {|()0,1,2,...,}n i D x R g x i m =∈≤= 对上述约束问题,其其可行域的内点可行集0D ≠?的情况下,引入效用函数: min (,)()()B x r f x rB x =+%、 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑% 算法的具体步骤如下: 给定控制误差0ε>,惩罚因子的缩小系数01c <<。 步骤1:令1k =,选定初始点(0)0x D ∈,给定10r >(一般取10)。 步骤2:以()k x 为初始点,求解无约束 min (,)()()k B x r f x r B x =+% 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑%,得最优解()()k k x x r = 步骤3:若()()k k r B x ε<%,则()k x 为其近似最优解,停;否则,令,1k k r cr k k ==+, 转步骤2.

MATLAB实现拉格朗日插值

数值分析上机报告 题目:插值法 学号:201014924 姓名:靳会有

一、调用MATLAB内带函数插值 1、MATLAB内带插值函数列举如下: 2、取其中的一维数据内插函数()为例,程序如下:其调用格式为: yi=interp1(x, y, xi) yi=interp1(x, y, xi, method) 举例如下: x=0:10:100 y=[40 44 46 52 65 76 80 82 88 92 110]; xi=0:1:100 yi=interp1(x,y,xi,'spline') 3、其他内带函数调用格式为: Interpft函数: y=interpft(x,n) y=interpft(x,n,dim) interp2函数: ZI=interp2(X, Y, Z, XI, YI),ZI=imerp2(Z, ntimes)

ZI=interp2(Z, XI, YI) ,ZI=interp2(X, Y, Z, XI, YI, method) interp3函数: VI=interp3(X,Y,Z,V,XI,YI,ZI) VI=interp3(V, ntimes) VI=interp3(V,XI,YI,ZI) VI=interp3(…, method) Interpn函数: VI=interpn(X1, X2, X3, …, V, Y1, Y2, Y3, …) VI=interpn(V, ntimes) VI=interpn(V, Yl, Y2, Y3, …) VI=interpn(…, method) Spline函数: yi=spline(x,y,xi) pp=spline(x,y) meshgrid函数: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x) [X,Y,Z]=meshgrid(x,y,z) Ndgrid函数: [X1, X2, X3, …]=ndgrid(x1, x2, x3, …) [X1, X2, X3, …]=ndgrid(x) Griddata函数: ZI=griddata(x, y, z, XI, YI) [XI, YI, ZI]=griddata(x, y, z, xi, yi) […]=griddata(… method) 二、自编函数插值 1、拉格朗日插值法: 建立M 文件: function f = Language(x,y,x0) syms t l; if(length(x) == length(y)) n = length(x); else disp('x和y的维数不相等!'); return; %检错

增广拉格朗日乘子法及其在约束优化问题的应用

毕业论文 题目增广拉格朗日乘数法及在 其在约束优化问题的应用学院数学科学学院 专业信息与计算科学 班级计算1001班 学生高亚茹 学号20100921032 指导教师邢顺来 二〇一四年五月二十五日

摘要 增广拉格朗日乘子法作为求解约束优化问题的一种重要方法,近年来研究增广拉格朗日乘子法的应用显得更加重要。本文首要介绍了增广拉格朗日乘子法的产生,通过解释增广拉格朗日乘子法是罚函数法和拉格朗日乘子法的有机结合,引出了现在对增广拉格朗日法的发展状况,概述了增广拉格朗日乘子法基本理论。然后具体说明了增广拉格朗日法在科学领域上的实际应用,如在供水系统和图像复原的应用,也证明了增广拉格朗日乘子法的实际应用性。 关键词:增广拉格朗日乘子法;罚函数法;供水系统;图像复原

ABSTRACT Augmented lagrange multiplier methods as an important method for solving constrained optimization problems, recent studies in applications of augmented lagrange multiplier methods is even more important. This paper describes the generation of primary augmented lagrange multiplier method. By interpreting the augmented lagrangian multiplier methods is the combination of penalty function methods and Lagrange multiplier methods, It is given to a recent development of augmented lagrangian methods. Then is shown the basic theories of augmented lagrangian multiplier methods. Finally it is specified the augmented lagrangian method on the practical applications of scientific fields, such as water supply ystems and image restorations, also proved augmented lagrangian multiplier methods of practical application. Key words:Augmented Lagrange Multiplier Methods;Penalty Function Methods Water Supply Systems ;Image Restorations

