当前位置:文档之家› 选修1高中物理机械波测试题

选修1高中物理机械波测试题

选修1高中物理机械波测试题
选修1高中物理机械波测试题

选修1高中物理机械波测试题

一、机械波选择题

1.如图甲所示为一列简谐横波在t=0.2s时的波形图,P为平衡位置在x=2m处的质点,图乙所示为质点P的振动图象,则下列关于该波的说法中正确的是________

A.该波的周期是0.4s

B.该波沿x轴正方向传播

C.该波的传播速度为10m/s

D.t=0.3s时,质点P的速度为零,加速度最大

E.从t=0.2s到t=0.5s,质点P通过的路程为40cm

2.一列简谐横波在t=0时刻的波形如图中的实线所示,t=0.02s时刻的波形如图中虚线所示.若该波的周期T大于0.02s,则该波的传播速度可能是()

A.2m/s B.3m/s C.4m./s D.5m/s

3.声波能绕过某一建筑物传播而光波却不能绕过该建筑物,这是因为

A.声波是纵波,光波是横波B.声波振幅大,光波振幅小

C.声波波长较长,光波波长很短D.声波波速较小,光波波速很大

4.一列简谐波某时刻的波形如图中实线所示。经过0.5s后的波形如图中的虚线所示。已知波的周期为T,且0.25s<T<0.5s,则()

A.不论波向x轴哪一方向传播,在这0.5s内,x=1m处的质点M通过的路程都相等B.当波向+x方向传播时,波速等于10m/s

C.当波沿+x方向传播时,x=1m处的质点M和x=2.5m处的质点N在这0.5s内通过的路程相等

D.当波沿﹣x方向传播时,经过0.1s时,质点M的位移一定为零

5.利用发波水槽得到的水面波形如图所示,则()

A .图a 、b 均显示了波的干涉现象

B .图a 、b 均显示了波的衍射现象

C .图a 显示了波的干涉现象,图b 显示了波的衍射现象

D .图a 显示了波的衍射现象,图b 显示了波的干涉现象

6.一根长20m 的软绳拉直后放置在光滑水平地板上,以绳中点为坐标原点,以绳上各质点的平衡位置为x 轴建立图示坐标系。两人在绳端P 、Q 沿y 轴方向不断有节奏地抖动,形成两列振幅分别为10cm 、20cm 的相向传播的机械波。已知P 的波速为2m/s ,t =0时刻的波形如图所示。下列判断正确的有( )

A .两波源的起振方向相反

B .两列波的频率均为2Hz ,叠加区域有稳定干涉图样

C .t =6s 时,两波源间(不含波源)有5个质点的位移为-10cm

D .叠加稳定时两波源间(不含波源)有10个质点的振幅为30cm

7.如图所示,两列简谐横波分别沿x 轴正方向和负方向传播。已知两波源分别位于

0.2m x =-和 1.0m x =处,振幅均为0.5cm A =,波速均为0.2m/s v =。0t =时刻,平衡位置处于0.2m x =和0.6m x =的P 、Q 两质点刚开始振动。质点M 的平衡位置处于0.4m x =处,以下说法正确的是( )

A .0t =时,质点P 、Q 振动方向分别是向下和向上

B .01s ~内,质点P 的运动路程为0.2m

C . 1.5s t =时,平衡位置处于0.3m 0.5m ~之间的质点位移均为0

D .2s t =时,0.3m x =处质点的位移为0.5cm - E.两列波相遇分开后,各自的振幅、周期均保持不变

8.图甲为一列简谐波在0.10t s =时刻的波形图,P 是平衡位置为 1.0m x =处的质点,Q 是平衡位置为 4.0m x =处的质点,图乙为质点Q 的振动图象,则( )

A .在0.25t s =时,质点P 的速度方向为y 轴正方向

B .质点Q 在t=0.075s 时位移为52cm

C .从0.10t s =到0.20t s =,该波沿x 轴正方向传播了4m

D .从0.10t s =到0.25t s =,质点P 通过的路程为30cm

9.一列横波沿x 轴传播,图中实线表示t=0时刻的波形,虚线表示从该时刻起经0.005s 后的波形______.

A .该横波周期为0.02秒

B .t=0时刻,x=4m 处的质点的振动方向一定与x=8m 处的质点振动方向相反

C .t=0时刻,x=4m 处的质点向上运动

D .如果周期大于0.005s ,波向右传播时,波速为400m/s E.如果周期小于0.005s ,则当波速为6000m/s 时,该波向左传播

10.甲、乙两列简谐横波在同一介质中同向独立传播,传播方向沿x 轴正方向。如图所示为0t =时刻的部分波形。1s t =时刻质点Q 第一次振动至平衡位置。对此现象,下列说法正确的是( )

A .乙波的波长为20m

B .甲波的周期为2s

C .甲波的传播速度为2m/s

D .0t =时刻两列波没有波峰重合处 E.0t =时刻在32.5m =x 处两列波的波峰重合

11.一列简谐横波,在t =0.6 s 时刻的图象如图甲所示,波上A 质点的振动图象如图乙所示,则以下说法正确的是( )

A.这列波沿x轴正方向传播

B.这列波的波速是50

3

m/s

C.从t=0.6 s开始,质点P比质点Q 晚0.4 s回到平衡位置

D.从t=0.6 s开始,紧接着的Δt=0.6 s时间内,A质点通过的路程是4 m

12.一列简谐横波沿x轴负方向传播,如甲图是1s

t=时的波形图,乙图是波中某质点从t =0开始的振动图象,则乙图可能是甲图中哪个质点的振动图象()

A.x=0m处的质点B.x=1m处的质点

C.x=2m处的质点D.x=3m处的质点

13.图中实线和虚线分别是x轴上传播的一列简谐横波在t=0和t=0.03s时刻的波形图,x=1.2m处的质点在t=0.03s时向y轴正方向运动,则()

A.该波的频率可能是125Hz

B.该波的波速可能是10m/s

C.t=0时x=1.4m处质点的加速度方向沿y轴正方向

D.从t=0时起,平衡位置在0.9m处的质点再经过

1

12

周期时的位移为-2.5cm

14.一列简谐横波沿x轴正方向传播,周期为0.2s,0

t=时的波形图如图所示,下列说法正确的是()

A.平衡位置在1m

x=处的质元的振幅为0.03m

B.该波的波速为10m/s

C .0.3s t =时,平衡位置在0.5m x =处的质元向y 轴正向运动

D .0.4s t =时,平衡位置在0.5m x =处的质元处于波谷位置 E.0.5s t =时,平衡位置在 1.0m x =处的质元加速度为零

15.如图,S 1、S 2是振幅均为A 的两个水波波源,某时刻它们形成的波峰和波谷分别由实线和虚线表示。则

A .两列波在相遇区域发生干涉

B .a 处质点振动始终减弱,b 、c 处质点振动始终加强

C .此时a 、b 、c 处各质点的位移是:x a =0,x b =-2A ,x c =2A

D .a 、b 、c 处各质点随着水波飘向远处

16.一列简谐横波某时刻波形如图甲所示。由该时刻开始计时,质点L 的振动情况如图乙所示。下列说法正确的是( )

A .该横波沿x 轴负方向传播

B .质点N 该时刻向y 轴负方向运动

C .质点L 经半个周期将沿x 轴正方向移动

D .该时刻质点K 与M 的速度、加速度都相同

17.图示为一列沿x 轴负方向传播的简谐横波,实线为t =0时刻的波形图,虚线为t =0.6 s 时的波形图,波的周期T >0.6 s ,则( )

A .波的周期为2.4 s

B .在t =0.9 s 时,P 点沿y 轴正方向运动

C .经过0.4 s ,P 点经过的路程为4 m

D .在t =0.5s 时,Q 点到达波峰位置

18.一列简谐横波在均匀介质中沿x 轴负方向传播,已知5

4x λ=处质点的振动方程为

cos(

)y A t T =,则34

t T =时刻的波形图正确的是( ) A . B .

