当前位置:文档之家› 化工原理课程设计审批稿

化工原理课程设计审批稿

化工原理课程设计审批稿
化工原理课程设计审批稿

化工原理课程设计 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

一、设计任务书

1、设计题目:填料吸收塔的设计

2、设计任务:试设计一填料吸收塔,用于脱除合成氨尾气中的氨气,要求塔

顶排放气体中含氨低于200ppm,采用清水进行吸收

3、工艺参数与操作条件

(1)工艺参数

表1—1

(2)操作条件

①常压吸收:P

=

②混合气体进塔温度:30℃

③吸收水进塔温度:20℃。

4、设计项目:

(1)流程的确定及其塔型选择;

(2)吸收剂用量的确定;

(3)填料的类型及规格的选定;

(4)吸收塔的结构尺寸计算及其流体力学验算,包括:塔径、填料层高度及塔高的计算;喷淋密度的校核、压力降的计算等;

(5)吸收塔附属装置选型:喷淋器、支承板、液体再分布器等;

(6)附属设备选型:泵、风机

附:

1、NH

3~H

2

O系统填料塔吸收系数经验公式:

k G a=cG m W

L

n

k L a=bW

L

P

式中

k

a——气膜体积吸收系数,kmol/——液膜何种吸收系数,l/h

G

G——气相空塔质量流速,kg/

——液相空塔流速,kg/

W

L

表1—2,查手册(李功样《常用化工单元设备设计》华南理工大学出版社得)

2、(氨气—水)二成分气液平衡数据

表1—3

二、工艺流程示意图(带控制点)

三、流程方案的确定及其填料选择的论证

1、塔型的选择:

塔设备是能够实现蒸馏的吸收两种分离操作的气液传质设备,广泛地应用于化工、石油化工、石油等工业中,其结构形式基本上可以分为板式塔和填料塔两大类。在工业生产中,一般当处理量较大时采用板式塔,而当处理量小时多采用填料塔。填料塔不仅结构简单,而且阻力小,便于用耐腐蚀材料制造,对于直径较小的塔,处理有腐蚀性的物料或要求压降较小的真空蒸馏系统,填料塔都具有明显的优越性。

根据本设计任务,是用水吸收法除去合成氨生产尾气的氨气,氨气溶于水生成了具有腐蚀性的氨水;本设计中选取直径为600mm,该值较小,且Φ800mm以下的填料塔对比板式塔,其造价便宜。基于上述优点,因此本设计中选取填料塔。

2、填料塔的结构

填料塔的主要构件为:填料、液体分布器、填料支承板、液体再分器、气体和液体进出口管等。

3、操作方式的选择

对于单塔,气体和液体接触的吸收流程有逆流和并流两种方式。在逆流操作下,两相传质平均推动力最大,可以减少设备尺寸,提高吸收率和吸收剂使用效率,因此逆流优于并流。因此,本设计采用逆流。

4、吸收剂的选择

(1)水对由 NH

3、H

2

、N

2

、CH

4

+Ar组成的混合气中的NH

3

的溶解度很大,

而对除NH

3

外的其它组成基本上不吸收或吸收甚微;

(2)在操作温度下水的蒸气压小、粘度较低、不易发泡,可以减速少溶剂的损失,操作高效稳定。

(3)水具有良好的化学稳定性和热稳定性,不易燃、不易爆,安全可靠;(4)水无腐蚀性、无毒性、无环境污染;

(5)水价廉易得,十分经济。

因此选用水作为吸收剂。

5、填料的选择

鲍尔环的构造是在拉西环的壁上开两排长方形窗口,被切开的环壁形成叶片,一边与壁相连,另一端向环内弯曲,并在中心处与其他叶片相搭。鲍尔环的构造提高了环内空间和环内表面的有效利用率,使气体阻力降低,液体分布有所改善,提高了传质效果;其结构简单,制造容易,价格低廉,因此本设计采用塑料鲍尔环。

四、工艺及填料塔计算

1、物料衡算

(1)近似取塔平均操作压强为,进塔混合气中各组分的量为

混合气量:2020×1

22。4

=90.18kmol/h

混合气中氨气量:90.18×8%=7.21kmol/h=7.21×17=122.64kg/h

操作条件下总气量:2020×273+30

273

=2241.98m3/h

氨气的体积流量:2241.98 m3/h×8%=179.35 m3/h

其余数据同理可得出,结果见表4—1:

表4—1

(2)混合气进出塔的摩尔组成为:y

1= y

2

=,y

1

为混合气进塔的摩尔组成;y

2

为混合气出塔的摩尔组成。

(3) 混合气进出塔的摩尔比组成

Y 1=y 1/(1-y 1)=%,即进塔时的摩尔比;

