当前位置:文档之家› PLC课程设计:YA32—200四柱式万能液压机系统

PLC课程设计:YA32—200四柱式万能液压机系统

PLC课程设计:YA32—200四柱式万能液压机系统
PLC课程设计:YA32—200四柱式万能液压机系统

YA32—200四柱式万能液压机系统电气控制系统设计

班级:机械0805

姓名:

学号:

指导老师:

中南大学机电工程学院

目录

一、YA32-200四柱式万能液压机的工作原理

YA32-200四柱式万能液压机的结构

YA32-200四柱式万能液压机液压系统的组成 YA32-200四柱式液压机的液压系统原理二、液压机电继电器-接触器电气控制设计

继电器-接触器电气控制电路图分析及设计

电气元件的选择

三、液压机可编程控制器系统的设计

PLC 控制系统的设计原则

PLC控制系统的设计步骤

PLC选型

PLC系统的接线外设元器件选择

PLC程序设计

程序调试

四、总结

五、参考文献

中南大学机电院

一.YA32-200四柱式万能液压机的工作原理

YA32—200实物图片

1. YA32-200四柱式万能液压机的结构

液压压力机的英文名称是hydraulic and oil press液压压力机又称液压成形压力机,使用各种金属与非金属材料成型加工的设备。液压压力机主要是有机架、液压系统、冷却系统、加压油缸、上模及下模,加压油缸装在机架上端,并与上模联接,冷却系统与上模、下模联接。其特征在于机架下端装有移动工作台及与移动工作台联接的移动油缸,下模安放在移动工作台的上面。

液压机的结构类型有单柱式、三柱时、四柱式等形式,YA32—200四柱万能液压机是四柱式的,它主要由横梁、导柱、工作台、上滑块和下滑块顶出机构等部件组成,结构原理图如图1-1所示。

液压机的主要运动是上滑块机构和下滑块顶出机构的运动,上滑块机构由主液压缸(上缸)驱动,顶出机构由辅助液压缸(下缸)驱动。液压机的上滑块机构通过四个导柱导向、主缸驱动,实现上滑块机构“快速下行→慢速加压→保压延时→快速回程→原位停止”的动作循环。下缸布置在工作台中间孔内,驱动下滑快顶出机构实现“顶出→返回→停止”动作循环,如图1-2所示。YA32—200型四柱万能液压机是一种液压机典型产品,其主液压缸最大压制力为2MN。该机的液压系统采用普通液压阀控制。

2.YA32—200四柱式万能液压机液压系统的组成

YA32—200系统中的液压源为主泵3和辅泵1.主泵压力由远程调压阀9设定。辅泵1为小流量定量泵,主要主用是作电液动换阀10和4的控制油源,其工作压力由溢流阀2控制。系统的两执行元件为主缸和顶出缸,两液压缸的换向分别有电液动换阀4和10控制。液控单向阀14在主缸快速下行是开启副油箱18向主缸充液。液控单向阀12用于主缸快速下行通路和快速回程通路,单向阀13为主缸慢速下行时回油。单向阀16用于主缸的保压,阀15为带阻尼孔的卸荷阀,用于主缸保压结束后换向前主泵1的卸荷。节流阀7及背压阀6用于保持顶出缸下腔所需的力。阀5用于阀6阻塞时系统的安全保护。压力继电器用作保压起始时的信号发出装置。

图 1-3 液压系统原理图

1-辅泵;2、8-溢流阀;3-主泵;4、10-三位四通电液动换向阀;5-安全溢流阀;

6-背压溢流阀;7-节流阀;9-远程调压阀;11-二位四通电磁换向阀;12、14-液控单向阀;13、16-单向阀;15-卸荷阀;17-压力继电器;18-副油箱

3.四柱式液压机的液压系统原理

⑴主缸

①快速下行按下启动按钮,1DT与5DT接通,阀10切换到右位,阀11切换到右位,辅泵1的控制压力油经阀11将液控单向阀12打开,此时主油路的流动路线为

进油路:主泵3→换向阀10(右位)→单向阀16→主缸无杆腔

回油路:主缸有杆腔→液控单向阀12 →换向阀10(右位)→换向阀4(中)

单向阀13

此时主缸快速下降,泵3流量不足,阀14在液位高度与大气压的作用下打开,副油箱中的油

液经阀14进入主缸无杆腔。

②减速加压当主缸滑块上的活动挡块压下行行程开关XK2,电磁铁5DT断电使换向阀11复位至左位,阀9关闭。此时无杆腔压力升高,阀14关闭,主缸转为慢速接近工件和加压阶段。系统油液的流动录像为