C .

D .

19.如图所示,位于介质Ⅰ和Ⅱ分界面上的波源S ,产生两列分别沿x 轴负方向与正方向传播的机械波.若在两种介质中波的频率及传播速度分别为f 1、f 2和v 1、v 2,则

A .f 1=2f 2,v 1=v 2

B .f 1=f 2,v 1=2v 2

C .f 1=f 2,v 1=0.5v 2

D .f 1=0.5f 2,v 1=v 2

20.一列简谐横波沿x 轴正方向传播,t=0时刻的波形如图所示,介质中质点A 、B 、C 分别位于x 1=2m 、x 2=3m 、x 3=6m 处.当t=9s 时质点A 刚好第3次到达波峰.下列说法正确的是

A .该波的波速一定为1 m/s

B .如果该波在传播过程中与频率为0. 5Hz 的横波相遇,一定发生干涉现象

C .质点C 起振方向沿y 轴负向

D .如果质点C 到达波峰,则质点B 一定在平衡位置 E.质点A 的振动方程可表示为y= sin (0.25πt )m

21.图(a)为一列简谐横波在t =0.20 s 时刻的波形图,P 是平衡位置在x =1.0 m 处的质

点,Q是平衡位置在x=4.0 m处的质点;图(b)为质点Q的振动图像.下列说法正确的是()

A.在t=0.10 s时,质点Q向y轴负方向运动

B.在t=0.25 s时,质点P的加速度方向与y轴正方向相同

C.从t=0.10 s到t=0.25 s,该波沿x轴负方向传播了6 m

D.从t=0.10 s到t=0.25 s,质点P通过的路程为30 cm

E.质点Q简谐运动的表达式为y=0.10sin 10πt(国际单位制)

22.波源O在t=0时刻开始做简谐运动,形成沿x轴正向传播的简谐横波,当t=3s时波刚好传到x=27m处的质点,波形图如图所示,质点P、Q 的横坐标分别为4.5m、18m,下列说法正确的是()

A.质点P的起振方向沿y轴正方向

B.波速为6m/s

C.0~3s时间内,P点运动的路程为5cm

D.t=3.6s时刻开始的一段极短时间内,Q点加速度变大

E.t=6s时P点恰好位于波谷

23.下面哪些应用是利用了多普勒效应()

A.利用地球上接收到遥远天体发出的光波的频率来判断遥远天体相对于地球的运动速度B.交通警察向行进中的汽车发射一个已知频率的电磁波,波被运动的汽车反射回来,根据接收到的频率发生的变化,就知道汽车的速度,以便于进行交通管理

C.铁路工人用耳贴在铁轨上可判断火车的运动情况

D.有经验的战士从炮弹飞行的尖叫声判断飞行炮弹是接近还是远去

24.图(a)为一列波在t=2s时的波形图,图(b)是平衡位置在x=1.5m处的质点的振动图像,P是平衡位置为x=2m的质点,下列说法正确的是()

A.波速为0.5m/s

B.波的传播方向向右

C.02s时间内,P运动的路程为8cm

D.02s时间内,P向y轴正方向运动

E.当t=7s时,P恰好回到平衡位置

25.图甲为一列简谐横波在某一时刻的波形图,图乙为质点P以此时刻为计时起点的振动图象.从该时刻起

A.经过 0.35 s时,质点Q距平衡位置的距离小于质点P距平衡位置的距离

B.经过 0 .25s 时,质点Q的加速度大于质点P的加速度

C.经过 0.15s,波沿x 轴的正方向传播了 3m

D.经过 0.1s 时,质点Q的运动方向沿y 轴正方向

二、机械波解答题

26.资料记载,海啸波浪海啸波是重力长波,波长可达100公里以上;它的传播速度等于重力加速度g与海水深度乘积的平方根,使得在开阔的深海区低于几米的一次单个波浪,到达浅海区波长减小,振幅增大,掀起10~40米高的拍岸巨浪,有时最先到达的海岸的海啸可能是波谷,水位下落,暴露出浅滩海底;几分钟后波峰到来,一退一进,造成毁灭性的破坏。

(i)在深海区有一海啸波(忽略海深度变化引起的波形变化)如图甲,实线是某时刻的波形图,虚线是t =900s后首次出现的波形图。已知波沿x轴正方向传播,波源到浅海区的水平距离s1=1.08万公里,求海啸波到浅海区的时间t1;

(ii)在浅海区有一海啸波(忽略海深度变化引起的波形变化)如图乙,波从进入浅海区到达海岸的水平距离为s2,写出该海啸波的表达式和波谷最先到达海岸的关系式。

27.一列简谐横波在介质中沿x轴传播,且波长不小于3.6m,A和B是介质中平衡位置分别位于A x=2m和B x=8m处的两个质点.某时刻质点A位于波峰时,质点B处于平衡位置,经过t=0.2s时,质点A第一次回到平衡位置,此时质点B恰好在波谷,求:

(1)如果波沿x轴正方向传播,则波的速度多大?

(2)如果波沿x轴负方向传播,则波的速度多大?

28.如图,一根张紧的水平弹性长绳上的a、b两点相距L=12.0m,b点在a点的右方。一列简谐横波沿此长绳向右传播。在t=0时刻,a点的位移y a=A(A为质点振动的振幅),b 点的位移y b=0,且向下运动。经过t=0.5 s,a点的位移y a=0,且向下运动,b点的位移x b= -A。

(1)若这一列简谐波的波长λ>L,求波可能的传播速度;

(2)若这一列简谐波的波长λ

29.一列横波在x 轴上传播,介质中a、b 两质点的平衡位置分别位于x 轴上x a=0、x b=6m 处,t=0时,a点恰好经过平衡位置向上运动,b点正好到达最高点,且b 点到x 轴的距离为 4cm,已知这列波的频率为5Hz。

(1)求经过Δt=0.25s 时a点的位移以及这段时间内a点经过的路程;

(2)若a、b 在x 轴上的距离大于一个波长,小于两个波长,求该波的波速。

30.如图所示是在竖直方向上振动并沿水平方向传播的简谐波,实线是t=0时刻的波形图,虚线是t=0.2s时刻的波形图。则:

①若波沿x轴负方向传播,求它传播的速度.

②若波沿x轴正方向传播,求它的最大周期.

③若波速是25m/s,求0.2s内P点经过的路程.

31.如图,质点O在垂直x轴方向上做简谐运动,形成了沿x轴正方向传播的横波。在

t =0为图示波形,再过0.6s 波恰好传到B 点。求: (1)波的传播速度v 和周期T ;

(2)求x =2m 处质点在t =0~2.6s 内通过的路程s ; (3)写出A 点的振动函数表达式;

(4)从t =0时刻开始计时,位于x =50.5m 处的质点C (图中未画出)经过多少时间第一次到达波峰?