Y 2=y 2/(1-y 2)=%,即出塔时的摩尔比。 (4) 出塔混合气量

可求得氨气回收率η=G(Y 1-Y 2)/(GY 1)=1-Y 2/Y 2=% 则可得NH 3出塔时的体积流量:×%)=0.4125m 3/h 混合气中氨气量:×%)=h=×17=0.2821kg/h

而其余气体即视为惰性气体,溶解度很小,可忽略不计,即和进塔时的气量一样,结果见表4—2:

2、 热量衡算与气液平衡曲线

表4—3 各液相浓度下的吸收液温度及相平衡数据

注:

(1) NH 3平衡分压P/(kPa )由p NH3(mmHg)×可得; (2) y= p NH3/p 0,Y *=y/(1-y)可得,P 0=为标准大气压; (3) 吸收剂为清水,X 2=0。

查相关资料得知,氨气溶于水的亨利系数E 可用右式计算:E=P/x 由上式计算相应的E 值,且m=E/P ,分别将相应的E 值及相平衡常数m 的计算值列于表4-3的第6、7列。由Y *=y/(1-y)=P/(P 0-P)关系求取对应m 及X 的Y *,结果列于表4-3第9列。

① 根据X- Y *数据,用Excel 作表拟合绘制平衡曲线OE 如图2-1,拟合曲

线方程为:

Y=4×106X 4-69575X 3+27895X 2+由图2-1可查得,当Y 1=时,X 1*=。 最小吸收剂用量

L min =G(Y 1-Y 2)/( X 1*-X 2)=82.97×0.08696?0.00020.042944?0

=167.62kmol/h

取安全系数,则有

安全用水量L=×L min =×=301.72 kmol/h =5430.96kg/h

② 根据X-t 数据,用Excel 作图得图2-2,X-t 图如下:

图2-2 X-t 图

③根据x-P数据,用Excel作图得图2-3,x-P图如下:

图2-3 x-P

④根据X-H数据,用Excel作图得图2-4,X-H图如下:

图2-4 X-H

3、塔吸收液浓度X

1

物料衡算式:G(Y

1-Y

2

)=L(X

1

-X

2

所以 X

1=G(Y

1

-Y

2

)/L+X

2

=82。97×(0。08696?0。0002)

301。72

=0.02386

4、操作线方程

逆流吸收塔的操作线方程式为:

Y=L

G X+(Y2?L

G

X

2

将已知参数代入得

Y=3.6365X+0.0002

将以上操作线绘于图2-1中,为BT直线。

5、塔径的计算

因塔底气液负荷大,故按塔底条件计算:塔底混合气体温度30℃,X

1

=,由图2-3 X-t图查得塔底吸收30.70℃,设计压力取为塔的操作压力。

塔径的计算公式为:D=√4V S

πu

,u=(~)u f

图5-1通用关联图,出自手册(李功样《常用化工单元设备设计》华南理工大学出版社)

图5-1通用关联图

(1)采用埃克特通用关联图计算泛点气速u f

1)有关数据计算

塔底混合气体质量流量

W G=909.01kg/h

吸收液的质量流量

W L=+ =5553.32kg/h

进塔混合气体密度

混合气体的分子量m=0.08×17+0.6×2+0.2×28+0.12×16=10.08

ρG=10.08

22.4×273

273+30

=0.4054kg/m3

由手册(李功样《常用化工单元设备设计》华南理工大学出版社)可查得吸收液(水)的密度为995.7kg/m3;吸收液粘度为μL=。

经比较,选D=38mm的塑料鲍尔环(米)。查表可得,其填料因子

фF=184m-1,比表面积a t=155m2/m3。

2)关联图的横坐标值

W L W G (

ρG

ρL

)

1

2=

5553.32

909.01

×(

0.4054

995.7

)

1

2=0.1233

3)由关联图查得纵坐标值为

u F2фFΦρG

gρL μL=

u F2×184×1×0.4054

9.81×995.7

×0.78900.2=0.007283×u F2=0.133

故泛点气速u F=4.273m/s

(2)操作气速

u==

(3)塔径

D=√4V S

πu =√4W G

3600πuρG

=√4×909.01

3600×3.14×2.5638×0.4054

=0.556m=566mm

则取塔径为0.6m即为D=600mm,那么

D/d=600/50=12>10,满足鲍尔环的要求。(4)核算气速

V S=909.01

0.4054

=22422.55m3/h

u=

22422.55

3600×0.785×0.62

=2.2040m/s u

u F

=

2.2040

4.273

≈0.52(符合要求)

(5)核算喷淋密度

d<75mm的环形填料最小润湿率为0.08m3/,最小喷淋密度:

U min=0.08×155=12.4m3/(m2.h)

由于U=5553.32

995.7×0.785×0.6

=19.74m3/(m2.h)> 12.4m3/(m2.h)

故满足要求。

6、填料层高度的计算

由图1可见,平衡曲线的弯曲程度不大,本设计采用传质单元数法分两段计算吸收塔的填料层高度:

Z=H OG×N OG=V

Ya

dY

?

