当前位置:文档之家› 基于石墨烯光机械系统的光学三极管 和相干光学存贮

基于石墨烯光机械系统的光学三极管 和相干光学存贮

基于石墨烯光机械系统的光学三极管 和相干光学存贮
基于石墨烯光机械系统的光学三极管 和相干光学存贮

石墨烯生产成套设备

石墨烯生产成套设备石墨烯生产设备的概况 目前生产石墨烯的制备方法主要是机械法、氧化法、基片生长法和液相法等,这些生产技术及方法多数存在着产量低、能耗大、品质差等缺点,从而也止约了国内石墨烯的生产及发展。南通富莱克石墨烯生产课题组经过不懈的努力发明了一种以高速分散、破碎研磨、旋涡空化、剪切超声为一体的直接在液相中进行连续分散和不间断剥离石墨片的石墨烯生产线,实现了通过机械剪切液力空化等技术手段产出高品质的石墨烯,深受广大石墨烯生产商的亲睐。 石墨烯生产设备是一种釆用机械液力剪切、空化剥离石墨片而产出的单层、多层等高品质石墨烯的高科技先进设备。这种先进技术的发明及应用,在一定程度上加快了石墨烯生产步伐,也促进了石墨烯生产企业进行大规模、高效率、低成本、无污染生产的信心。况且这种机械液力剪切、空化旋涡剥离石墨片的生产工艺具有操作简单、安全可靠、无氧化、无需高温、优质高品的特点非常适合优质石墨烯的大规模生产。

石墨烯生产设备主要结构 石墨烯生产设备主要结构:是由高剪切分散搅拌配料罐、精细分散研磨机、液力旋涡空化器、高剪切旋流超声器、多管道冷凝器、超声储料罐、集成控制系统、压力表温控仪等组成。 石墨烯生产设备工艺流程 石墨烯生产工艺流程:首先在高剪切分散搅拌配料罐配上石墨粉、分散剂或表面改性剂和水等进行分散搅拌,先关循环阀然后打开储料罐与分散研磨泵连接阀,使石墨溶液通过精细分散研磨机、液力剪切旋涡空化器再通过压力进入高剪切旋流超声储料器等工艺过程。在配料罐无料时自动关闭下面连接阀并开通循环阀让石墨溶液自循环不间断进行剥离片使石墨烯单层多层迖到理想效果,在集成控制系统设计压力控制、时间控制、温度控制等也可釆用电脑控制或触摸频控制或全自动控制方式。

氧化石墨烯薄膜的光电化学性质

2011年第69卷化学学报V ol. 69, 2011第21期, 2539~2542 ACTA CHIMICA SINICA No. 21, 2539~2542 * E-mail: kzwang@https://www.doczj.com/doc/5a18342013.html, Received April 2, 2011; revised May 25, 2011; accepted June 3, 2011. 国家自然科学基金(Nos. 90922004, 20971016)、中央高校基本科研业务费专项资金、北京市大学生科学研究与创业行动计划和北京师范大学分析测试