【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

【整理】深入理解拉格朗日乘子法(Lagrange Multiplier) 和 KKT条件 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题)。提到KKT条件一般会附带的提一下拉格朗日乘子。对学过高等数学的人来说比较拉格朗日乘子应该会有些印象。二者均是求解最优化问题的方法,不同之处在于应用的情形不同。一般情况下,最优化问题会碰到一下三种情况:(1)无约束条件这是最简单的情况,解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点。将结果带回原函数进行验证即可。(2)等式约束条件设目标函数为f(x),约束条件为h_k(x),形如: s.t. 表示subject to ,“受限于”的意思,l表示有l个约束条件。则解决方法是消元法或者拉格朗日法。消元法比较简单不在赘述,这里主要讲拉格朗日法,因为后面提到的KKT条件是对拉格朗日乘子法的一种泛化。例如给定椭球: 求这个椭

球的内接长方体的最大体积。这个问题实际上就是条件极值问题,即在条件下,求的最大值。当然这个问题实际可以先根据条件消去z (消元法),然后带入转化为无条件极值问题来处理。但是有时候这样做很困难,甚至是做不到的,这时候就需要用拉格朗日乘数法了。首先定义拉格朗日函数F(x):(其中λk是各个约束条件的待定系数。) 然后解变量的偏导方程:......, 如果有l个约束条件,就应该有l+1个方程。求出的方程组的解就可能是最优化值(高等数学中提到的极值),将结果带回原方程验证就可得到解。回到上面的题目,通过拉格朗日乘数法将问题转化为对求偏导得到 联立前面三个方程得到和,带入第四个方程解之 带入解得最大体积为:至于为什么这么做可以求解最优化?维基百科上给出了一个比较好的直观解释。举个二维最优化的例子: min f(x,y) s.t. g(x,y) = c 这里画出z=f(x,y)的等高线(函数登高线定义见百度百科): 绿线标出的是约束g(x,y)=c的点的轨迹。蓝线是f(x,y)的等高线。箭头表示斜率,和等高线的法线平行。从梯度的方向上来看,显然有d1>d2。绿色的线是约束,也就是说,只要正好落在这条绿线上的点才可能是满足要求的点。如果没有

拉格朗日乘数法

§4 条件极值 (一) 教学目的:了解拉格朗日乘数法,学会用拉格朗日乘数法求条件极值. (二) 教学内容:条件极值;拉格朗日乘数法. 基本要求: (1)了解拉格朗日乘数法的证明,掌握用拉格朗日乘数法求条件极值的方法. (2) 较高要求:用条件极值的方法证明或构造不等式. (三) 教学建议: (1) 本节的重点是用拉格朗日乘数法求条件极值.要求学生熟练掌握. (2) 多个条件的的条件极值问题,计算量较大,可布置少量习题. (3) 在解决很多问题中,用条件极值的方法证明或构造不等式,是个好方法.可推荐给 较好学生. —————————————————————— 在许多极值问题中,函数的自变量往往要受到一些条件的限制,比如,要设计一个容积为V 的长方体形开口水箱,确定长、宽和高, 使水箱的表面积最小. 设水箱的长、宽、高分别为 z y x ,,, 则水箱容积 xyz V = 焊制水箱用去的钢板面积为 xy yz xz z y x S ++=)(2),,( 这实际上是求函数 ),,(z y x S 在 xyz V = 限制下的最小值问题。 这类附有条件限制的极值问题称为条件极值问题, 其一般形式是在条件 )(,,,2,1,0),,,(21n m m k x x x n k <== ? 限制下,求函数 ),,,(21n x x x f 的极值 条件极值与无条件极值的区别 条件极值是限制在一个子流形上的极值,条件极值存在时无条件极值不一定存在,即使存在二者也不一定相等。 例如,求马鞍面 12 2+-=y x z 被平面 XOZ 平面所截的曲线上的最低点。请看这个问题的几何图形(x31马鞍面) 从其几何图形可以看出整个马鞍面没有极值点,但限制在马鞍面被平面 XOZ 平面所截的曲线上,有极小值 1,这个极小值就称为条件极值。