Y1

Y2

(1)传质单元高度H OG的计算

由表1-2查得相关参数数据,c=、m=、n=、b=、P=,由经验公式可得k Y a=P.k G a=P.cG m W L n

=1×0.0367×(909.01×4

3.14×0.62

)0.72×(

5430.96×4

3.14×0.62

)0.38

=522.155kmol/m2h k X a=c?.k L a=c?.b.W L P

=301.72+7.21?0.0166

5553.325/995.7

×0.027×(

5430.96×4

3.14×0.62

)0.78

=55.39×59.25=3281.59kmol/m2h ∴平衡线的斜率为?k X a

k Y a

=?6.285

惰性量V= kmol/h,D=0.6m

Ω=π

×0.62=0.2827m2

∴H OG=V

k YaΩ=82.97

522.155×0.2827

=0.5620m

(2)传质单元数N OG的计算

在图2-1把Y轴上0~0.08696分成50等分,编号如表6-1。表6-1

等分后按每个点作平行于X 轴的直线与操作线相交,由该交点作平行于Y 轴的直线与平衡曲线相交,再由该交点作X 轴的平等线交Y 轴于Y I 点,得到的数据填到表6-1的第3列。

根据Y-1/(Y-Yi)数据,用Excel 作图得图6-1,Y-1/(Y-Yi)图如下:

图6-1

其拟合曲线方程为:f (Y )=1

(Y?Y i

)=2.659Y ?0.86

积分得N OG =

∫dY Y?Y Y 1Y 2

=2.659Y

?0.86

dY =

2.659(Y 10。14?Y 2

0。14

)0。14

=7.7255

积分的面积如图6-2,

图6-2

则可得Z=H OG×N OG=0.5620×7.7255=4.3417m Z有效=1.25×4.3417=5.4272m

7、填料层压降的计算

W L W G (

ρG

ρL

)

1

2=

5553.32

909.01

×(

0.4054

995.7

)

1

2=0.1233

当操作气速为u=2.204m/s,Dg38mm塑料鲍尔环填料的压降填料因子P=

114m?1,Φ=ρ

ρL

=1时,查图5-1得纵坐标值为

u2фPΦρV

gρL μ

L

0。2=2.2042×114×1×0.4054

9.81

×0.78900.2=0.0143

横坐标为,纵坐标为,在关联图5-1查得每米填料层压降:

P

2

≈11×9.81=107.91Pa/(m填料)∴全塔填料层压降:

P=5.4273×107.91=585.66Pa

五、吸收塔附属装置及设备的设计与选型

1、喷淋器

多孔直管式喷淋器多用于800mm以下的塔,所以本设计选用多孔直管式喷淋装置。

2、支承板

选用栅板式支承板,查手册(李功样《常用化工单元设备设计》,华南理工出版社)P115表3-11得

3、液体再分布器

选用截锥式再分布器,截锥上方加装支承板,截锥下方个一段距离再装填料,截锥与塔壁取45°角,截锥下口直径为×600

4、法兰

查手册(李功样《常用化工单元设备设计》,华南理工出版社)P245附表2(A)甲型平焊法兰尺寸如下

查手册(李功样《常用化工单元设备设计》,华南理工出版社)P256附表5板式平焊钢制管法兰查得

5、手孔(JB589-79-1)

由《常用化工单元设备设计》手册P274附表19平盖平焊法兰手孔尺寸表查得

6、封头

塔径D=600mm,查《常用化工单元设备设计》手册P239附表(A)得,封头尺寸h1=150mm h0=40mm F= V= δP=10mm G=38kg

7、支座

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计样板

课程设计 课程名称化工原理课程设计 题目名称热水泠却器的设计 专业班级XX级食品科学与工程(X)学生姓名XXXX 学号XXXXXXXX 指导教师 二O一年月日

锯齿形板式热水冷却器的设计任务书一、设计题目: 锯齿形板式热水冷却器的设计 二、设计参数: (1)处理能力:7.3×104t/Y热水 (2)设备型式:锯齿形板式热水冷却器 (3)操作条件: 1、热水:入口温度80℃,出口温度60℃。 2、冷却介质:循环水,入口温度30℃,出口温度40℃。 3、允许压降:不大于105Pa。 4、每年按330天,每天按24小时连续运行。 5、建厂地址:蚌埠地区。