2540化学学报V ol. 69, 2011 器有限责任公司); 冷场发射扫描电镜(S-4800 日立高新技术株式会社); FZ-A型辐照计(北京师范大学光电仪器厂); KQ-50B型超声波清洗器(昆山市超声仪器有限公司); 采用三电极系统, 覆盖有自组装膜的氧化铟-氧化硒(ITO)玻璃为工作电极, 铂片为对电极, 饱和甘汞电极为参比电极, 0.1 mol?L-1的Na2SO4溶液为支持电解质; 配有红外和紫外截止滤光片的500 W高压氙灯光源系统(北京畅拓科技有限公司). 试剂均为分析纯. 1.2 GO及其静电自组装薄膜的制备 在傅玲等[9]将Hummers法制备氧化石墨分为低温、中温、高温反应三个阶段的基础上, 延长中温反应时间至8 h; 充分超声剥离后, 通过脱脂棉抽滤和渗析的方法除去少量沉淀和杂质离子, 得到均一稳定的GO水溶胶, 放置7个月后无沉淀. GO的静电自组装薄膜的制备: 将按文献[10]报道的方法清洗和表面硅烷化的石英和ITO导电玻璃放入pH 3的HCl溶液中质子化处理, 使基片表面带有正电荷. 然后此基片浸入GO溶液中(1 mg?mL-1) 10 min, 取出并用去离子水清洗, 空气吹干. 1.3 光电化学性质 所有光电化学研究均以GO膜修饰的电极为工作电极, 其有效光照面积为0.28 cm2. 光电流的测量在电化学工作站上进行, 入射光的强度用辐照计测定. 不同波长的入射光是在氙灯光路上加具有所需带宽的滤光片得到. 2 结果与讨论 2.1 紫外-可见吸收光谱 图1为GO水溶液(a)和石英基片上单层薄膜(b)的紫外-可见光谱图的对比. GO在231 nm处有1个C—C键上的π-π*跃迁吸收峰, 在298 nm处有1个C=O键上的n-π* 跃迁肩峰[11], 这与在石英片上单层薄膜在30 nm 处的吸收峰吻合, 表明GO已成功组装到基片上. 处理后的基片浸泡在1 mg?mL-1 GO溶液, 利用紫外-可见光谱对浸泡时间进行了监测(图2). 结果表明: 当在GO水溶液的浸泡时间达10 min时, 吸光度基本达最大值. 2.2 冷场发射扫描电镜 我们制备的GO水溶液具有明显的丁达尔效应, 与文献[12]报道的结果吻合. GO水溶液在铝箔上流沿. 待液体干燥后, 剪取部分于样品台上经磁控溅射镀膜(喷金)处理后, 用冷场发射扫描电镜研究其形貌(图 3). 氧化石墨因超声剥离, 脱落成许多大小为几十纳米的片状GO. 这与氧化石墨烯是一种二维结构材料及其水溶液具有明显的丁达尔效应吻合 . 图1 (a) GO水溶液和(b)石英片上GO薄膜的紫外-可见光谱Figure 1 UV-Vis spectra of (a) GO aqueous solution and (b) GO film on quartz substrate 图2基片在230 nm处的吸光度随其在GO溶胶中浸泡不同时间的变化图 Figure 2Changes in absorbance at 230 nm of protonated quartz substrate at varied immersion time in GO aqueous solution 图3GO冷场发射扫描电镜图 Figure 3 Cold-field emission scanning electron microscope image of GO 2.3 GO修饰的ITO电极的光电响应 在0.1 mol?L-1的Na2SO4溶液中, 当用100 mW/cm2的白光照射GO膜修饰的ITO电极时, 所得光电流随偏

关于石墨烯电池的调研报告范文

关于石墨烯电池的调研报告 0引言 《世界报》的一则关于西班牙Graphenano 公司同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池的消息,引起了世界各地的转发与评论,该消息称石墨烯聚合材料电池能够提给电动车1000公里的续航能力,而其充电时间不到8分钟。为调查此消息的真实性与石墨烯聚合材料电池的可行性,于是检索、收集了大量的资料,并总结做出了自己的调查结果。 1石墨烯简介 石墨烯(Graphene )是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二維材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因「在二维石墨烯材料的开创性实验」为由,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达K m W ?/5300,高于碳纳米管和金刚石,常温下其电子迁移率超过s V cm ?/215000,又比纳米碳管或硅晶体高,而电阻率只约m ?Ω-810,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 特斯拉CEO 马斯克近目在接受英国汽车杂志采访时表示,正在研究高性能电池,特斯拉电动车的续行里程很快将能达到800公里,比目前增长近70%。其表示,特斯拉始终致力于打造纯电动汽车,将继续革新电池技术,不考虑造混合动力车。特斯拉Model3电动汽车的续行里程有望达N320公里,售价约为3.5万美元。[]《功能材料信息》 2014年第11卷第4期 56-56页据悉,石墨烯兼具高强度、高导电性、柔韧性等优点,应用于锂电池负极材料后,可大幅度提高其电容量和大倍率充放电性能 ,或成特斯拉电池的理想材料。 特斯拉研究高能电池石墨烯或为理想材料 这项新技术的核心在于,新型多孔石墨烯材料含有巨大的内部表面区域,因此能实现在极短时间内充电。所充电能量与普通锂电池的电能量相当。更重要的是,石墨烯电池电极在经过1万次充放电之后。能量密度并未出现明显损失。 这种多孔石墨烯材料的超级电容,还可以为电动车节省大量的能量"如今,电动车的电能浪费现象仍旧普遍存在" 1新闻方面 首先,我从网上搜索了相关的新闻,包括ZOL 新闻中心科技频道的“石墨烯电池或将引领改革:充电10分钟跑1000公里”说道“这项突破性研究,为人类认知石墨烯等材料特性带来全新发现,并有望为燃料电池和氢相关技术领域带来革命性的进步”;21世纪经济报道的“中国2015年量产石墨烯锂电池或颠覆电动车行业”说道“2014年12月初,西方媒体报