【参考答案】***试卷处理标记,请不要删除

一、机械波 选择题 1.ACD 【解析】

试题分析:(1)由题图乙可以看出,质点P 完成一次全振动所需的时间为0.4s ,所以该波的传播周期为0.4s ,选项A 正确;由题图乙可知,在t =0.2s 后质点P 向x 轴负方向运动,根据质点振动方向与波的传播方向之间的关系可以判断,该波一定是沿x 轴负方向传播,选项B 错误;由v =λ/T 可知,该波的传播速度为v =10m/s ,选项C 正确;在t =0.3s 时,质点P 运动到距平衡位置最远处,所以其速度为零,加速度最大,选项D 正确;从t =0.2s 到t =0.5s ,质点P 通过的路程应为60cm ,选项E 错误. 考点:波动图像、振动图像

【名师点睛】由乙图读出质点P 在t=0.2s 时刻的速度方向,在甲图上,运用波形的平移法判断出波的传播方向,读出波长和周期,求出波速.根据时间与周期的关系,确定质点的位置,分析速度的大小和速度的方向. 2.B 【解析】 【详解】

由图0.08m λ=该波的周期T 大于0.02s ,波传播的距离小于波长,则据题意,由两个时刻的波形得到:1

4

t T =

,或34t T =,解得10.08T s =,20.08s 3T =

,由波速公式v T

λ

=

,得11m/s v =,23m/s v =。故ACD 错误,B 正确。

故选B.

点睛:由图象读出波长.根据两个时刻的波形,结合条件,求出波长的可能值,并求出波速可能值. 3.C 【解析】

波发生明显的衍射现象的条件是:孔缝的宽度或障碍物尺寸与波长相比差不多或比波长更短.由于声波的波长比较大(1.7cm ~17m )和楼房的高度相近,故可以发生明显的衍射现象,而可见光的波长很小,无法发生明显的衍射现象.故只有C 正确. 4.B 【解析】 【详解】

A .机械波的振幅为A ,当波向x 轴正方向传播时:

1

0.5s 4

T nT =+

根据周期的范围可知,1n =时,10.4s T =符合条件,在0.5s 内质点M 振动的路程:

10.5

450.4

s A A =

?= 当波向x 轴负方向传播时:

3

0.5s 4

T nT =+

根据周期的范围可知,1n =时,22

s 7

T =符合条件,在0.5s 内质点M 振动的路程:

20.5

4727

s A A =

?= 所以质点M 通过的路程都不相等,A 错误;

B .当波向x 轴正方向传播时,根据图像可知波长4m λ=,波速为:

11

4

m/s 10m/s 0.4

v T λ

=

=

= B 正确;

C .当波向x 轴正方向传播时,质点M 经过的路程为5A ,质点M 、N 经过0.4s 经过的路程为4A ,两质点均回到初始位置,再经过0.1s 过程中,因为质点N 的平均速度大于质点M 的平均速度,所以质点N 经过的路程大于A ,所以质点N 的路程大于M 点的路程,C 错误;

D .当波向x 轴负方向传播时,因为2211

0.1s 24

T T <<,所以质点M 未回到平衡位置,位移

不为零,D 错误。 故选B 。 5.D 【解析】

试题分析:图a 中显示了一列波经过小孔的现象,是波的衍射,图b 显示了两列波相遇的

现象,是波的干涉现象,故D 正确,其余错误. 考点:波的衍射、干涉现象 6.AC 【解析】 【分析】 【详解】

A .P 起振方向沿y 轴负方向,而Q 起振方向沿y 轴正方向,因此起振方向相反,A 正确;

B .由于波长

=4m λ

波速由介质决定的,因此两列波的速度相等,根据

v f T

λ

λ==

可知

0.5Hz f =,2s T =

因此两列波的频率均为0.5Hz ,叠加区域有稳定干涉图样,B 错误; C .t =6s 时,两列波都向前传播了12m ,波形如图所示

当两列波叠加时,合振动等于两个振动的矢量和,由图象可知,在x =-7m ,x =-1m ,x =3m 处位移都是-10cm ,且在6~8m 间还有两个点位移是-10cm ,因此有5个点位移为-10cm ,C 正确;

D .振动稳定后,某时刻振动图象图所示

从图中可知,在叠加稳定时两波源间(不含波源)有9个质点的振幅为30cm ,D 错误。 故选AC 。

7.ACE 【解析】 【分析】

本题考查对波动图像的理解,掌握根据波传递方向判断质点振动方向,了解波的叠加原理。 【详解】

A .由“上下坡”法可判断,0t =时,质点P 、Q 振动方向分别是向下和向上,故A 正确;

B .在01s ~内,两列波的传播距离为

10.2m x vt ?==

即两列波都刚好传播到质点M ,由图可得两列波的波长均为0.4m ,根据v T λ=可知,T =2s ,可知在这段时间内质点P 只参与左侧波振动半个周期,由图可得振幅均为A =0.5cm ,故质点P 的路程为2A =1cm ,故B 错误; C .从0 1.5s ~的时间内,两波的传播距离为

20.3m x vt ?='=

所以可知左侧波刚好传播到x =0.5m 处,右侧波刚好传播到x =0.3m 处,由图可知两列的振动情况完全相反且振幅相等,则可知t =1.5s 时,平衡位置处于0.3m 0.5m ~之间的质点位移均为0,故C 正确;

D .从02s ~的时间内,两波的传播距离为

30.4m x vt ''?==

则可知左侧波刚好传播到x =0.6m 处,右侧波刚好传播到x =0.2m 处,此时x =0.3m 处的质点刚好处于两列波的波峰,则该质点的位移为x '=0.5cm+0.5cm=1cm ,故D 错误; E .根据波的传播独立性原理可知,两列波不会相互影响,所以两列波相遇分开后,各自的振幅、周期均保持不变,故E 正确。 故选ACE 。 8.AB 【解析】 【分析】 【详解】

A .由振动图象知,t =0.10s 时,Q 处于平衡位置向下振动,根据上下坡法知,波沿x 轴负方向传播,当t =0.25s 时,即在t =0.10s 开始经过3

4

T ,质点P 在平衡位置以下向上振动,即速度方向沿y 轴正方向,故A 正确; B .根据乙图可知,质点Q 简谐运动的表达式为

y =10sin10πt (cm )

质点Q 在t=0.075s 时位移为,故B 正确; C .根据图象可以看出波波沿x 轴负方向传播,故C 错误 D .由于P 点不是在波峰或波谷,或平衡位置,经过0.15s ,即经过

3

4

T ,质点经历的路程

不等于3A ,即30cm ,故D 错误。 故选AB 。 9.BDE 【解析】

如果此波向右传播, 10.005()4s n T =+ (n=0、1、2……),0.02

14T s n

=+;如果此波向左传播30.005()4s n T =+(n=0、1、2……),0.02

34T s n

=+,故A 错误;x =4m 与x =8m 处的两个质点相差42

x λ

?==

,振动方向相反,故B 正确;由于无法确定波的传播方向,故

x =4m 处的质点振动方向无法确定,故C 错误;由上述分析可知,如果周期大于0.005s, 则

1

0.0054s T =,0.02T

s 由8

400m/s 0.02

v T

λ

=

=

=,故D 正确;如果周期小于0.005s,则当波速为6000m/s 时,波在0.005s 内传播的距离为30m x vt ?==,由于

303

384

x

λ

?=

=,所以波向左传播.综上分析,正确答案为BDE . 【点睛】当波的传播方向未知,要分析两种情况分析;求解周期,或者波速时可采用通项式的形式. 10.ACD 【解析】 【详解】