目录 1 概述 (1) 1. 1 换热器简介 (1) 1. 2 设计方案简介 (2) 1. 3 确定设计方案 (2) 1. 3. 1 设计流程图 (3) 1. 3. 2 工艺流程简图 (4) 1. 3. 3 换热器选型 (4) 1. 4 符号说明 (4) 2 锯齿形板式热水冷却器的工艺计算 (5) 2.1 确定物性数据 (5) 2.1.1 计算定性温度 (5) 2.1.2 计算热负荷 (6) 2. 1. 3 计算平均温差 (6) 2. 1. 4 初估换热面积及初选板型 (6) 2. 1. 5 核算总传热系数K (7) 2. 1. 6 计算传热面积S (9) 2. 1. 7 压降计算 (10) 2.2 锯齿形板式热水冷却器主要技术参数和计算结果 (10) 3 课程设计评述 (11) 参考文献 (12) 附录 (13)

1 概述 1.1 换热器简介 换热器,是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器种类很多,若按换热器传热面积形状和结构可分为管式换热器和特殊形式换热器。由于生产规模、物料的性质、传热的要求等各一相同,故换热器的类型很多,特点不一、可根据生产工艺要求进行选择。 1.2 设计方案简介 根据设计要求:用入口温度30 ℃,出口温度40℃的循环水冷却热水(热水的入口温度80℃,出口温度60℃),通过传热量、阻力损失传热系数、传热面积的计算,并结合经验值确定换热器的工艺尺寸、设备型号、规模选定,然后通过计算来确定各工艺尺寸是否符合要求,符合要求后完成工艺流程图和设备主体条件图,进而完成设计体系。 设计要求:选择一台适宜的锯齿形换热器并进行核算。下图中左面的为板式换热器外形,右边的是板式换热器工作原理图。

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

化工原理课程设计最终版

青岛科技大学 化工课程设计 设计题目:乙醇-正丙醇溶液连续板式精馏塔的设计指导教师: 学生姓名: 化工学院—化学工程与工艺专业135班 日期:

目录一设计任务书 二塔板的工艺设计 (一)设计方案的确定 (二)精馏塔设计模拟 (三)塔板工艺尺寸计算 1)塔径 2)溢流装置 3)塔板分布、浮阀数目与排列 (四)塔板的流体力学计算 1)气相通过浮阀塔板的压强降2)淹塔 3)雾沫夹带 (五)塔板负荷性能图 1)雾沫夹带线 2)液泛线 3)液相负荷上限 4)漏液线 5)液相负荷上限 (六)塔工艺数据汇总表格 三塔的附属设备的设计 (一)换热器的选择 1)预热器 2)再沸器的换热器 3)冷凝器的换热器 (二)泵的选择 四塔的内部工艺结构 (一)塔顶 (二)进口 ①塔顶回流进口 ②中段回流进口 (三)人孔 (四)塔底 ①塔底空间 ②塔底出口 五带控制点工艺流程图 六主体设备图 七附件 (一)带控制点工艺流程图 (二)主体设备图 八符号表 九讨论 十主要参考资料

一设计任务书 【设计任务】设计一板式精馏塔,用以完成乙醇-正丙醇溶液的分离任务 【设计依据】如表一 表一 【设计内容】 1)塔板的选择; 2)流程的选择与叙述; 3)精馏塔塔高、塔径与塔构件设计; 4)预热器、再沸器热负荷及加热蒸汽消耗量,冷凝器热负荷及冷却水用量,泵的选择; 5)带控制点工艺流程图及主体设备图。 二塔板的工艺设计 (一)设计方案的确定 本设计的任务是分离乙醇—正丙醇混合液,对于二元混合物的分离,应采用连续精馏流程,运用Aspen软件做出乙醇—正丙醇的T-x-y 相图,如图一:

图一:乙醇—正丙醇的T-x-y相图 由图一可得乙醇—正丙醇的质量分数比为0.5:0.5时,其泡点温度是84.40o C (二)精馏塔设计模拟 1.初步模拟过程 运用Aspen软件精馏塔Columns模块中DSTWU模型进行初步模拟,并不断进行调试,模拟过程及结果如下:

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

化工原理课程设计样本

成绩 化工原理课程设计 设计说明书 设计题目:万吨/年苯—甲苯连续精馏装置工艺设计 。 姓名陈端 班级化工07-2班 学号 006 】 完成日期 2009-10-30 指导教师梁伯行