进油路:同快速下行

回油路:主缸有杆腔→单向阀13→换向阀10(右位)→换向阀4(中)→油箱

③保压延时当主缸上腔的压力达到设定值时,触发继电器17,使1DT断电,阀6复位至中位,主缸上、下油腔封闭,系统保压,单向阀16保证了主缸上腔良好的密封性,主腔上腔保持高压,保压时间由时间继电器调整,保压阶段只有液压泵低压卸荷,系统中无油液流动。

主泵3→换向阀10(中位)→换向阀4(中位)→油箱

④卸压回程保压时间结束时,时间继电器发出信号,使2DT通电,换向阀10换至左位,主缸进入回程阶段。如果此时主缸上腔立即与回油想通,会引起振动和噪声,所以必须先卸压后回程。

当换向阀10切换至左位后,主缸上腔还未卸压,压力很高,阀15开启,因此有

主泵3→换向阀10(左位)→阀15→油箱

此时主泵3在低压下运行,尚不足以打开阀14的主阀芯,但能打开阀内部的卸荷小阀芯,高压油由卸荷小阀芯的开口泄回副油箱18,压力逐渐降低至使阀15关闭为止。卸压结束后,顶开阀14主阀芯,此时系统的油液流动路线为

进油路:主泵3→换向阀10(左位)→单向阀9→主缸有杆腔

回油路:主缸无杆腔→阀14→副油箱18

⑤停止主缸挡块压下XK1时,2DT断电使换向阀10复位至中位,主缸活塞被该阀的M型机能的中位锁紧而停止运动,回程结束,油液流动同保压阶段。

⑵顶出缸

顶出缸的运动应与主缸实现互锁。阀10处于中位状态。

①顶出当主缸挡块碰到XK1时,3DT通电,换向阀4切换至左位,油液流动路线为

进油路:主泵3→换向阀10(中位)→换向阀4(左位)→顶出缸无杆腔

回油路:顶出缸有杆腔→换向阀4(左位)→邮箱

②停止顶出杆顶出,当挡块碰到XK4时,断开3DT,同时触发时间继电器。此时油的流动同主缸停止时。

③返回时间继电器定时时间到后,接通4DT,换向阀4切换至右位,油液流动路线为

进油路:主泵3→换向阀10(中位)→换向阀4(右)→顶出缸有杆腔

回油路:顶出缸无杆腔→换向阀4(右)→油箱

返回至碰到行程开关XK5,4DT断电。顶出缸再次停止工作。

表1为3150KN通用液压机的电磁铁动作顺序表

二、液压机电继电器-接触器电气控制设计

㈠继电器-接触器电气控制电路设计

电气元件自动控制能减轻操作人员的劳动强度,提高工作机械的生产效率和产品品质,而且能够实现手动控制难以完成的诸如远距离集中控制。继电器—接触器控制系统能够完成电气元件的自动控制,而且结构简单、价格便宜。能够满足生产机械一般生产的要求,获得了广泛的应用。下面介绍YA32-200液压系统的继电器—接触器控制系统,能够实现自动控制和手动控制。

(1).继电器-接触器电气控制电路图

根据设计要求,设计出如图所示的继电器-接触器电气控制电路图。

①启动电机——按启动按扭SB2,1KM得电吸合,其常开接触器1KM闭合,电机启动,泵供油,电磁铁全部处于失电状态,主泵2输出的油经三位四通电液换向阀10中位及阀4中中位流回油箱,空载启动。

②主缸快速下行——按启动按扭3SB,1K得电吸合,其控制的常开常开1K闭合,电磁铁YA、5YA先后得电,阀10换至右位,控制油经阀11右位使液控单向阀9打开,从而实现主缸快速下行。

③主缸减速压制——当上缸滑块降至一定位置触动行程开关2SQ后,其常闭触点失电断开,电磁铁5YA失电,阀11处于原位,液控单向阀12关闭。

④主缸保压延时——当上缸上腔压力达到预定值时,压力继电器KP吸合,其常闭开关KP 断开,使电磁铁1Y失电,阀10回中位,上缸的上、下腔封闭,单向阀13和充液阀14使上缸上腔保压,保压时间由时间继电器KT调整。

⑤主缸卸压回程段——保压过程结束,时间继电器KT发出信号,其控制的常开触点KT闭合,中间继电器2K得电吸合,电磁铁2YA得电,阀10换至左位,同时常开触点开关2K闭合,形成自锁。