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯的制备方法有哪些

石墨烯的制备方法有哪些 石墨烯的制备方法有哪些?石墨烯是近年来兴起的一种新型高科技材料,应用广泛,价值巨大,不过也存在一些缺点,那就是以目前的技术和设备来说,生产和制备不是一件容易的事,技术门槛相当高,且产率较低,成本不菲。下面就让我们一起来看看石墨烯的制备方法有哪些吧。 微机械剥离法 2004年,Geim等初次用微机械剥离法,成功地从高定向热裂解石墨(highly oriented pyrolytic graphite)上剥离并观测到单层石墨烯。Geim研究组利用这一方法成功制备了准二维石墨烯并观测到其形貌,揭示了石墨烯二维晶体结构存在的原因。微机械剥离法可以制备出高质量石墨烯,但存在产率低和成本高的不足,不满足工业化和规模化生产要求,只能作为实验室小规模制备。 溶剂剥离法

溶剂剥离法的原理是把少量的石墨分散于溶剂中,形成低浓度的分散液,利用超声波的作用破坏石墨层间的范德华力,此时溶剂可以插入石墨层间,进行层层剥离,制备出石墨烯。此方法不会像氧化-还原法那样破坏石墨烯的结构,可以制备高质量的石墨烯。在氮甲基吡咯烷酮中石墨烯的产率高(大约为8%),电导率为6500S/m。研究发现高定向热裂解石墨、热膨胀石墨和微晶人造石墨适合用于溶剂剥离法制备石墨烯。溶剂剥离法可以制备高质量的石墨烯,整个液相剥离的过程没有在石墨烯的表面引入任何缺陷,为其在微电子学、多功能复合材料等领域的应用提供了广阔的应用前景。缺点是产率很低。 先进纳米材料制造商和技术服务商——江苏先丰纳米材料科技有限公司,2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看~

《石墨烯相关知识》word版

石墨烯 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的 平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov),成功地在 实验中从石墨中分离出石墨烯,而证实它可以单独存在。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸 收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其 电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10- 6Ω·cm,比铜或银更低,为目前世上电阻率最小的材料(仅限常温下,肯定 比不过超导)。因为它的电阻率极低,电子跑的速度极快,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论 才能描绘。石墨烯被期待可用来发展出更薄、导电速度更快的新一代电子元件 或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明 触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢 晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的 graphite(石墨) + -ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯 内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶 格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时, 不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常 温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边 形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月, 佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并 观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路. 发现历史 在本质上,石墨烯是分离出来的单原子层平面石墨。按照这说法,自从20世纪初,X射线晶体学的创立以来,科学家就已经开始接触到石墨烯了。1918年,V. Kohlschütter 和 P. Haenni详细地描述了石墨氧化物纸的性质(graphite oxide paper)。1948年,G. Ruess 和 F. Vogt发表了最早用穿透式电子显微 镜拍摄的少层石墨烯(层数在3层至10层之间的石墨烯)图像。