A .读取图象信息知波长为

8m λ=甲,20m λ=乙

所以A 正确;

B .甲波的Q 点运动至平衡位置所需时间为

1s 4

T =甲

则甲波周期为

4s T =甲

所以B 错误;

C .波的传播速度仅由介质决定,甲、乙两列波的速度相同,有

2m/s v T λ=

=甲

所以C 正确; DE .取0t =时刻

114m x =,220m x =

两个波峰点为基准点,二者相距6m 。假设0t =时刻两列波的波峰有相遇处,则该相遇处与两个波峰基准点的距离差为

126m k k λλ-=甲乙(1k ,2k 均为整数)

22

126620 2.50.758

k k k k λλ++=

=

=+乙

该方程式1k ,2k 无整数解。则0t =时刻两列波波峰没有重合点。所以D 正确,E 错误。 故选ACD 。 11.ABD 【解析】 【分析】 【详解】

A 、由题图乙可知,t =0.6 s 时A 点沿y 轴负方向振动,因此可判断这列波是向x 轴正方向传播的,选项A 正确;

B 、由题图甲可知,该波的波长为20 m ,由题图乙可知,该波的周期为1.2 s ,可得该波的波速为

50

3

m/s ,选项B 正确; C 、由波上各质点振动情况可知,P 点沿y 轴正方向振动,应该先回到平衡位置,选项C 错误;

D 、0.6 s 的时间为半个周期,因此质点振动路程为4 m ,选项D 正确. 故选ABD 12.A 【解析】 【分析】

本题考查振动图像和波的图像综合分析。 【详解】

先观察振动图像,1s t =时质点经过平衡位置向y 轴负方向运动。再观察波的图像,波沿x 轴负方向传播,根据口诀法“上坡下,下坡上”,x =0m 处和x =4m 处的质点位于“上坡”,向y 轴负方向运动,故A 正确,BCD 错误。 故选A 。 13.AD 【解析】 【分析】 【详解】

A .由题x =1.2m 处的质点在t =0.03s 时刻向y 轴正方向运动,可知波向右传播。 则时间

3

4

t n T ?=+()

解得周期

40.12

=s 4343

t T n n ?=

++,(n =0,1,2…) 频率

14343Hz 40.12

n n f T t ++=

?==,(n =0,1,2…) 当n =3时

f =125Hz

选项A 正确; B .波速的通项

43

=1.2m/s=(4030 )m/s 0.12

n v f n λ+==?

+,n =0,1,2…… 因为n 是整数,故v 不可能等于10m/s ,选项B 错误;

C .t =0时x =1.4m 处质点位于x 轴上方,加速度方向沿y 轴负方向,选项C 错误;

D .从t =0时起,平衡位置在0.9m 处的质点从平衡位置向下振动,振动方程为

Asin y t ω=-

当1

12

t T =

时 25sin(

)m=-5sin m=-2.5m 126

T y T ππ

=-??? 选项D 正确。 故选AD 。 14.ABC 【解析】 【分析】 【详解】

由波形图可知,平衡位置在1m x =处的质元的振幅为0.03m ,选项A 正确; 由图可知波长λ=2m ,因T =0.2s ,则该波的波速为2

m/s 10m/s 0.2

v T

λ

=

=

=,选项B 正确;因t =0时刻平衡位置在x =0.5m 处的质元沿y 轴负向振动,则t =0.3s=1

1

2

T 时,平衡位置在x =0.5m 处的质元向y 轴正向运动,选项C 正确;因t =0时刻平衡位置在x=0.5m 处的质元沿y 轴负向振动,则t =0.4s=2T 时,平衡位置在x =0.5m 处的质元仍在平衡位置向y 轴负向运动,选项D 错误;因t =0时刻平衡位置在x =1.0m 处的质元在波峰位置,则t =0.5s=2

1

2

T 时,平衡位置在x =1.0m 处的质元振动到波谷位置,此时的加速度为y 轴正向最大,则选项E 错误. 15.C 【解析】 【详解】

A .图中两列波的波长不同;波速由介质决定,是相同的;根据v f λ=,频率不同,两列

波不会干涉,只是叠加,A 错误;

B .两列波不能产生稳定的干涉,所以振动不是始终加强或减弱的,B 错误;

C .波叠加时,各个质点的位移等于各个波单独传播时引起位移的矢量和,故

0a x A A =-=,2b x A A A =--=-,2c x A A A =+=,

C 正确;

D .波传播时,各个质点只是在平衡位置附近做振动,D 错误; 故选C 。 16.B 【解析】 【分析】 【详解】

AB .由图可知乙质点L 的振动情况,该时刻质点L 向y 轴正方向振动。根据上下坡法或者平移法可知,该横波沿x 轴正方向传播,质点N 该时刻向y 轴负方向运动,故A 错误,故B 正确;

C .质点L 只在平衡位置附近y 轴方向上下振动,波传播时,质点不会沿x 轴正方向移动,故C 错误;

D .该时刻质点K 与M 的速度为零,质点K 加速度为-y 方向,质点M 加速度为+y 方向,故D 错误。 故选B 。 17.D 【解析】 【详解】

A.从两时刻的波形图可以看出,在Δt =0.6 s 时间内,波传播的距离Δx =34

λ

=6 m ,故传播时间Δt =

34

T

=0.6 s ,周期T =0.8 s ,A 项错误; B.同时可求波速为10 m/s ;t =0时刻P 点向y 轴负方向振动,经过Δt =0.9 s =11

8

T ,P 点正向y 轴负方向振动,B 项错误;

C.经过t =0.4 s ,即半个周期,P 点经过的路程为2A =0.4 m ,C 项错误;

D.经过t =0.5 s ,波向x 轴负向平移Δx =vt =5 m ,可知Q 点处于波峰,D 项正确。 故选D. 18.D 【解析】 【分析】 【详解】 根据题意可知,34t T =

时,在51

+44

λλλ=处的质点处于

03223cos cos cos 42

y A t A A T T T π

ππ??????

==?==

? ? ???????

则此时该质点位于平衡位置,下一时刻,该质点向上运动,故AB 错误; 根据题意,横波沿x 轴负方向传播,根据同侧法判断可知,C 错误,D 正确。 故选D 。 19.B 【解析】 【分析】 【详解】

同一波源的频率相等,所以有12f f =,从图中可得122λλ=,故根据公式v f λ=可得

122v v =,故B 正确,ACD 错误

20.ACD 【解析】 【分析】 考查波的传播。 【详解】

A .由题意可知:4m λ= ,根据当t=9s 时质点A 刚好第3次到达波峰可知,99s 4

T =,即4s T =,所以41m/s 4m

v T

s

λ

=

=

=,故A 正确; B .此波的频率为1

0.25Hz f T

== ,两波发生干涉现象的条件为两波的频率相等,故B 错误;

C .由t =0时的波形图可知,质点x =4m 处质点的起振方向沿y 轴负向,所以质点C 的起振方向沿y 轴负向,故C 正确;

D .质点C 、B 平衡位置相距3

34

m λ=,所以如果质点C 到达波峰,则质点B 一定在平衡位置,故D 正确; E .质点振动的角速度为22

T ππ

ω=

=,所以质点A 振动方程为()sin sin

m 2

y A t t π

ω== ,故E 错误.

故选ACD 。 21.ABE 【解析】 【分析】 【详解】

A.根据图b 可知t =0.10 s 时刻质点Q 向y 轴负方向运动,A 正确.