化工原理课程设计任务书 (化工07-1,2,3,4适用) 一、设计说明书题目: — (万吨/年) 苯 - 甲苯连续精馏装置工艺设计说明书 二、设计任务及条件 (1).处理量: (3000+本班学号×300) Kg/h (每年生产时间按7200小时计); (2). 进料热状况参数:( 2班)为, (3). 进料组成: ( 2班) 含苯为25%(质量百分数), (4).塔底产品含苯不大于2%(质量百分数); (5). 塔顶产品中含苯为99%(质量百分数)。 装置加热介质为过热水蒸汽(温度及压力由常识自行指定), 装置冷却介质为25℃的清水或35℃的循环清水。 三、【 四、设计说明书目录(主要内容) 要求 1)前言(说明设计题目设计进程及自认达到的目的), 2)装置工艺流程(附图) 及工艺流程说明 3)装置物料衡算 4)精馏塔工艺操作参数确定 5)适宜回流比下理论塔板数及实际塔板数计算 6)精馏塔主要结构尺寸的确定 7)精馏塔最大负荷截面处T-1型浮阀塔板结构尺寸的确定 8)、 9)装置热衡算初算确定全凝器、再沸器型号及其他换热器型号 10)装置配管及机泵选型 11)适宜回流比经济评价验算(不少于3个回流比比较) 12)精馏塔主要工艺和主要结构尺寸参数设计结果汇总及评价 13)附图 : 装置工艺流程图、装置布置图、精馏塔结构简图(手绘图)。 五、经济指标及参考书目 1)6000元/(平方米塔壁)(塔径~乘, 塔径~乘, 塔径以上乘, 2)4500元/(平方米塔板), 3)# 4)4000元/(平方米传热面积), 5)16元/(吨新鲜水), 8元/(吨循环水), 6)250元/(吨加热水蒸汽), 设备使用年限10年, 7)装置主要固定资产年折旧率为10% , 银行借贷平均年利息%。 8)夏清陈常贵主编《化工原理》(上. 下) 册修订本【M】天津; 天津大学 出版社2005 9)贾绍文《化工原理课程设计》【M】天津; 天津大学出版社2002

最新《化工原理课程设计-年产量112000吨NaOH水溶液蒸发装置的设计》

湖南师范大学 《化工原理》课程设计说明书 设计题目年产量112000吨NaOH水溶液蒸发装置的设计学生姓名周鹏 指导老师罗大志 学院树达学院 学号 200721180135 专业班级 07制药工程1班 完成时间2009年10月

《化工原理》课程设计成绩评定栏 评定基元评审要素评审内涵 满 分指导教师 实评分 评阅教师 实评分 设计说明书,40% 格式规范 设计说明书是否符 合规定的格式要求 5 内容完整 设计说明书是否包 含所有规定的内容 5 设计方案 方案是否合理及符 合选定题目的要求 10 工艺计算 过程 工艺计算过程是否 正确、完整和规范 20 设计图纸, 40% 图纸规范图纸是否符合规范 5 标注清晰标注是否清晰明了 5 与设计吻合 图纸是否与设计计 算的结果完全一致 10 图纸质量 设计图纸的整体质 量的全面评价 20 平时成绩, 10% 上课出勤上课出勤考核 5 制图出勤制图出勤考核 5 答辩成绩, 10% 内容表述答辩表述是否清楚 5 回答问题回答问题是否正确 5 100 综合成绩成绩等级

指导教师评阅教师答辩小组负责人 (签名) (签名) (签名) 年月日年月日年月日 说明: 评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60) 目录 1前言 (1) 2设计任务 (2) 2.1设计任务 (2) 2.2操作条件 (2) 3设计条件及设计方案说明 (3) 4物性数据及相关计算 (3) 4.1估计各效蒸发量和完成液浓度 (3) 4.2估计各效蒸发溶液的沸点和有效总温度差 (4) 4.3加热蒸汽消耗量和各效蒸发水量的初步计算 (7) 4.4蒸发器传热面积的估算 (8) 4.5有效温度的再分配 (8) 4.6重复上述计算步骤 (9) 4.7计算结果列表 (12) 5主体设备计算和说明 (12) 5.1加热管的选择和管数的初步估计 (13) 5.2循环管的选择 (13) 5.3加热管的直径以及加热管数目的确定 (13)

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理课程设计范例

专业:化学工程与工艺 班级:黔化升061 姓名:唐尚奎 指导教师:王瑾老师 设计时间: 2007年1月 前言 在化学工业和石油工业中广泛应用的诸如吸收、解吸、精馏、萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过精密接触达到相际传质和传热目的的气液传质设备之一。 塔设备一般分为级间接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔,在各种塔型中,当前应用最广泛的是筛板塔与浮阀塔。 筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本次设计就是针对水乙醇体系,而进行的常压二元筛板精馏塔的设计及其辅助设备的选型。由于此次设计时间紧张,本人水平有限,难免有遗漏谬误之处,恳切希望各位老师指出,以便订正。 目录 一、设计任务 二、方案选定 三、总体设计计算-------------------------------05 3.1气液平衡数据------------------------------ 05 3.2物料衡算------------------------------------- 05 3.3操作线及塔板计算------------------------- 06 3.4全塔Et%和Np的计算----------------------06 四、混合参数计算--------------------------------07 4.1混合参数计算--------------------------------07 4.2塔径计算--------------------------------------08 4.3塔板详细计算-------------------------------10 4.4校核-------------------------------------------12 4.5负荷性能图----------------------------------14 五、筛板塔数据汇总-----------------------------16 5.1全塔数据-------------------------------------16 5.2精馏段和提馏段的数据-------------------17 六、讨论与优化-----------------------------------18 6.1讨论-------------------------------------------18 6.2优化--------------------------------------------18