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

石墨烯钴酸镍传感器材料的设备制作方法与制作流程

本技术公开了一种石墨烯钴酸镍传感器材料的制备方法,本技术将三维石墨烯与NiCo2O4结合,有助于改善NiCo2O4的表面形态,充分发挥三维石墨烯和异质结的协同作用,增强了传感器检测的灵敏度;该方法制备工艺得到的材料修饰的电极应用到抗坏血酸非酶电化学传感器中,其对抗坏血酸具有较好的检测极限、线性相关系、线性检测范围,灵敏度高。 权利要求书 1.一种石墨烯钴酸镍传感器材料的制备方法,该方法包括如下步骤: (1)制备三维石墨烯材料 在泡沫铝衬底上制备三维石墨烯,得到石墨烯/泡沫铝复合材料; 将石墨烯/泡沫铝复合材料浸泡在刻蚀溶液中,泡沫铝衬底溶解完全后,得到三维石墨烯材料;所述的刻蚀溶液为氯化铁或硝酸铁溶液,所述溶液浓度为0.5-5mol/L (2)取乙二醇和水按体积比为1:1-2的比例混合得到混合液,按重量份数分别称取1-2份所述三维石墨烯材料、35-38份PVP,先将PVP溶于400-450份混合液中,再将所述三维石墨烯材料分散于混合液中,超声搅拌均匀后加入NiCl2·6H2O和CoCl2·6H2O,搅拌使其最终浓度分别为0.002-0.004mg/L、0.001-0.003mg/L;随后按体积比向上述溶液中逐滴加入0.003份 Na2S2O3,颜色稳定后立即用蒸馏水和乙二醇离心洗涤,50-60℃下烘干后在空气中250-300℃煅烧2-3h,收集得到所述传感器电极材料。 2.如权利要求1所述的方法,其特征在于,采用化学气相沉积法石墨烯/泡沫铝复合材料,具体步骤为:将泡沫铝放入真空反应炉加温区中,抽真空,同时加热,将氢气注入真空反应炉中,加热到预定温度100-500℃后,恒温10-30分钟,然后进行退火,再加热到预定温度900-1100℃后,将碳源通入真空反应炉,同时保持氢气流量不变,生长50-100分钟后关闭气体并降至室温,即可得到直接沉积石墨烯的衬底,即石墨烯/泡沫铝复合材料。

海外石墨烯企业一览表

行业研究?新材料行业 表32 海外石墨烯企业一览表 序号公司国家主营业务石墨烯产业链环节主要产品及技术突破 1 Angstron Materials 美国石墨烯材料下游应用热控材料、能量存储材料 2 Applied Graphene Materials 英国石墨烯产品生产石墨烯粉末、石墨烯分散液 3 Asbury Carbon 美国碳产品综合石墨烯合成 4 Bluestone Global Tech 美国石墨烯综合石墨烯薄膜 5 Cientifica Plc 英国材料设备下游应用石墨烯纳米技术、生物技术 6 Grafoid 加拿大石墨烯综合高纯度的多层石墨烯 7 Granph Nanotech 西班牙石墨烯研发低电阻透明导电膜的单层石墨烯 能量存储设备,可印刷电子,新型复8 Graphene Devices 美国石墨烯设备下游应用 合材料 9 Graphene Laboratories 美国纳米材料综合石墨烯涂层 10 Graphene Square 韩国石墨烯生产30 英寸的石墨烯薄膜 11 Graphenea 西班牙石墨烯薄膜生产化学气相沉积的技术生产石墨烯薄膜 12 Haydale graphene industries 英国纳米材料综合石墨烯油墨、涂料 13 IBM, USA 美国电子设备综合石墨烯晶体管 14 Incubation Alliance 日本碳材料生产石墨烯花状材料 15 Lockheed Martin 美国军火业务综合低耗能薄膜(石墨烯)技术 16 Nanotek Instruments 美国能量存储设备制备石墨烯超级电容器 17 Nokia(已被收购)芬兰电子设备综合石墨烯光传感器 18 Samsung 韩国电子设备综合石墨烯晶体管、石墨烯电极薄膜 19 Showa Denko 日本电工综合量产优质石墨烯片 20 Sony 日本电子设备综合世界最长石墨烯膜 21 V orbeck Materials 美国石墨烯生产石墨烯掺杂电池 22 XG Sciences 美国纳米材料生产石墨烯片状纳米颗粒 资料来源:Graphene-Info, Research and Marke 请务必阅读正文之后的信息披露和法律声明

石墨烯(论文)

石墨烯的制备,特征,性能及应用的研究 内蒙古工业大学化学工程与工艺徐涛 010051 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的碳! 热潮。分析了近1 年来发表在Science、Nature 等期刊上的关于石墨烯的论文, 对石墨烯制备、表征及应用方面的最新进展进行了综述, 并对各种制备技术及表征手段进行了分析评价。 关键字: 石墨烯, 制备, 表征, 应用, 石墨烯氧化石墨烯(GO) 功能化石墨烯传感器 碳是最重要的元素之一,它有着独特的性质,是所有地球生命的基础。纯碳能以截然不同的形式存在,可以是坚硬的钻石,也可以是柔软的石墨。碳材料是一种地球上较普遍而特殊的材料, 它可以形成硬度较大的金刚石, 也可以形成较软的石墨. 近20 年来, 碳纳米材料一直是科技创新的前沿领域, 1985 年发现的富勒烯[1]和1991 年