用matlab编写拉格朗日插值算法的程序

用matlab编写拉格朗日插值算法的程序 10 [ 标签:matlab,插值算法,程序] 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果 x -2.15 -1.00 0.01 1.02 2.03 3. 25 y 17.03 7.24 1.05 2.03 17.06 23.05 匿名回答:1 人气:6 解决时间:2011-05-24 19:58 满意答案 好评率:83% 做了一个测试,希望有所帮助。 代码: % 用matlab编写拉格朗日插值算法的程序,并以下面给出的函数表为数据基础,% 在整个插值区间上采用拉格朗日插值法计算f(0.6),写出程序源代码,输出计算结果 % x -2.15 -1.00 0.01 1.02 2.03 3. 25 % y 17.03 7.24 1.05 2.03 17.06 23.05 function main() clc; x = [-2.15 -1.00 0.01 1.02 2.03 3.25]; y = [17.03 7.24 1.05 2.03 17.06 23.05 ]; x0 = 0.6; f = Language(x,y,x0) function f = Language(x,y,x0) %求已知数据点的拉格朗日插值多项式 %已知数据点的x坐标向量: x %已知数据点的y坐标向量: y %插值点的x坐标: x0 %求得的拉格朗日插值多项式或在x0处的插值: f

syms t l; if(length(x) == length(y)) n = length(x); else disp('x和y的维数不相等!'); return; %检错 end h=sym(0); for (i=1:n) l=sym(y(i)); for(j=1:i-1) l=l*(t-x(j))/(x(i)-x(j)); end; for(j=i+1:n) l=l*(t-x(j))/(x(i)-x(j)); end; h=h+l; end simplify(h); if(nargin == 3) f = subs (h,'t',x0); %计算插值点的函数值 else f=collect(h); f = vpa(f,6); %将插值多项式的系数化成6位精度的小数 end 结果: f = 0.0201 >> 如何用MATLAB编写的拉格朗日插值算法的程序、二阶龙格-库塔方法的程序和SOR迭代法的程序,要能运行的 ∮初夏戀雨¢回答:2 人气:29 解决时间:2009-12-08 19:04 满意答案 好评率:100%

拉格朗日插值的matlab实现

2、拉格朗日插值 function[f,f0]=Language(x,y,x0) %求已知数据点的拉格朗日插值多项式 %已知数据点的x坐标向量:x %已知数据点的y坐标向量:y %插值点的x坐标:x0 %求得的拉格朗日插值多项式:f %x0处的插值:f0 syms t; if(length(x)==length(y)) n=length(x); else disp('x和y的维数不相等!'); return; end %检错 f=0.0; for(i=1:n) l=y(i); for(j=1:i-1) l=l*(t-x(j))/(x(i)-x(j)); end; for(j=i+1:n) l=l*(t-x(j))/(x(i)-x(j)); %计算拉格朗日基函数 end; f=f+l; %计算拉格朗日插值函数 simplify(f); %化简 end f0=subs(f,'t',x0); %计算插值点的函数值 运行程序; x=0:0.5:3; y=[0 0.4794 0.8415 0.9975 0.9093 0.5985 0.1411]; [f,f0]=Language(x,y,1.6) %计算输出的拉格朗日插值多项式 %计算x=1.6时的插值输出值f0 运行结果 f = -799/3125*t*(t-1)*(t-3/2)*(t-2)*(t-5/2)*(t-3)+561/500*t*(t-1/2)*(t-3/2)*(t-2)*(t-5/2)*(t-3)-133/75 *t*(t-1/2)*(t-1)*(t-2)*(t-5/2)*(t-3)+3031/2500*t*(t-1/2)*(t-1)*(t-3/2)*(t-5/2)*(t-3)-399/1250*t*(t-