化工原理课程设计

化工原理课程设计 设计题目:列管式换热器的设计 指导教师 专业班级 学生姓名 学 号 2009 年 1 月 5 日 目录 1.设计任务书及操作条件 2.前言 2.1 设计方案简介 2.2工艺流程草图及说明 3 工艺设计及计算 3.1、铺助设备计算及选型 3.2、设计结果一览表 4.设计的评述 5、主要符号说明

6、参考文献 7.主体设备条件图及生产工艺流程图(附后) 1.设计任务书及操作条件 (1)处理能力:1×104吨/年正己烷。 (2)设备型式:列管式换热器 (3)操作条件 1 正己烷(含水蒸汽20%):入口温度1000C, 出口温度350C。 2 冷却介质:循环水,入口温度250C,出口温 度350C。

3 允许压降:不大于105Pa。 4 每年按330天计。 5 建厂地址广西 (三)设计要求 1.选择适宜的列管式换热器并进行核算。 2.要进行工艺计算 3.要进行主体设备的设计(主要设备尺寸、衡算结果等) 4.编写任务设计书 5.进行设备结构图的绘制(用420*594图纸绘制装置图一张) 2.前言

2.1 设计方案简介 固定管板式换热器 换热管束固定在两块管板上,管板又分别焊在外壳的两端,管子、管板和壳体都是刚性连接。当管壁与壳壁的壁温相差大于50℃时,为减小或消除温差产生的热效应力,必须设有温差补偿装置,如膨胀节。 固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。因壳侧不易清洗,故不适宜较脏或有腐蚀性的物流的换热,适用于壳壁与管壁温差小于70℃、壳程压力不高、壳程结垢不严重、并可用化学方法清洗的场合。 本设计任务为正己烷冷却器的设计,两流体在传热过程中无相的变化,且冷、热流体间的温差不是太大或温差较大但壳程压力不高的场合。当换热器传热面积较大,所需管子数目较多时,为提高管流速,常将换热管平均分为若干组,使流体在管内依次往返多次,即为多管程,从而增大了管内对流传热系数。固定管板式换热器的优点是结构简单、紧凑。在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。 2.2工艺流程草图及说明 工艺流程草图附后 流程图说明: 正己烷和循环冷却水经泵以一定的流速(由泵来调控)输入换热器中经换热器进行顺流换热。正己烷由100℃降到35℃,循环冷水由25℃升到35℃,且35℃的冷水回到水槽后,由于冷水的量多,回槽的水少,且流经管路时也有被冷凝,因此不会引起槽中水温太大的变化从而使水温保持25℃左右。 3 工艺设计及计算 (1) 确定设计方案 1. 选择换热器的类型 两流体温度变化情况:热流体进口温度100℃,出口温度35℃;冷

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

化工原理课程设计计算示例

化工原理壳程设计计算示例 一浮阀塔工艺设计计算示例 拟设计一生产酒精的板式精馏塔。来自原料工段的乙醇-水溶液的处理量为48000吨/年,乙醇含量为35%(质量分率)原料温度为45℃。 设计要求:塔顶产品的乙醇含量不小于90%(质量分率),塔底料液的乙醇含量不大于0.5%。 一、塔形选择及操作条件的确定 1.塔形:选用浮阀塔 2.操作条件: 操作压力:常压;其中塔顶:1.013×105Pa 塔底:[1.013×105+N(265~530)Pa] 进料状态:饱和液体进料 加热方式:用直接水蒸气加热 热能利用:拟采用釜残液加热原料液 二、工艺流程

三、有关工艺计算 首先,根据题目要求,将各组成要求由质量分率转换为摩尔分率,其后由 2 3971.1/H O kg m ρ=,3735/kg m ρ=乙醇 参考资料(一),查出相应泡点温度及计算平均分子量。 同理求得0.779D x = 0.0002 W x = (1)0.17646(10.176)1822.3/f f f M x M x M kg kmol =+-=?+-?=乙醇水 同理求得:39.81/D M kg kmol =,18.1/D M kg kmol = 1. 最小回流比及操作回流比的确定 由于是泡点进料,x q =x f =0.174过点e(0.174,0.174)作x=0.174直线与平衡线交与点d ,由点d 可以读得y q =0.516,因此, min(1)0.7790.516 0.7690.5160.174 D q q q x y R y x --= = =-- 又过点a (0.779,0.779)作平衡线的切线,可得切点g 由切点g 可读得' 0.55q x =,' 0.678q y =,