B.根据图像可得:波长8m λ=,周期0.2s T =,波速40m /s v T

λ

=

=,t =0.20 s 时刻质

点Q 向y 轴正方向运动,所以波向x 轴正向传播,在t =0.25 s 时,经过0.05s ,波右传播了距离2m x v t ?=?=;所以在t =0.25 s 时,质点P 的运动情况和t =0.20 s 时刻x =-1m 处的质点相同,即过了平衡位置向波谷振动,加速度与y 轴正方向相同,B 正确. C .由B 分析知,波向x 轴正向传播,波速40m /s v =,从t =0.10 s 到t =0.25 s ,该波沿x 轴正方向传播了''6m x v t ?=?=,故C 错误.

D. t =0.10 s 时,''4m x v t ?=?=,则此时P 和t =0.20 s 时刻x =5m 处的质点运动情况相

同,经过了波谷向平衡位置运动.则从t =0.10 s 到t =0.25 s ,经过0.15s ,即3

4

T ,因为t =0.10 s 时,P 不在波峰、波谷或平衡位置,所以通过的路程不是330cm A =,D 错误.

E.根据图b 可知质点Q 的角速度210rad/s T

π

ωπ==,简谐运动表达式为y =0.10sin 10πt ,E 正确. 22.ACE 【解析】 【详解】

A .根据波动与振动方向间的关系可知,波源O 的起振方向与图中x =27m 处质点的振动方向相同,沿y 轴正方向,则质点P 的起振方向也是沿y 轴正方向,故A 正确。

B .该波3s 内传播的距离为27m ,则波速

279m/s 3

x v t =

== 选项B 错误; C .波的周期

18

s=2s 9

T v

λ

=

=

则0~3s 时间内,P 点振动的时间为 4.51

3 2.5s=1T 94

t =-= 运动的路程为5A =5cm ,选项C 正确;

D .t =3.6s 时刻质点Q 振动的时间'

18

3.6 1.6s 9

t =-

=,则此时质点Q 正在从最低点向上振动,则在开始的一段极短时间内,Q 点加速度变小,选项D 错误;

E . t =6s 时P 点已经振动了 4.53

6 5.5s=2T 94

s s -=,此时P 点恰好位于波谷,选项E 正确。故选ACE 。 23.ABD 【解析】 【分析】 【详解】

凡是波都能发生多普勒效应,因此利用光波的多普勒效应便可以测定遥远天体相对于地球运动的速度;利用多普勒效应制作的测速仪常用于交通警察测量汽车的速度;铁路工人是根据振动的强弱(并非多普勒效应)而对火车的运动进行判断的;炮弹飞行时,与空气摩擦产生声波,人耳接收到的频率与炮弹的相对运动有关.因此只有选项C 没有利用多普勒效应;故选C . 24.ACE 【解析】 【分析】 【详解】

A .由图(a )可知该简谐横波的波长为λ=2m ,由图(b )知周期为T =4s ,则波速为

2

m/s 0.5m/s 4

v T λ

=

== 故A 正确;

B .根据图(b )的振动图像可知,x =1.5m 处的质点在t =2s 时振动方向向下,所以该波向左传播,故B 错误;

C .由于

t =2s=0.5T

所以0

2s 时间内,质点P 的路程为

S =2A =8cm

故C 正确;

D .由图(a )可知t =2s 时,质点P 在波谷,t =2s=0.5T ,所以可知02s 时间内,P 向y 轴

负方向运动,故D 错误; E .t =2s 时,质点P 在波谷

5

7s 2s 5s 4

t T ?=-==

则t =7s 时,P 恰回到平衡位置,E 正确。 故选ACE 。 25.AC 【解析】

试题分析:由图,经过0.35s 时,质点Q 距平衡位置的距离小于质点P 距平衡位置的距离.故A 正确.此时P 向下运动,Q 点向上运动.

0.2T s

=,经过

0.251

14

t s T

==时,P 点到达波谷,Q 点到达平衡位

置上方,但未到波峰,质点Q 的加速度小于质点P 的加速度.故B 错误.因波沿x 轴的正

方向传播,

4m

λ=,则波速

20/v T

m s

λ=

=,则经过0.15s ,波传播距离x=vt=3m .故C 正确.

0.112t s T

==,质点Q 的运动方向沿y 轴负方向.故D 错误. 故选AC

考点:波长、频率和波速的关系;横波的图象.

高中物理选修历年高考题

—-可编辑修改,可打印—— 别找了你想要的都有! 精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——

全力满足教学需求,真实规划教学环节 最新全面教学资源,打造完美教学模式 高中物理选修3-3 历年高考题 2010年 (2010·江苏)(1)为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体。下列图象能正确表示该过程中空气的压强p 和体积V 关系的是 。 (2)在将空气压缩装入气瓶的过程中,温度保持不变,外界做了24KJ 的功。现潜水员背着该气瓶缓慢地潜入海底,若在此过程中,瓶中空气的质量保持不变,且放出了5KJ 的热量。在上述两个过程中,空气的内能共减小 KJ,空气 (选填“吸收”或“放出”) (3)已知潜水员在岸上和海底吸入空气的密度分别为1.3kg/3m 和2.1kg/3m ,空气的摩尔质量为0.029kg/mol ,阿伏伽德罗常数A N =6.0223110mol -?。若潜水员呼吸一次吸入2L 空气,试估算潜水员在海底比在岸上每呼吸一次多吸入空气的分子数。(结果保留一位有效数字)

(2010·全国卷新课标)33.[物理——选修3-3] (1)(5分)关于晶体和非晶体,下列说法正确的是 (填入正确选项前的字母) A.金刚石、食盐、玻璃和水晶都是晶体 B.晶体的分子(或原子、离子)排列是有规则的 C.单晶体和多晶体有固定的熔点,非晶体没有固定的熔点 D.单晶体和多晶体的物理性质是各向异性的,非晶体是各向同性的 (2)(10分)如图所示,一开口气缸内盛有密度为的某种液体;一长为的粗细均匀的小平底 朝上漂浮在液体中,平衡时小瓶露出液面的部分和进入小瓶中液柱的长度均为。现用活塞将气缸封闭(图中未画出),使活塞缓慢向下运动,各部分气体的温度均保持不变。当小瓶的底部恰好 与液面相平时,进入小瓶中的液柱长度为,求此时气缸内气体的压强。大气压强为,重力加速度为。 (2010·福建)28.[物理选修3-3](本题共2小题,第小题6分,共12分。第小题只有一个选项符合题意) ρl 4l 2 l 0ρ g

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

人教版高中物理选修31知识点归纳总结.doc

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理选修3-1公式

高中物理选修3-1公式 第一章 静电场 1、库仑力:221r q q k F = (适用条件:真空中静止的点电荷) k = 9.0×109 N ·m 2/ c 2 静电力常量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场性质的物理量。是矢量。 定义式: q F E = 单位: N / C 或V/m 点电荷电场场强 2r Q k E = 匀强电场场强 d U E = 3、电势能:电势能的单位:J 通常取无限远处或大地表面为电势能的零点。 静电力做功等于电势能的减少量 PB PA AB E E W -= 4、电势: 电势是描述电场能的性质的物理量。是标量。 电势的单位:V 电势的定义式:q E p = ? 顺着电场线方向,电势越来越低。 一般点电荷形成的电场取无限远处的电势为零,在实际应用中常取大地的电势为零。 5、电势差U ,又称电压 q W U = U AB = φA -φB 电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量(侧移距离): 做类似平抛运动 2 22022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角度 2 0tan mdv qUl v at v v x y == = θ 8、电容器的电容: 电容是表示电容器容纳电荷本领大小的物理量。单位:F 定义式: c Q U = 电容器的带电荷量: Q=cU 平行板电容器的电容: kd S c πε4= 平行板电容器与电源的两极相连,则两极板间电压不变