发现的碳纳米管(CNTs)[2]均引起了巨大的反响, 兴起了研究热潮. 2004 年, Manchester 大学的Geim 小组[3]首次用机械剥离法获得 了单层或薄层的新型二维原子晶体——石墨烯. 石墨烯的发现, 充 实了碳材料家族,形成了从零维的富勒烯、一维的CNTs、二维的石墨 烯到三维的金刚石和石墨的完整体系. 石墨烯是由碳原子以sp2 杂 化连接的单原子层构成的, 其基本结构单元为有机材料中最稳定的 苯六元环, 其理论厚度仅为0.35 nm, 是目前所发现的最薄的二维材料[3]. 石墨烯是构成其它石墨材料的基本单元, 可以翘曲变成零维 的富勒烯, 卷曲形成一维的CNTs[4-5]或者堆垛成三维的石墨(图1). 这种特殊结构蕴含了丰富而奇特的物理现象, 使石墨烯表现出许多 优异的物理化学性质, 如石墨烯的强度是已测试材料中最高的, 达130 GPa[6], 是钢的100 多倍; 其载流子迁移率达1.5×104 cm2〃V-1〃s-1 [7], 是目前已知的具有最高迁移率的锑化铟材料的2 倍, 超过商用硅片迁移率的10 倍, 在特定条件下(如低温骤冷等), 其迁移率甚至可高达2.5×105 石墨烯的热导率可达5×103W〃m-1〃K-1, 是金刚石的3 倍[. 另外, 石墨烯还具有室温量子霍尔效应(Hall effect)[10]及室温铁磁性[11]等特殊性质. 石墨烯的这些优异性引 起科技界新一轮的“碳”研究热潮, 已有一些综述性文章从不同方面对石墨烯的性质进行了报道.,本文仅根据现有的文献报道对石墨烯 的制备方法、功能化以及在化学领域中的应用作一综述

超声波石墨烯设备简介

超声波石墨烯剥离也称超声波分散。超声波分散是指以液体为媒介,通过超声波在液体中的“空化”作用,将液体中的颗粒进行分散和解团聚的过程。 超声波技术作为一种物理手段和工具,能在液体中产生各种极端条件,这一现象被称为声化学作用,相关的超声设备则被称为超声波声化学设备(简称“声化学设备”)。超声波分散设备是声化学设备的一种应用,可用于水处理、固液系分散、液体中颗粒的解团聚、促进固液反应等效果。 由于粒子(原子、分子或分子集团)的热运动自发地产生物质迁移现象叫“扩散”。扩散可以在同一物质的一相固、液、气多相间进行,也可以在不同的固体、液体和气体间进行,主要由于浓度差或温度差所引起。一般是从浓度较大的区域向浓度较小的区城扩散,直到相内各部分的浓度达到均匀或两相间的浓度到平衡时为止。物质直接互相接触时,称自由扩散。若扩散是经过隔离物质进行时,则称为渗透。 在自然界中扩散现象起着很大的作用,它使整个地球表面附近的大气保持相同的成分。土壤里所含有的各种盐类溶液的扩散,便于植物吸收,以利生长。此外在半导体、冶金等很多行业都应用扩散。扩散、热传导和黏性通称为输运现象。其分别将物质(质量)、热能、动量由一位置移至另一位里置。而达到浓度或温度的均匀。 超声波分散可以分为乳剂的分散(液一液分散)和悬浮体的分散(固一液分散),已经在诸多领域得到应用。超声波对于悬浮体的分散的应用还有:存涂料工业中氧化钛等向水或者溶剂中的分散、染料向熔融石蜡中的分散,在医药工业中药物颗粒的分散,以及在食品工业中粉乳剂的分散等。 应用范围 超声波分散在很多领域都有广泛的应用:如食品、化妆品、医药、化学等。 超声波在食品分散中的应用大体可以分为:液-液系分散(乳剂)、固-液系分散(悬浮体)、气-液系分散三种情况。 固-液系分散(悬浮体):如粉乳剂的分散等。