化工原理课程设计

化工原理课程设计设计题目:空气中丙酮的回收工艺操作 学院:化学化工学院 班级:化工 0902 姓名(学号):侯祥祥 3091303039 朱晓燕 3091303036 熊甜甜 3091303035 周利芬 3091303033 指导教师:吴才玉 2012年01月

化工原理课程设计 目录 一、前言 (3) 二、设计内容 (5) (一)设计对象 (5) (二)工艺路线设计 (5) 1.路线选择 (5) 2.流程示意图 (8) 3.流程说明 (9) (三)工艺的设计计算 (10) 1.物料衡算 (10) 2.热量衡算 (12) (四)设备的设计计算 (21) 1.主要参数 (21) 2.直径 (21) 3.附加条件 (21) (五)设备示意图 (23) 三、总结体会 (24) 四、参考文献 (29) 五、附录 (31)

江苏大学化学化工学院

化工原理课程设计 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设 计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使 用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画 出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还 要考虑生产上的安全性、经济合理性。 在化工生产中,常常需要进行混合物的分离以达到提纯或回收有用组分的 目的,吸收和精馏两个单元操作为此提供了重要措施。气体吸收过程是化工生 产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在 特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。精馏是常用 的液体混合物的分离操作,它利用液体混合物中各组分挥发度的不同并借助于 多次部分汽化和部分冷凝,从而达到轻重组分分离的目的。 塔设备是一种重要的单元操作设备,其作用实现气—液相或液—液相之间 的充分接触,从而达到相际间进行传质及传热的过程。它广泛用于吸收、精馏、萃取等单元操作,随着石油、化工的迅速发展,塔设备的合理造型设计将越来 越受到关注和重视。塔设备一般分为连续接触式和阶跃接触式两大类。前者的 代表是填料塔,后者的代表则为板式塔。在本次课程设计中,吸收操作采用的 是填料塔,而精馏操作采用的则为板式塔。 填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀 材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。过去,填料塔 多推荐用于0.6~0.7m以下的塔径。近年来,随着高效新型填料和其他高性能 塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究, 使填料塔技术得到了迅速发展。 筛板塔是1932年提出的,当时主要用于酿造,其优点是结构简单,制造 维修方便,造价低,气体压降小,板上液面落差较小,相同条件下生产能力高 于浮阀塔,塔板效率接近浮阀塔。其缺点是稳定操作范围窄,小孔径筛板易堵塞,不适宜处理粘性大的、脏的和带固体粒子的料液。但设计良好的筛板塔仍

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计模板123

目录 第一章前言 (1) 1.1 精馏及精馏流 (1) 1.2 精馏的分类 (2) 1.3精馏操作的特点 (2) 1.3.1沸点升高 (2) 1.3.2物料的工艺特性 (2) 1.3.3节约能源 (2) 1.4 相关符号说明 (4) 1.5相关物性参数 (6) 1.5.1苯和甲苯的物理参数............................... .6 第二章设计任务书. (7) 第三章设计内容 (8) 3.1设计方案的确定及工艺流程的说明 (8) 3.2全塔的物料衡算 (8) 3.2.1原料液及塔顶底产品含苯的摩尔分率 (8) 3.2.2原料液及塔顶底产品的平均摩尔质量 (8) 3.2.3料液及塔顶底产品的摩尔流率 (9) 3.3塔板数的确定 (9) 3.3.1平衡曲线的绘制 (9) 3.4塔的精馏段操作工艺条件及计算 (12) 3.4.1平均压强p m (12) 12 3.4.2平均温度t m..................................... M (13) 3.4.3平均分子量 m 3.4.4 液体的平均粘度和液相平均表面张力 (14) 3.5 精馏塔的塔体工艺尺寸计算 (16)

3.5.1塔径的计算 (16) 3.5.2精馏塔有效高度的计算 (18) 3.6塔板工艺结构尺寸的设计与计算 (18) 3.6.1溢流装置计算 (18) 3.6.2塔板布置 (19) 3.6.3气象通过塔板压降的计算 (21) 3.7塔板负荷性能图 ................................ ..23 3.7.1漏液线 (23) 3.7.2 雾沫夹带线 (23) 3.7.3 液相负荷下限线 (24) 3.7.4 液相负荷上限线 (24) 3.7.5液泛线 (25) 第四章附属设备的选型及计算 (27) 4.1接管——进料管 (27) 4.2法兰 (27) 4.3筒体与封头 (27) 4.4 人孔 (28) 4.5热量衡算 (28) 参考文献 (31) 课程设计心得 (32)