⑥主缸原位停止——当上缸滑块上长至触动行程开关1SQ其常闭触点失电断开,电磁铁2YA 失电,阀6处于中位,泵卸载。

⑦顶出缸顶出——按下开关6SB,中间继电器3K得电,电磁铁3YA得电,换向阀4换至左位,从而实现顶出缸顶出。

⑧顶出缸退回——按下按钮7SB,电磁铁3YA失电,4YA得电,换向阀4换至右位,下液压缸活塞下行,退回。

⑨顶出缸停止——当顶出缸压倒行程开关4SQ或按下停止按钮,电磁铁4YA失电,换向阀4换至中位,泵2卸荷,顶出缸停止。

中南大学机电院

三、液压机可编程控制器系统的设计

1、PLC 控制系统的设计原则

(1)选用的PLC必须满足被控对象的控制要求;

(2)先用的PLC不仅要着眼于现在,还要适当地考虑到将来发展的需要;

(3)在满足上述两个前提的情况下,力求使该系统具有较好的性能价格比。

2、PLC控制系统的设计步骤

(1)根据被控对象的控制要求,确定整个系统的输入、输出设备的数量,从而确定PLC的I/O点数,包括开关量I/O、模拟量I/O以及特殊功能模块等。

(2)充分估计被控对象和工厂今后发展的需要,所选的PLC的I/O点数应留有一定的余量。另外,在性能价格比变化不大的情况下,尽可能选用同类型中功能强的新一代PLC (3)确定选用的PLC机型。例如:对三菱公司的小型PLC来说,一般应选用FX系列PLC,而不选用F系列PLC。

(4)建立I/O分配表,绘制PLC控制系统的输入、输出接线图。

(5)根据控制要求绘制程序流程图。

(6)根据GX软件编制程序,并在GX软件上进行软元件模拟、调试。

3.PLC选型

针对以上YA32--200液压机的控制要求,以及其本身的液压控制系统的特点,结合了PLC硬件和输入/输出接口的特点列出PLC输入/输出地址分配表如下

YA32—200四柱万能液压机控制系统的输入输出情况:控制按钮输入 6个 ,行程开关输入 4个 ,压力继电器输入 1个 ,手动开关3个,输入点数共 14个;指示灯/电磁阀输出 5个 ,电机控制输出 1个 ,照明灯输出1个 ,报警控制输出1个,输出点数共 8个;考虑到经济等因素 ,选用FX1N-24MR-001型 PLC来实现对液压机的控制 ,该 PLC有14点输入 , 10点输出 ,属于继电器输出型 ,输入输出点数满足要求并有一定的冗余。控制系统控制液压系统液压油的流向 ,按要求实现液压机的各种动作。PLC接收热继电器、行程开关、控制按钮、压力继电器等信号 ,对电磁铁的通、断电控制,通过接触器实现对电机的启停等。

4.PLC系统的接线

液压系统中位卸荷,故电机空载启动,可以直接启动,结构简单,操作方便,成本低。当按下按钮SB2时,接触器KM通电,主触点闭合,电机启动。

PLC选择为FX1N-24MR-001,采用直流电源DC24V。控制输入信号采用控制器本身提供的DC24V 电源,电磁铁、信号灯及报警器输出信号采用DC24V电源驱动,照明灯以及泵电机驱动接触器采用AC220V驱动。更具要求设计的PLC输入/输出接线图如下:

5.外设元器件选择

根据硬件电路设计要求,查阅机械设计手册,制定下面的元器件明细表:

6.PLC程序设计

⑴程序流程图如下

⑵自动运行时的顺序功能图如下

⑶PLC梯形图

报警

7.程序调试

在G X-developer软件中增添了PLC程序的离线调试功能,即仿真功能。通过该软件可以实现在没有PLC清况下照样运行PLC程序,并实现程序的在线监控和时序图的仿真功能。