高中物理选修3-2综合测试题(含答案)

1.如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度的大小随时间变化。下列说法中正确的是() ①当磁感应强度增加时,线框中的感应电流可能减小②当磁感应强度增加时,线框中的感应电流一定增大 ③当磁感应强度减小时,线框中的感应电流一定增大④当磁感应强度减小时,线框中的感应电流可能不变 A.只有②④正确 B.只有①③正确 C.只有②③正确 D.只有①④正确 2.一飞机在北半球的上空以速度v水平飞行,飞机机身长为a,翼展为b;该空间地磁场磁感应强度的水平分量为 B1,竖直分量为B2;驾驶员左侧机翼的端点用A表示,右侧机翼的端点用B表示,用E A. E=B1vb ,且A点电势低于B点电势 B.E=B1vb,且A点电势高于B点电势 C.E=B2vb,且A点电势低于B点电势 D.E=B 2vb,且A点电势高于B点电势 3.如图,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N极朝下。当磁铁向下运动时(但未插入线圈内部)() A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引 B.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥 C.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引 D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥 4.如图甲所示,长直导线与闭合金属线框位于同一平面内,长直导线中的电流i 随时间t的变化关系如图乙所示.在0-T/2时间内,直导 线中电流向上,则在T/2-T时间内,线框中感应电流的方向与所受安培力情况是() A.感应电流方向为顺时针,线框受安培力的合力方向向左 B.感应电流方向为逆时针,线框受安培力的合力方向向右 C.感应电流方向为顺时针,线框受安培力的合力方向向右 D.感应电流方向为逆时针,线框受安培力的合力方向向左 5.图中两条平行虚线之间存在匀强磁场,虚线间的距离为l,磁场方向垂直纸面向里.abcd是位于纸面内的梯形 线圈,ad 与bc间的距离也为l.t=0时刻,bc边与磁场区域边界重合(如图).现令线圈以恒定的速度v沿垂直于 磁场区域边界的方向穿过磁场区域.取沿a→b→c→d→a的感应电流为正,则在线圈穿越磁场区域的过程中,感 应电流I随时间t变化的图线可能是() 6.如图所示电路中,A、B是两个完全相同的灯泡,L是一个理想电感线圈,当S闭合与断开时,A、B的亮度情况是() A.S闭合时,A立即亮,然后逐渐熄灭 B.S闭合时,B立即亮,然后逐渐熄灭 C.S闭合足够长时间后,B发光,而A不发光 D.S闭合足够长时间后,B立即熄灭发光,而A逐渐熄灭 7.铁路上使用一种电磁装置向控制中心传输信号以确定火车的位置。能产生匀强磁场的磁铁,被安装在火车首节车厢下面,如图(甲)所示(俯视图)。当它经过安放在两铁轨间的线圈时,便会产生一电信号, 被控制中心接收。当火车通过线圈时,若控制中心接收到的线圈两 端的电压信号为图(乙)所示,则说明火车在做() A.匀速直线运动 B.匀加速直线运动 C.匀减速直线运动 D.加速度逐渐增大的变加速直线运动 8.图甲中的a是一个边长为为L的正方向导线框,其电阻为R.线框 以恒定速度v沿x轴运动,并穿过图中所示的匀强磁场区域b.如果 以x轴的正方向作为力的正方向。线框在图示位置的时刻作为时间的零点,则磁场对线框的作用力F随时间变化的图线应为图乙中的哪个图?() 9.如图所示,将一个正方形导线框ABCD置于一个范围足够大的匀强磁场中,磁场方向与其平面垂直.现在AB、CD的中点处连接一个电容器,其上、下极板分别为a、b,让匀强磁场以某一速度水平向右匀速移动,则() 图乙 x 3L a b L D Ab B i i -i 甲 A B C D

高中物理选修32知识点详细汇总

电磁感应现象愣次定律 一、电磁感应 1.电磁感应现象 只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。 产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况(Φ改变的方式): ①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S 增大或减小 ②线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 ③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 (Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势, 而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化 二、感应电流方向的判定 1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手 掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即 为感应电流方向(电源). 用右手定则时应注意: ①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定, ②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直. ③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向. ④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势. ⑤“因电而动”用左手定则.“因动而电”用右手定则. ⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。 导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2.楞次定律 (1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。 (定语) 主语 (状语) 谓语 (补语) 宾语 (2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。阻碍磁通量变化指: 磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用); 磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”. (3)楞次定律另一种表达:感应电流的效果总是要阻碍 ...).产生感应电流的原因. (F安方向就起到阻 ..(.或反抗

(完整word版)高中物理选修1-1习题.doc

例题1:保护知识产权,抵制盗版是我们每个公民的责任与 义务。盗版书籍影响我们的学习效率甚至会给我们的学习带 来隐患。小华有一次不小心购买了盗版的物理参考书,做练 习时,他发现有一个关键数字看不清,拿来问老师,如果你 是老师,你认为可能是下列几个数字中的那一个()A . 6.2× 10-19 C B.6.4× 10-19C C. 6.6× 10-19 C D. 6.8× 10-19 C 例题 2:真空中有两个静止的点电荷,它们之间的作用力为F,若它们的带电量都增大为原来的 2 倍,距离减少为原 来的 1/2,它们之间的相互作用力变为() A .F/2 B. F C. 4F D.16F 例题 3:真空中有两个相距 0.1m、带电量相等的点电荷,它们 间的静电力的大小为 10- 3N,求每个点电荷所带电荷量是 元电荷的多少倍? 例题4:某电场的电场线如右下图所示,则某点电荷 A 和 B 所受电场力的大小关系是() A .F A >F B B .F A

B.两条电场线在电场中可以相交 C.电场线就是带电粒子在电场中的运动轨迹 D.在同一幅电场分布图中电场越强的地方,电场线越密 例题6:某电池电动势为 1.5V ,如果不考虑它内部的电阻, 当把它的两极与150Ω的电阻连在一起时, 16 秒内有电荷定向移动通过电阻的横截面,相当于 的个电子 通过该截面。 例题 7:如右图所示的稳恒电路中, R1=1Ω , R2=2Ω, R3=3Ω那么通过电阻R1、 R2、 R3 的电流强度之比I1: I2: I3 为() A.1:2:3 B.3:2:1 C.2:1:3 D.3:1:2 例题 8:通过电阻 R 的电流强度为 I 时,在 t 时间内产生的热量为Q,若电阻为 2R,电流强度为 I/2 ,则在时间 t 内产生的热量为( ) A . 4Q B. 2Q C. Q/2 D. Q/4 例题 9:把四个完全相同的电阻A、B、C、D 串连后接入电路, 消耗的总功率为P,把它们并联后接入该电路,则消耗的总 功率为( ) A . P B. 4P C.8P D. 16P