化工原理课程设计任务书

化工原理课程设计任务书 一、设计题目:年产万吨苯冷却器的工艺设计 二、设计条件 1.生产能力(2、、3、、4、、5、、6)4 吨每年粗苯 10 2.设备型式:列管换热器 3.操作压力:常压 4.苯的进出口温度:进口 80℃,出口35℃ 5.换热器热损失为热流体热负荷的% 6.. 7.每年按330天计,每天24小时连续生产 8.建厂地址:兰州地区 9.要求管程和壳程的阻力都不大于104Pa, 10.非标准系列列管式换热器的设计 三、设计步骤及要求 1.确定设计方案 (1)选择列管换热器的类型 (2)选择冷却剂的类型和进出口温度 ! (3)查阅介质的物性数据 (4)选择冷热流体流动的空间及流速 (5)选择列管换热器换热管的规格 (6)换热管排列方式 (7)换热管和管板的连接方式 (8)选择列管换热器折流挡板的形式 (9)材质的选择 2.初步估算换热器的传热面积A 3.{ 4.结构尺寸的计算 (1)确定管程数和换热管根数及管长 (2)平均温差的校核 (3)确定壳程数 (4)确定折流挡板,隔板规格和数量 (5)确定壳体和各管口的内径并圆整 5. 校核 (1)核算换热器的传热面积,要求设计裕度不小于10%,不大于20%. · (2)核算管程和壳程的流体阻力损失 (3)管长和管径之比为6~10 如果不符合上述要求重新进行以上计算. 6. 附属结构如封头、管箱、分程隔板、缓冲板、拉杆和定距管、人孔或手孔、法兰、 补强圈等的选型 7. 将计算结果列表(见下表) 四、设计成果 1. 设计说明书(A4纸)

(1)内容包括封面、任务书、目录、正文、参考文献、附录 ^ (2)格式必须严格按照兰州交通大学毕业设计的格式打印。 2. 换热器工艺条件图(2号图纸)(手绘) 五、时间安排 (1)第十九周~第二十二周 (2)第二十二周的星期五(7月20日)下午两点本人亲自到指定地点交设计成果,最迟不得晚于星期五的十八点钟. 六、设计考核 (1)设计是否独立完成; (2)设计说明书的编写是否规范 " (3)工艺计算与图纸正确与否以及是否符合规范 (4)答辩 七、参考资料 1、《化工原理课程设计》贾绍义柴诚敬天津科学技术出版社 2、《换热器设计手册》化学工业出版社 3、化工原理夏清天津科学技术出版社

化工原理课程设计终稿

化工原理课程设计终稿 成绩华北科技学院环境工程系《化工原理》课程设计报告设计题目分离乙醇-正丙醇二元物系浮阀式精馏塔的设计学生姓名张帆学号200801034215指导老师孙春峰专业班级化工B082班教师评语设计起止日期:2011年6月14日至2011年6月26日化工原理课程设计化工原理课程设计任务书 1.设计题目:分离乙醇—正丙醇二元物系浮阀式精馏塔的设计 2.原始数据及条件:进料:乙醇含量45%,其余为正丙醇分离要求:塔顶乙醇含量99%;塔底乙醇含量% 生产能力:年处理乙醇-正丙醇混合液25000吨,年开工7200小时操作条件:间接蒸汽加热;塔顶压强(绝压);泡点进料;R=5 3.

设计任务:完成该精馏塔的各工艺设计,包括设备设计及辅助设备选型。画出带控制点的工艺流程图、塔板版面布置图、精馏塔设计条件图。写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。- 2 - 化工原理课程设计目录第一章绪论 4 第二章塔板的工艺设计 5 精馏塔全塔物料衡算5 有关物性数据的计算 5 理论塔板数的计算12 塔径的初步计算14 溢流装置15 塔板分布、浮阀数目与排列1 6 第三章塔板的流体力学计算18 、气相通过浮阀塔板的压降18 、淹塔19 、雾沫夹带20 、塔板负荷性能图20 物沫夹带线20 液泛线21 相负荷上限21 漏液线

22 相负荷下限22 浮阀塔工艺设计计算结果23第四章塔附件的设计25 接管............................................................... ............................................... 25 筒体与封头............................................................... ................................... 27 除沫器............................................................... ........................................... 27 裙座............................................................... ............................................... 27 人孔............................................................... ............................................... 27 第五章塔总体高度的设计............................................................... ........................ 28 塔的顶部空间高度............................................................... ....................... 28 塔的顶部空间高度............................................................... ....................... 28 塔总体高

相关主题
文本预览
相关文档 最新文档