拉格朗日乘子法和KKT条件的定义及选取原因

拉格朗日乘子法和KKT条件的定义及选取原因 拉格朗日乘子法无疑是最优化理论中最重要的一个方法。但是现在网上并没有很好的完整介绍整个方法的文章。所以小编整理了如下文章,希望能博得大家一赞。在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值;如果含有不等式约束,可以应用KKT条件去求取。当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件。 KKT条件是拉格朗日乘子法的泛化。之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么要这样去求取最优值呢?本文将首先把什么是拉格朗日乘子法(Lagrange Multiplier) 和KKT条件叙述一下;然后开始分别谈谈为什么要这样求最优值。 一. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件通常我们需要求解的最优化问题有如下几类 :(i) 无约束优化问题,可以写为:min f(x); (ii) 有等式约束的优化问题,可以写为:min f(x), s.t. h_i(x) = 0; i =1, ..., n (iii) 有不等式约束的优化问题,可以写为:min f(x), s.t. g_i(x) 合成为一个式子L(a, x) = f(x) + a*h(x), 这里把a和h(x)视为向量形式,a是横向量,h(x)为列向量,之所以这么写,完全是因为csdn很难写数学公式,只能将就了.....。然后求取最优值,可以通过对L(a,x)对各个参数求导取零,联立等式进行求取,这个在高等数学里面有讲,但是没有讲为什么这么做就可以,在后面,将简要介绍其思想。(b) KKT条件对于含有不等式约束的优化问题,如何求取最优值呢?常用的方法是KKT条件,同样地,把所有的不等式约束、等式约束和目标函数全部写为一个式子L(a, b, x)= f(x) + a*g(x)+b*h(x),KKT条件是说最优值必须满足以下条件: 1. L(a, b, x)对x求导为零; 2. h(x) =0; 3. a*g(x) = 0;求取这三个等式之后就能得到候选最优值。其中第三个式子非常有趣,因为g(x)=0,我们可以把f(x)写为:max_{a,b} L(a,b,x),为什么呢?因为h(x)=0, g(x)<=0,现在是取L(a,b,x)的最大值,a*g(x)是<=0,所以L(a,b,x)

matlab实现插值法和曲线拟合电子教案

m a t l a b实现插值法和 曲线拟合

插值法和曲线拟合 电子科技大学 摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟 合,用不同曲线拟合数据。 关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合 引言: 在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。 正文: 一、插值法和分段线性插值 1拉格朗日多项式原理 对某个多项式函数,已知有给定的k + 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: [3] 拉格朗日基本多项式的特点是在上取值为1,在其它的点 上取值为0。 2分段线性插值原理 给定区间[a,b], 将其分割成a=x 0

拉格朗日乘数法word版

§4 条件极值 (一) 教学目的:了解拉格朗日乘数法,学会用拉格朗日乘数法求条件极值. (二) 教学内容:条件极值;拉格朗日乘数法. 基本要求: (1)了解拉格朗日乘数法的证明,掌握用拉格朗日乘数法求条件极值的方法. (2) 较高要求:用条件极值的方法证明或构造不等式. (三) 教学建议: (1) 本节的重点是用拉格朗日乘数法求条件极值.要求学生熟练掌握. (2) 多个条件的的条件极值问题,计算量较大,可布置少量习题. (3) 在解决很多问题中,用条件极值的方法证明或构造不等 式,是个好方法.可推荐给较好学生. 在许多极值问题中,函数的自变量往往要受到一些条件的限制,比如,要设计一个容积为V 的长方体形开口水箱,确定长、宽和高, 使水箱的表面积最小. 设水箱的长、宽、高分别为 z y x ,,, 则水箱容积 xyz V = 焊制水箱用去的钢板面积为 xy yz xz z y x S ++=)(2),,(这实际上是求函数 ),,(z y x S 在xyz V = 限制下 的最小值问题。 这类附有条件限制的极值问题称为条件极值问题, 其一般形式是在条件 )(,,,2,1,0),,,(21n m m k x x x n k <== ? 限制下,求函数 ),,,(21n x x x f 的极值 条件极值与无条件极值的区别

条件极值是限制在一个子流形上的极值,条件极值存在时无条件极值不一定存在,即使存在二者也不一定相等。 例如,求马鞍面 122+-=y x z 被平面 XOZ 平面所截的曲线上的最低点。请看这个问题的几何图形(x31马鞍面) 从其几何图形可以看出整个马鞍面没有极值点,但限制在马鞍面被平面 XOZ 平面所截的曲线上,有极小值 1,这个极小值就称为条件极值。 二. 条件极值点的必要条件 设在约束条件0),(=y x ?之下求函数= z ),(y x f 的极值 . 当满 足约束条件的点),(00y x 是函数),(y x f 的条件极值点 , 且在该点函数),(y x ?满足隐函数存在条件时, 由方程0),(=y x ?决定隐函数 )(x g y =, 于是点0x 就是一元函数())( , x g x f z =的极限点 , 有 0)(='+=x g f f dx dz y x . 代入 ) ,() ,()(00000y x y x x g y x ??- =', 就有 0) ,() ,() ,(),(00000000=-y x y x y x f y x f y x y x ??, ( 以下x f 、y f 、x ?、y ?均表示相应偏导数在点),(00y x 的值 . ) 即 x f y ?—y f x ?0= , 亦即 (x f , y f ) (?y ? ,x ?-)0= . 可见向量(x f , y f )与向量(y ? , x ?-)正交. 注意到向量(x ? , y ?)也与向量(y ? , x ?-)正交, 即得向量(x f , y f )与向量(x ? , y ?)线性相关, 即存在实数λ, 使