关于石墨烯的总结

一.石墨烯常用修饰方法总结 石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的碳原子组成,是世界上最薄的二维材料,其厚度仅为0.35 nm。这种特殊结构蕴含了丰富而新奇的物理现象,使石墨烯表现出许多优异性质。 结构完整的石墨烯是由不含任何不稳定键的苯六元环组合而成的二维晶体,化学稳定性高,其表面呈惰性状态,与其他介质(如溶剂等)的相互作用较弱,并且石墨烯片与片之间有较强的范德华力,容易产生聚集,使其难溶于水及常用的有机溶剂,这给石墨烯的进一步研究和应用造成了极大的困难。为了充分发挥其优良性质,并改善其成型加工性(如提高溶解性、在基体中的分散性等),必须对石墨烯进行有效的功能化。通过引入特定的官能团,还可以赋予石墨烯新的性质,进一步拓展其应用领域。功能化是实现石墨烯分散、溶解和成型加工的最重要手段。 从功能化的方法来看。主要分为共价键功能化和非共价键功能化两种。 1. 石墨烯的共价功能化 石墨烯的共价键功能化是目前研究最为广泛的功能化方法。尽管石墨烯的主体部分由稳定的六元环构成,但其边沿及缺陷部位具有较高的反应活性,可以通过化学氧化的方法制备石墨烯氧化物(Grapheneoxide)。由于石墨烯氧化物中含有大量的羧基、羟基和环氧键等活性基团,可以利用多种化学反应对石墨烯进行共价键功能化。 1.1 石墨烯的聚合物功能化 (1)聚乙二醇(PEG)具有优异的生物相容性和亲水性,被广泛应用于多种不同的功能化纳米材料,以提高这些材料的生物相容性,减小其对生物分子及细胞的非特定的约束力,也改善了体内的药物代谢动力学,以实现更好的肿瘤靶向性治疗[1,2,3-5]。2008年,Dai 等使用六臂星型氨基聚乙二醇的端氨基与纳米石墨烯片边缘的羧基通过亚胺催化酰胺形成反应,制备PEG 修饰纳米石墨烯片,得到的产物在用于体外给药和生物成像的生理溶液中显示了优良的分散性和稳定性[2]。 (2)除了PEG外,还有其他的被用来共价功能化GO的亲水大分子。刘庄工作组,将氨基修饰的DEX与GO通过共价键键合,得到了具有生物相容性的材料,这种材料大大提高了GO生理溶解性的稳定性[6]。Bao et al.

石墨烯项目可行性方案

石墨烯项目可行性方案 投资分析/实施方案

摘要 目前,中国在石墨烯相关技术研发方面走在世界前列,遥遥领先于美日韩等发达国家。而在石墨烯技术应用方面,化工、储能和电子器件是最主要的应用领域,其中石墨烯在锂离子电池的应用前景备受关注。 该石墨烯项目计划总投资19245.28万元,其中:固定资产投资14637.80万元,占项目总投资的76.06%;流动资金4607.48万元,占项目总投资的23.94%。 本期项目达产年营业收入37238.00万元,总成本费用28288.59万元,税金及附加381.60万元,利润总额8949.41万元,利税总额10565.41万元,税后净利润6712.06万元,达产年纳税总额3853.35万元;达产年投资利润率46.50%,投资利税率54.90%,投资回报率34.88%,全部投资回收期4.37年,提供就业职位634个。

石墨烯项目可行性方案目录 第一章概论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章建设背景分析 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章产品规划方案 一、产品规划 二、建设规模 第四章选址评价 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