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理选修3-1公式

选修3-1公式 第一章、电场 1、电荷先中和后均分:2 2 1q q q += (带正负号) 2、库仑定律:2 2 1r q q k F = (不带正负号) (k=9.0×109 N 〃m 2/C 2 ,r 为点电荷球心间的距 离) 3、电场强度定义式:q F E = 场强的方向:正检验电荷受力的方向. 4、点电荷的场强:2A A r Q k E = (Q 为场源电量) 5、电场力做功:AB AB qU W = (带正负号) 6、电场力做功与电势能变化的关系:P E W ?-=电 7、电势差的定义式:q W U AB AB = (带正负号) 8、电势的定义式:q W AP A = ? (带正负号) (P 代表零势点或无穷远处) 9、电势差与电势的关系:B A AB U ??-= 10、匀强电场的电场强度与电势差的关系: d U E = (d 为沿场强方向的距离) 11、初速度为零的带电粒子在电场中加速: m qU v 2= 12、带电粒子在电场中的偏转: 加速度——md qU a = 偏转量——2 2 2v md l qU y ??= 偏转角——2 tan v md l qU ??= θ 13、初速度为零的带电粒子在电场中加速并偏转: 1 2 2122422dU l U m qU md l qU y =? ?= 14、电容的定义:U Q C = 单位:法拉 F 15、平行板电容器的电容:kd S C ??=πε4 第二章、电路 1、电阻定律:S l R ρ= (l 叫电阻率) 2、串联电路电压的分配:与电阻成正比 2121R R U U =,总U R R R U 211 1+= 3、并联电路电流的分配:与电阻成反比 1221R R I I =,干I R R R I 212 1+= 4、串联电路的总电阻:)( 21nR R R R =+=串 5、并联电路的总电阻:)( 212 1n R R R R R R =+= 并 6、I-U 伏安特性曲线的斜率:R k 1tan == θ 7、部分电路欧姆定律:R U I = 8、闭合电路欧姆定律:r R E I += 9、闭合电路的路端电压与输出电流的关系: r I E U ?-= 10、电源输出特性曲线: 电动势E :等于U 轴上的截距 内阻r :直线的斜率短 I E r ==θtan

重点高中物理选修试题大全

高中物理选修3-3练习题 一、分子动理论(微观量计算、布朗运动、分子力、分子势能) 1、用油膜法测出分子的直径后,要测定阿伏加德罗常数,只需知道油滴() A、摩尔质量 B、摩尔体积 C、体积 D、密度 2、将1cm3油酸溶于酒精中,制成200cm3油酸酒精溶液。已知1cm3溶液中有50 () A、 3 A C 4 (2) A. C. 5、关于布朗运动,下列说法正确的() A.布朗运动就是分子的无规则运动 B.布朗运动是液体分子的无规则运动 C.温度越高,布朗运动越剧烈 D.在00C的环境中,布朗运动消失 6、关于布朗运动,下列说法中正确的是() A.悬浮在液体或气体中的小颗粒的无规则运动就是分子的无规则运动 B.布朗运动反映了悬浮微粒分子的无规则运动

C.分子的热运动就是布朗运动 D.悬浮在液体或气体中的颗粒越小,布朗运动越明显 7、在较暗的房间里,从射进来的阳光中,可以看到悬浮在空气中的微粒在不停地运动,这些微粒的运动是() A.是布朗运动B.空气分子运动C.自由落体运动D.是由气体对流和重力引起的运动 8、做布朗运动实验,得到某个观测记录如图所示.图中记录的是() A.分子无规则运动的情况 B.某个微粒做布朗运动的轨迹 C.某个微粒做布朗运动的速度—时间图线 D.按等时间间隔依次记录的某个运动微粒位置的连线 9、以下关于分子力的说法正确的是() A.分子间既存在引力也存在斥力 B.液体难以被压缩表明液体分子间只有斥力存在 C.气体分子间总没有分子力的作用 D.扩散现象表明分子间不存引力 10、分子间的相互作用力由引力f引和斥力f斥两部分组成,则() A.f引和f斥是同时存在的B.f引总是大于f斥,其合力总是表现为引力 C.分子间的距离越小,f引越小,f斥越大D.分子间的距离越小,f引越大,f斥越小 11、若两分子间距离为r0时,分子力为零,则关于分子力、分子势能说法中正确的是() A.当分子间的距离为r0时,分子力为零,也就是说分子间既无引力又无斥力B.分子间距离大于r0时,分子距离变小时,分子力一定增大

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第四章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I = = (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯 泡A 逐渐变暗。

高中物理选修3-1知识点归纳(完美版)

物理选修3-1 一、电场 1. 两种电荷、电荷守恒定律、 元电荷(e = 1.60 x 10-19C );带电体电荷量等于元电荷的 整数倍 2. 库仑定律:F =?2伞(真空中的点电荷){ F:点电荷间的作用力(N ); r k:静电力常量k = 9.0 x 109N?m/C 2; Q 、Q:两点电荷的电量(C ) ; r:两点电荷间的距离(m ); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引 } 3. 电场强度:E 二匸(定义式、计算式){ E:电场强度(N/C ),是矢量(电场的叠加原理);q :检验 q 电荷的电量(C ) } 4. 真空点(源)电荷形成的电场 E =竽 {r :源电荷到该位置的距离(m ), Q :源电荷的电量} r 5. 匀强电场的场强 E =U AB { 3B :AB 两点间的电压(V ) , d:AB 两点在场强方向的距离 (m )} d 6. 电场力:F = qE {F:电场力(N ) , q:受到电场力的电荷的电量 (C ) , E:电场强度(N/C ) } A E P 减 7. 电势与电势差: L A B = $ A - $ B , U A B = W AB /q = △ q 8. 电场力做功:W A B = qL AB = qEd = △ E P 减{ W A B :带电体由A 到B 时电场力所做的功(J ) , q:带电量(C ) , L A B : 电 场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m ); △曰减:带电体由A 到B 时势能的减少量} 9. 电势能:0A = q $ A {庄A :带电体在 A 点的电势能(J ) , q:电量(C ) , $ A :A 点的电势(V ) } 10. 电势能的变化 △曰减=E^A -E PB {带电体在电场中从 A 位置到B 位置时电势能的减少量} 11. 电场力做功与电势能变化 W A B = △ E P 减=qUk (电场力所做的功等于电势能的减少量 ) 12. 电容C = Q/U (定义式,计算式){ C:电容(F ) , Q:电量(C ) , U:电压(两极板电势差)(V ) } 13. 平行板电容器的电容 C =上匚(S:两极板正对面积,d:两极板间的垂直距离, 3 :介电常数) 4水d 常见电容器 类平抛运动(在带等量异种电荷的平行极板中: E = U d 垂直电场方向:匀速直线运动 L = V o t 注:(1)两个完全相同的带电金属小球接触时 ,电量分配规律:原带异种电荷的先中和后平分 的总量平分; 14.带电粒子在电场中的加速 (Vo = 0): W = △ E <增或 qU = mVt 2 15.带电粒子沿垂直电场方向以速度 V o 进入匀强电场时的偏转 (不考虑重力作用) 平行电场方向:初速度为零的匀加速直线运动 d at2 , F a=— =qE = qU 2 m m m ,原带同种电荷

高中物理选修3-1公式 (1)