用MATLAB实现拉格朗日插值(特选参考)

用MATLAB实现拉格朗日插值 1、作业内容: 用MATLAB实现拉格朗日插值 2、作业目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法 3、作业原理: 利用拉格朗日插值方法进行多项式插值,并将图形显式出来。 4、实验步骤及运行结果 (1)实现lagrange插值 1)定义函数: f = 1./(25*x^2+1)将其保存在f.m 文件中,具体程序如下: function y = f1(x) y = 1./(25x.^2+1); 2) 定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下: function y = lagrange(x0,y0,x) m = length(x); /区间长度/ n = length(x0); for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end

end end y = 0; for i = 1:n y = y0(i) * l(i) + y; End 3)建立测试程序,保存在text.m文件中,实现画图: x=-1:0.001:1; y=(1+25.*x.^2).^-1; p=polyfit(x,y,n); py=vpa(poly2sym(p),10) plot_x=-1:0.001:1; f1=polyval(p,plot_x); figure

浅谈拉格朗日乘数法的应用

“高观点”下的初等数学 许高峰11数本一班 摘要拉格朗日乘数法是一种对于解决条件极值问题非常有效的方法,在大学的各类微积分教材中都有介绍,对于初学者可能看不到这种方法的具体作用,以致在学习的过程中难免忽略了它,本文透过拉格朗日乘数法的介绍,以及它在一些问题上的具体应用,让无论是数学专业的本科生,以及将来从事数学师范专业的学生,都能从中获取一些启发。 关键词拉格朗日乘数法最大值最小值约束条件 例一:设实数y x ,满足554422=++xy y x ,设22y x S +=,则S 的最小值为 .(浙江省杭州市2012届高三上学期期中七校联考数学(理))证明:因为 5)(2 135)(2 5445 544022222222?+=?+++≤?++=y x y x y x xy y x 所以有05)(21322≥?+y x 成立,即131022≥+y x ,所以S 的最小值为13 10,当且仅当y x =时成立.说明:一看到这类题,高中学生的第一反应一般是用不等式的知识去解决,这种思路是对的,但是用不等式的方法是有局限性的,不等式一般能解出最大值或最小值中的其中一个,却不一定能同时解出最大和最小值,比如,我把上述题目改为求S 的最大值是多少,显然改完之后,题目的难度就增加了,所以,这类题目需要我们进一步的研究,去寻找更一般的方法,从而更有效地解决这一类问题。 如果把上述题目改为求最大值,显然,如果在用不等式的知识就有点困难了,但是在高中生的知识水上,还是可以用初等数学的知识加以解决的。容易想到把上述等式凑成平方项之和以及完全平方的形式,从直观上便可以判断出所求未知量的最大值.考虑化成如下形式: 2 22222)(55 )()(By Bx Ay Ax By Bx Ay Ax +?=+?=+++

实验四用MATLAB实现拉格朗日插值、分段线性插值

实验四用MATLAB实现拉格朗日插值、分段线性插值一、实验目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法; 二、实验内容: 1用MATLAB实现y = 1./(x.^2+1);(-1<=x<=1)的拉格朗日插值、分段线性 2.选择以下函数,在n个节点上分别用分段线性和三次样条插值的方法,计算m个插值点的函数值,通过数值和图形的输出,将插值结果与精确值进行比较,适当增加n,再作比较,由此作初步分析: (1).y=sinx;( 0≤x≤2π) (2).y=(1-x^2)(-1≤x≤1) 三、实验方法与步骤: 问题一用拉格朗日插值法 1)定义函数:y = 1./(x.^2+1);将其保存在f.m 文件中,程序如下: function y = f1(x) y = 1./(x.^2+1); 2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x) m = length(x); /区间长度/ n = length(x0); for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end

l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end end end y = 0; for i = 1:n y = y0(i) * l(i) + y; end 3)建立测试程序,保存在text.m文件中,实现画图:x=-1:0.001:1; y = 1./(x.^2+1); p=polyfit(x,y,n); py=vpa(poly2sym(p),10) plot_x=-5:0.001:5; f1=polyval(p,plot_x); figure plot(x,y,‘r',plot_x,f1)