单层与多层石墨烯的拉曼光谱

凝聚态物理学李龙飞10212027 专业英语翻译 单层与多层石墨烯的拉曼光谱 石墨烯是二维的材料,是组成其他维度的碳的各种同素异形体的积木。本文介绍拉曼光谱可以捕捉石墨烯的电子结构,并清楚显示出随着石墨烯层数变化拉曼光谱的变化。随着层数的增加,D峰在形状、宽度和位置的二阶变化,反映了电子能带通过双共振的拉曼过程而产生的改变。G峰则轻微下移。这就提供了一种清楚、高效、无破坏性的方法来确定石墨烯的层数,目前对这方面的研究还十分缺少。 石墨烯的研究热潮可以归因于三点。第一,它的电子输运通过狄拉克方程来描述,这就允许了通过简单的凝聚态实验来研究量子电动力学。第二,纳米尺度下的石墨烯器件有望得到应用,原因是其室温下的弹道输运性质,而且具有化学的和机械的稳定性。这种优越的性质可以扩展到双层或少数层石墨烯。第三,不同形式的石墨,纳米管,巴克球等等都可看成石墨烯的衍生物。而且无需惊讶,在过去60年里石墨烯这种基本材料已经在理论上被广泛研究。最近发现的石墨烯终于让我们可以从实验去研究它,为更好地理解其他同素异形体及解决争论铺平了道路。 石墨烯可以通过参考文献[1]所描述的方法,也就是对石墨的微机械分离而得到。其他方法,例如脱落和生长,目前只能得到多层的石墨,但在不远的将来,有效的生长方法有望得到发展,就像纳米管所发生的一样。尽管微机械分离的方法广泛使用,但是确定和计算石墨烯的层数仍然是最主要的障碍。单层石墨烯只少数地存在于石墨的薄片中,在大多数衬底上都难以用光学显微镜观察。只有当放置在精确厚度的氧化硅衬底上(典型地,300nmSiO2)才可见,这是因为对比空的衬底,单层的石墨烯加在反射光的光路上会导致干涉颜色的变化。原子力显微镜(AFM)是目前唯一的确定单层和少层的方法,但其效率很低。而且,事实上石墨烯和衬底之间的化学对比成像(导致一层明显的0.5-1nm的化学厚度,比石墨层间的间隔要大),使得如果薄膜包含折叠和皱褶,AFM只能区分单层和双层。这就造成了衬底选用范围的主要限制,这是这种材料得到广泛利用的一个障碍。这里,我们得出石墨烯的独特电子结构可以由拉曼光谱得到。单层,双层和少层的石墨烯的电子能带的变化导致拉曼指纹的变化,提供了一种清楚、高效、无破坏性的方法来确定石墨烯的层数,而目前对这方面的研究还十分缺少。 在这里样品通过微机械分离来制备。为了提供单层和双层石墨烯的最确定的识别(除了利用AFM的方法),我们通过透射电子显微镜(TEM)观察要用来做拉曼光谱测量的样品。

石墨烯

H a r b i n I n s t i t u t e o f T e c h n o l o g y 纳米技术课堂报告 课程名称:纳米技术 院系:航天学院微电子科学与技术系班级:21系 设计者:王立刚 学号:14S121034 指导教师:王蔚 哈尔滨工业大学

纳米结构下的石墨烯材料 第一章,纳米小尺寸效应 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,具有较强的表面酸性和一定的表面碱性,被广泛应用作催化剂和催化剂载体等新的绿色化学材料。可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。以上这些性能决定了纳米材料在表面效应、小尺寸、量子尺寸效应、量子隧道效应、电子信息领域、航天航空、环保能源等各方面均有应用,尤其是在小尺寸方面的应用。 小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应。 第二章,石墨烯的特性 一直以来,科学家们都认为单层的石墨烯是不可能稳定存在的。他们一直都错误地认为,若要用力将石墨烯从石墨上剥离下来的话,那么石墨烯的结构就会被这个力所破坏,而且固体的熔点也会随着粒子厚度的减小而非常快的减小,当粒子的厚度减小到几个原子层厚度的时候,固体就会熔化。另外,在二维晶体中由于内能的存在,原子的振动幅度会变得非常大,因此原子的错位将变得相当的严重,这将导致原子与未与它成键的原子间的距离的大小和与它成键的原子间的距离的大小几乎相同,因此它不能保持单层的结构。 然而2004年,英国曼彻斯特大学的两位科学家安德烈·海姆和康斯坦丁·诺沃消洛夫在实验室中竟然成功地制备了稳定的石墨烯。这无疑是让世界震惊的,然而他们得到稳定石墨烯的方法却简单到不可思议。他们先通过已经知道的方法得到石墨片,这个石墨片相对而言是非常薄的,再将这个石墨片剥离得到更加薄的石墨薄片,然后用一种特殊的胶带将这个石墨薄片的两面都粘上,再将胶带撕开,这样石墨薄片就会被一分为二,变得更加薄。石墨薄片在这样的不断被剥离