高中物理选修3-1公式 电磁学常用公式 库仑定律:F=kQq/r2 电场强度:E=F/q 点电荷电场强度:E=kQ/r2 匀强电场:E=U/d 电势能:E?=qφ 电势差:U??=φ?-φ? 静电力做功:W??=qU?? 电容定义式:C=Q/U 电容:C=εS/4πkd 带电粒子在匀强电场中的运动 加速匀强电场:1/2*mv2 =qU v2 =2qU/m 偏转匀强电场: 运动时间:t=x/v? 垂直加速度:a=qU/md 垂直位移:y=1/2*at? =1/2*(qU/md)*(x/v?)2偏转角:θ=v⊥/v?=qUx/md(v?)2 微观电流:I=nesv 电源非静电力做功:W=εq 欧姆定律:I=U/R 串联电路 电流:I?=I?=I?= …… 电压:U =U?+U?+U?+ …… 并联电路 电压:U?=U?=U?= …… 电流:I =I?+I?+I?+ …… 电阻串联:R =R?+R?+R?+ …… 电阻并联:1/R =1/R?+1/R?+1/R?+ …… 焦耳定律:Q=I2 Rt P=I2 R P=U2 /R 电功率:W=UIt 电功:P=UI 电阻定律:R=ρl/S 全电路欧姆定律:ε=I(R+r) ε=U外+U内 安培力:F=ILBsinθ 磁通量:Φ=BS 电磁感应 感应电动势:E=nΔΦ/Δt

导线切割磁感线:ΔS=lvΔt E=Blv*sinθ 感生电动势:E=LΔI/Δt 高中物理电磁学公式总整理 电子电量为库仑(Coul),1Coul= 电子电量。 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、电路学 1.理想电池两端电位差固定为。实际电池可以简化为一理想电池串连内电阻r。实际电池在放电时,电池的输出电压,故输出之最大电流有限制,且输出电压之最大值等于电动势,发生在输出电流=0时。 实际电池在充电时,电池的输入电压,故输入电压必须大于电动势。 2.若一长度d的均匀导体两端电位差为,则其内部电场。导线上没有电荷堆积,总带电量为零,故导线外部无电场。理想导线上无电位降,故内部电场等于0。 3.克希荷夫定律 a.节点定理:电路上任一点流入电流等于流出电流。 b.环路定理:电路上任意环路上总电位升等于总电位降。 三、静磁学 1.必欧-沙伐定律,描述长的电线在处所建立的磁场

人教版高中物理选修3-3测试题全套及答案

人教版高中物理选修3-3测试题全套及答案 第七章 学业质量标准检测 本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分,时间90分钟。 第Ⅰ卷(选择题 共40分) 一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,第1~6小题只有一个选项符合题目要求,第7~10小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.(河北省“名校联盟”2018届高三教学质量检测)下列选项正确的是( D ) A .液体温度越高,悬浮颗粒越大,布朗运动越剧烈 B .布朗运动是指悬浮在液体中固体颗粒的分子的无规则运动 C .液体中的扩散现象是由于液体的对流形成的 D .当分子间距增大时,分子间的引力和斥力都减小 解析:温度越高,分子运动越剧烈,悬浮在液体中的颗粒越小,撞击越容易不平衡,则它的布朗运动就越显著,A 错误;布朗运动是悬浮微粒的无规则运动,不是分子的无规则运动,B 错误;液体中的扩散现象是由于液体分子的无规则运动引起的,C 错误;当分子间距增大时,分子间的引力和斥力都减小,D 正确。 2.(上海市鲁迅中学2017~2018学年高二上学期期末)一定质量0℃的水,凝固成0℃的冰时,体积变化,下列正确的说法是( A ) A .分子平均动能不变,分子势能减小 B .分子平均动能减小,分子势能增大 C .分子平均动能不变,分子势能增大 D .分子平均动能增大,分子势能减小 解析:因为0℃的水凝固成0℃的冰需要放出热量,所以质量相同的0℃的冰比0℃的水内能小;因为内能包括分子动能和分子势能,由于温度不变,分子平均动能不变,因此放出的部分能量应该是由分子势能减小而释放的。故选A 。 3.已知阿伏加德罗常数为N A ,某物质的摩尔质量为M ,则该物质的分子质量和m kg 水中所含氢原子数分别是( A ) A.M N A ,19 mN A ×103 B .MN A,9mN A C.M N A ,118mN A ×103 D.N A M ,18mN A 解析:某物质的摩尔质量为M ,故其分子质量为M N A ;m kg 水所含摩尔数为m ×10318 ,故氢原子数为m ×10318×N A ×2=mN A ×1039 ,故A 选项正确。

高中物理选修32知识点详细讲解版

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”) ②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引

高中物理选修3-1知识点汇总

第一章 电场 1. 电荷 自然界只存在正、负两种电荷;单位是库伦,符号C ;元电荷电量e=1.6?10 19 -C ;电荷产生方 法有摩擦起电、接触起电、感应起电。 2. 电荷守恒定律 电荷既不能创造,也不能消失,它只能从一个物体转移到另一个物体,或从物体的这一部分转移到另一部分,转移过程中总电荷数不变。 3. 点电荷 当带电体的尺寸和形状对所研究的问题影响不大时,可将此带电体看成点电荷;对于电荷分布均匀的球体,可认为是电荷集中在球心的点电荷;检验电荷一般也可看成点电荷;点电荷实际上是一种理想化模型,并不存在。 4. 库伦定律 在真空中两个点电荷的相互作用力跟它们电荷量的乘积成正比,跟它们间距离的平方成反比, 作用力的方向在它们的连线上;F=k 2 21r Q Q , k=9?109N ·m 2/C 2 .。 5. 电场 带电体周围存在的一种特殊物质,对放入其中的电荷有力的作用;客观存在的;具有力的特性和能的特性。 6. 电场强度 放入电场中某一点的电荷受到的电场力跟它的电荷量的比值;E= q F ;方向是正电荷在该点的 受力方向;矢量,遵循矢量运算原理;点电荷场强F=k 2 r Q 。 7. 电势 描述电场能的性质;?= q E p ,E p 为电荷的 电势能;标量,正负表示大小;数值与零电势的选取有关,一般选择无穷远处为电势零点。 8. 电势差 描述电场做功的本领;U AB = q W AB ;标量, 正负表示电势的高低;也被称作电压。 9. 电势能 描述电荷在电场中的能量,电荷做功的本领;E p =?q ;标量。 10.电场线 从正电荷出发,到负电荷终止的曲线,曲线上每一点的切线方向都跟该点的场强方向一致;虚构的;永不相交;疏密表示电场强度的强弱;沿电场方向电势减小。 11.等势面 电场中电势相等的点构成的面;空间中没有电荷的地方等势面不相交;在平面中构成的是等势线;等差等势面的疏密程度反映电场的强弱。 12.匀强电场 电场强度大小处处相等;E=d U 。 13.电场力做功情况 只与始末位置有关,与路径无关;W=Uq ;匀强电场中W=Fs ·cos θ=Eqs ·cos θ;电场力做的正功等于电势能的减少,W=-?E 。 14.电容器 两个互相靠近又彼此绝缘的导体组成电容器;电容器能充电和放电。 15.电容 电容器所带电荷量与两极板间的电压的比值;单位是法,符号F ;C=U Q 。 16.平行板电容器 高中阶段主要接触的电容器;平行板电容器的电容C= kd S πε4;平行板电容器两极板间的电场可 认为是匀强电场。 17.带电粒子在匀强电场中的运动 加速或者偏转;a=m Eq =md Uq 。 第二章 磁场 1. 磁场 存在与磁体、电流或运动电荷周围的一种物质;对放入其中的磁极或电流有磁场力的作用;规

相关主题
文本预览
相关文档 最新文档