拉格朗日乘数法

拉格朗日乘数法是高等数学中求多元函数极值常用的方法,该方法针对某些高考 中二元及三元变量最值问题,不失为一种既实用又简便的方法。拉格朗日乘数法:求在约束条件(G(x,y,z) = 0,下f(x,y,z)的极值时,拉格朗日函数 L(x,y,z)二f(x,y,z)- 入H (x,y t z) -□右(xy乂),可由L x=0, L y=0, Lz=0, ll(xyz) = 0, G(xyz)二0,解出函数可能的极值点,求出目标函数f(x,y,z)的极值。这 里L x=0, L y=0, L z=0可以理解为关于x,y,z求偏导数,入,□称为拉格朗日乘数。 例.已知x2寸 xy 3,求x2y2xy的最大值和最小值。 1.已知正实数x, y满足xy+2x+y=4,则x+y+1的最小值为 ______________ . 、‘ 1 1 2■若正实数x, y,满足x y 5,则x y的最大值是 _____________ . x y 3. 若实数x, y满足x2y2xy 1,则x y的最大值___________________ . 4. 设正实数x,y,z满足x2-3xy + 4y2—z = 0,则当—取得最小值时,x+ 2y—z的最大值为() xy 5. 设a,b,c为实数,且满足a+2b+3c=6,则a2+4b2+9c2的最小值为 ____________ 6. ____________________________________________________________________________________ 已知实数a,b,c满足a+b+c=0, a 2+b2+c2=1,则a的最大值为_______________________ . 2 2 3 4 5 7. 对于c 0,当非零实数a,b满足4a 2ab 4b c 0,且使|2a b|最大时,的最小值 a b c 8.已知a,b [0,1],a+b=1, 求「二+ +(1-a)(1-b) 的取值范围。(若去掉条件a+b=1呢)

用MATLAB实现拉格朗日插值和分段线性插值

用MATLAB实现拉格朗日插值和分段线性插值 1、实验内容: 用MATLAB实现拉格朗日插值和分段线性插值。 2、实验目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法和分段线性 差值算法; 3、实验原理: 利用拉格朗日插值方法进行多项式插值,并将图形显式出来。 4、实验步骤及运行结果 (1)实现lagrange插值 1)定义函数:f = 1/(x^2+1) 将其保存在f.m 文件中,具体程序 如下: function y = f1(x) y = 1./(x.^2+1); 2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中, 具体实现程序编程如下: function y = lagrange(x0,y0,x) m = length(x); /区间长度/ n = length(x0);

for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end end end y = 0; for i = 1:n y = y0(i) * l(i) + y; end 3)建立测试程序,保存在text.m文件中,实现画图: x=-5:0.001:5; y=(1+x.^2).^-1; p=polyfit(x,y,n); py=vpa(poly2sym(p),10) plot_x=-5:0.001:5; f1=polyval(p,plot_x); figure plo t(x,y,‘r',plot_x,f1) 输入n=6,出现下面的图形: 通过上图可以看到当n=6是没有很好的模拟。

拉格朗日乘数法教学教材

拉格朗日乘数法

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 拉格朗日乘数法是高等数学中求多元函数极值常用的方法,该方法针对某些高考中二元及三元变量最值问题,不失为一种既实用又简便的方法。 拉格朗日乘数法:求在约束条件 ,下f(x,y,z)的极值时,拉格朗日函数 L(x,y,z)= f(x,y,z)-λμ,可由L x =0, L y =0, L z =0,,,解出函 数可能的极值点,求出目标函数f(x,y,z)的极值。这里L x =0, L y =0, L z =0可以理解为关于x,y,z 求 偏导数,λ,μ称为拉格朗日乘数。 例.已知223x y xy ++=,求22x y xy +-的最大值和最小值。 1.已知正实数,x y 满足24xy x y ,则1x y 的最小值为__________. 2.若正实数y x ,,满足115x y x y + ++=,则x y +的最大值是 . 3.若实数,x y 满足221x y xy ++=,则x y +的最大值_________. 4.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当z xy 取得最小值时,x +2y -z 的最大值为( ) 5.设a,b,c 为实数,且满足a+2b+3c=6,则a 2+4b 2+9c 2的最小值为__________ 6.已知实数a,b,c 满足a+b+c=0, a 2+b 2+c 2=1,则a 的最大值为___________. 7.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c -+的最小值为 .