诺贝尔奖石墨烯

诺贝尔奖石墨烯 诺贝尔奖——石墨烯2010 年10 月09 日瑞典皇家科学院5 日宣布,将2010 年诺贝尔物理学奖授予荷兰籍物理学家安德烈·海姆(左图)和拥有英国与俄罗斯双重国籍的物理学家康斯坦丁·诺沃肖洛夫,以表彰这对师生在石墨烯材料方面的卓越研究。瑞典皇家科学院常任秘书诺尔马克表示,两位学者制备出了石墨烯材料,并发现它所具有的非凡属性,向世界展示了量子物理学的奇妙。评审委员会发布的新闻稿称石墨烯为“完美原子晶体”,作为二维结构单层碳原子材料,强度相当于钢的100 倍,导电性能好、导热性能强。很神奇用普通胶带剥离出石墨烯诺贝尔物理学奖两名评选委员表示,两位学者利用普通胶带成功地从石墨中剥离出石墨烯,这种材料仅有一个碳原子厚,是目前已知的最薄的材料。作为电导体,它和铜有着一样出色的导电性;作为热导体,它比目前任何其他材料的导热效果都好。利用石墨烯,科学家能够研发一系列具有特殊性质的新材料。比如,石墨烯晶体管的传输速度远远超过目前的硅晶体管,因此有希望应用于全新超级计算机的研发;石墨烯还可以用于制造触摸屏、发光板,甚至太阳能电池。如果和其他材料混合,石墨烯还可用于制造更耐热、更结实的电导体,从而使新材料更薄、更轻、更富有弹性,因此其应用前景十分广阔。很意外都忘记了物理学奖揭晓日评审委员会现场,当记者询问获奖感受时,海姆答曰“意料之外、震惊”,说他忘了当天是物理学奖揭晓的日子。另一名记者问及当天后续日程安排,海姆回答:“回去工作。”海姆前一天工作到晚9 时,5 日早晨接获评审委员会获奖通知时正在电脑前回复一份邮件。依照他的说法,前一天睡得不错。他说,“我试着像以前一样生活,”因为自己不是因为获奖就会“余生停止工作的人”。海姆现年51 岁,诺沃肖洛夫36 岁。两人在荷兰奈梅亨大学相识,诺沃肖洛夫完成博士学业后追随海姆到英国曼彻斯特大学工作,在实验室内应用“机械微应力技术”获得石墨烯,2004 年10 月发表第一篇论文。很快乐把研究工作视为“游戏” 新闻发布会上,美联社记者问及石墨烯的应用前景,海姆回答,他无法作具体预测,但以塑料作比,推断石墨烯“有改变人们生活的潜力”。海姆坦言,一些同事先前告诉他,石墨烯研究会成为诺贝尔奖获奖项目。他的回应是,“不认为(发表第一篇论文)6 年后就会获奖”。一名记者新闻发布会后采访一名评审委员时提出疑问,他们是否仅凭那一篇论文就在6 年后获奖,所获回答是:当然不是以一篇论文为依据,而涉及石墨烯的“分离、认定和分类”。新闻稿中,评审委员会介绍,把研究工作视为“游戏”是海姆和康斯坦丁团队的特点之一,“在过程中学习,谁知道,或许有一天会中大奖”。获奖者小传曾拿过“搞笑诺贝尔奖” 两位学者都出生于俄罗斯,都是在俄罗斯开始物理学研究生涯,两人现在同为英国曼彻斯特大学物理与天文学院教授,而且他们还是师生和多年的研究搭档。2000 年,安德烈·海姆还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。这两位教授的获奖,也使曼彻斯特大学现有的诺贝尔奖得主人数增加到4 名。曼彻斯特大学校长南希·罗斯韦尔说,“这又是一个在对科学的兴趣和实践基础上作出重大发现的例子,他们的发现具有重要的社会经济意义。” 诺奖评审委员会告知,今后,卫星、飞机和轿车可以用这类新型复合材料制造。应用前景广阔石墨烯几乎完全透明,却极为致密,即使原子尺寸最小的氦气也无法穿透。这些性状可由量子物理学加以解释。石墨烯与塑料混合,可望形成导体,用于输送电子,同时具备更强的机械性能和耐热性能。物理学奖评审委员会预期,石墨烯与塑料复合,可以凭借韧性,创制“新型超强材料”,兼具超薄、超柔和超轻特性。评审委员会在新闻稿中告知:“今后,卫星、飞机和轿车可以用这类新型复合材料制造。” 在特定领域内,如电子行业,石墨烯适合制作透明触摸屏、透光板和太阳能电池。如用于制造晶体管集成电路,石墨烯可望超越硅晶体,突破现有物理极限,使电脑运行速度更快、能耗降低。何时普及石墨烯只有一根头发直径1%,南京学者认为——大规模运用尚需时日石墨烯像个平面的蜂巢从2007 年起,南京大学物理学院国家杰出青年基金获得者、教育部长江特聘教授王伯根就开始关注这种新型材料。“石墨烯是从石墨中一层

相关主题
文本预览
相关文档 最新文档