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件 - 课堂补充

理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件 在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值;如果含有不等式约束,可以应用KKT条件去求取。 当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件。KKT条件是拉格朗日乘子法的泛化。

一. 拉格朗日乘子法(Lagrange Multiplier) 和KKT条件 通常我们需要求解的最优化问题有如下几类: (i) 无约束优化问题,可以写为: min f(x); (ii) 有等式约束的优化问题,可以写为: min f(x), s.t. h_i(x) = 0; i =1, ..., n (iii) 有不等式约束的优化问题,可以写为: min f(x), s.t. g_i(x) <= 0; i =1, ..., n h_j(x) = 0; j =1, ..., m 对于第(i)类的优化问题,常常使用的方法就是Fermat定理,即使用求取f(x)的导数,然后令其为零,可以求得候选最优值,再在这些候选值中验证;如果是凸函数,可以保证是最优解。 对于第(ii)类的优化问题,常常使用的方法就是拉格朗日乘子法(Lagrange Multiplier) ,即把等式约束h_i(x)用一个系数与f(x)写为一个式子,称为拉格朗日函数,而系数称为拉格朗日乘子。通过拉格朗日函数对各个变量求导,令其为零,可以求得候选值集合,然后验证求得最优值。 对于第(iii)类的优化问题,常常使用的方法就是KKT条件。同样地,我们把所有的等式、不等式约束与f(x)写为一个式子,也叫拉格朗日函数,系数也称拉格朗日乘子,通过一些条件,可以求出最优值的必要条件,这个条件称为KKT条件。

约束优化算法拉格朗日乘子法

拉格朗日乘子法 约束优化问题的标准形式为: min (),..()0,1,2,...,()0,1,2,...,n i j f x x R s t g x i m h x j l ∈≤=== ,,:n i j f g h R R →其中 约束优化算法的基本思想就是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。 1. 罚函数法 罚函数法(内点法)的主思想就是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。 它只适用于不等式约束: min (),..0,1,2,...,n i f x x R s t g i m ∈≤= 它的可行域为: {|()0,1,2,...,}n i D x R g x i m =∈≤= 对上述约束问题,其其可行域的内点可行集0D ≠?的情况下,引入效用函数: min (,)()()B x r f x rB x =+%、 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑% 算法的具体步骤如下: 给定控制误差0ε>,惩罚因子的缩小系数01c <<。 步骤1:令1k =,选定初始点(0)0x D ∈,给定10r >(一般取10)。 步骤2:以()k x 为初始点,求解无约束 min (,)()()k B x r f x r B x =+% 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑%,得最优解()()k k x x r = 步骤3:若()()k k r B x ε<%,则()k x 为其近似最优解,停;否则,令,1k k r cr k k ==+,转步骤2、 2. 拉格朗日乘子法

完整word版试验四用MATLAB实现拉格朗日插值分段线性插值

实验四用MATLAB实现拉格朗日插值、分段线性插值 一、实验目的: 1)学会使用MATLAB软件; 2)会使用MATLAB软件进行拉格朗日插值算法和分段线性差值算法; 二、实验内容: 1用MATLAB实现y = 1./(x.^2+1);(-1<=x<=1)的拉格朗日插值、分段线性 2.选择以下函数,在n个节点上分别用分段线性和三次样条插值的方法,计算m个插值点的函数值,通过数值和图形的输出,将插值结果与精确值进行比较,适当增加n,再作比较,由此作初步分析: (1).y=sinx;( 0≤x≤2π) (2).y=(1-x^2)(-1≤x≤1) 三、实验方法与步骤: 问题一用拉格朗日插值法 1)定义函数:y = 1./(x.^2+1);将其保存在f.m 文件中,程序如下: function y = f1(x) y = 1./(x.^2+1); 2)定义拉格朗日插值函数:将其保存在lagrange.m 文件中,具体实现程序编程如下:function y = lagrange(x0,y0,x) m = length(x); /区间长度/ n = length(x0); for i = 1:n l(i) = 1; end for i = 1:m for j = 1:n for k = 1:n if j == k continue; end l(j) = ( x(i) -x0(k))/( x0(j) - x0(k) )*l(j); end end end y = 0; for i = 1:n y = y0(i) * l(i) + y; end 3)建立测试程序,保存在text.m文件中,实现画图:

相关主题
文本预览
相关文档 最新文档