①将程序输入G X-developer,转换后启动程序检查

三梁四柱液压机结构图

三梁四柱液压机结构(图) 三梁四柱液压机由主机及控制机构两大部分组成,通过主管道及电气装置联系起来构成一体。主机包括机身、主油缸、顶出油缸及允液系统等。现将各部分结构和作用分述如下 (1)机身(见外形图) 机身由上横梁、滑块、工作台、立柱、锁紧螺母、调节螺母等组成,上横梁和工作台用四根立柱与锁紧螺母联成一刚性桁架,滑块则由四根立柱导向,上下运动。通过调节四个调节螺母,调节滑块下平面对工作台台面的不平行度及行程时的不垂直度。在滑块下平面及工作台上平面上,设有T形槽,可配M24的螺栓专供安装工模具用。 在工作台中央有一圆孔,顶出缸由压套紧压于圆孔内的台阶上,在上横梁中央孔内,装有主油缸。主油缸由缸口端的台阶和大螺母紧固于横梁上。滑块中央的大孔,是用来装主活塞杆的,由螺栓和螺纹法兰把滑块与主活塞杆联成一体。在滑块四立柱孔内,装有铜导套,以便于磨损后更换,在外部均装有压配式的压注油杯,用以润滑立柱——导套运动付,在孔口端均装有防尘圈,以防止污物进入运动付,保持运动的洁净。 在锁紧螺母和调节螺母上,均配有紧定螺钉的紫铜垫,机器调整好后,拧紧螺钉可防止螺母松动。 (2)主油缸 主油缸为双作用活塞式油缸,缸底为封底式整体结构,在缸体内装有活塞头,在活塞头的外圈上,装有一道向上,一道向下的进口Y形密封圈与缸壁密封;活塞头的内圈与活塞杆的密封,是由两道O形密封圈来实现,从而使缸内形成上下两个油腔。 在缸口装有导向套,以保证活塞运动时有良好的导向性能。在导向套内孔装

有一道轴用Yx形密封圈,在导向套外圆上装有两道O形密封圈,以保证缸口部分的密封性能。缸口端采用可拆卸式的卡环联接,在端部装有防尘圈,以防止污物进入油缸内,保持油液的清洁。 在主油缸的缸底上装有充液阀,以螺纹联接,并由O形密封圈密封。在缸体的上端面,装有充液筒,用螺栓坚固联接,并用耐油橡胶圈密封。 (3)顶出油缸 顶出油缸的形式和作用原理与主油缸相同。缸底采用了螺纹结构,可以拆卸。 在活塞头的外圈,只布置两道(一上一下)方向相反的孔用Yx形密封圈。 在活塞杆外伸端的端面上,设有一个螺纹孔,以供配置顶杆用。 (4)充液系统 充液系统由充液阀和充液筒两部分组成。 当滑块快速下行时,由于主油缸上腔的负压而吸开充液阀的主阀,使充液筒内的大量油液流入主缸上腔,以使滑块能顺利的快速下行。卸压时,控制油首先进入控制阀内,使其控制活塞克服弹簧力,推动卸荷阀芯下行,使主缸上腔的高压油通过卸荷阀芯与充液筒内接通,达到卸压的目的。 在充液筒上部设有长形油标,用来观察油位。充液筒旁的溢流管,把充液筒的容积分为两部分:下部油液是供滑块快速下行用的,上部容积则是容纳滑块回程时,主缸上腔排出的油液。在充液筒的侧下部,装有一闸阀,用于定期更换油液。 充液阀是用阀座上的螺纹与油缸缸底紧固联接的,并用O形密封圈密封。充液筒是由中部平面与主缸上端面相联接,并用螺栓紧固,耐油橡胶垫密封的。在筒的盖上设有通气孔,在充液筒内设有吊钩。 (5)动力机构 动力机构是由油箱。高压油泵、电动机、集成阀块等组成。它是产生和分配工作油液,使主机能完成各项预定动作的机构。

小型液压机液压系统课程设计

攀枝花学院 学生课程设计(论文) 题目:小型液压机的液压系统 学生姓名: vvvvvv 学号:vvvvvvvv 所在院(系):机械工程学院 专业: 班级: 指导教师:vvvvvv 职称:vvvv 2014 年06 月15 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 目录

前言 (5) 一设计题目 (6) 二技术参数和设计要求 (6) 三工况分析 (6) 四拟定液压系统原理 (7) 1.确定供油方式 (7) 2.调速方式的选择 (7) 3.液压系统的计算和选择液压元件 (8) 4.液压阀的选择 (10) 5.确定管道尺寸 (10) 6.液压油箱容积的确定 (11) 7.液压缸的壁厚和外径的计算 (11) 8.液压缸工作行程的确定 (11) 9.缸盖厚度的确定 (11) 10.最小寻向长度的确定 (11) 11.缸体长度的确定 (12) 五液压系统的验算 (13) 1 压力损失的验算 (13) 2 系统温升的验算 (15) 3 螺栓校核 (16) 总结 (17) 参考文献................................................................................................. 错误!未定义书签。

前言 液压传动是以流体作为工作介质对能量进行传动和控制的一种传动形式。利用有压的液体经由一些机件控制之后来传递运动和动力。相对于电力拖动和机械传动而言,液压传动具有输出力大,重量轻,惯性小,调速方便以及易于控制等优点,因而广泛应用于工程机械,建筑机械和机床等设备上。 作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便﹑调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。 液压压力机是压缩成型和压注成型的主要设备,适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本文根据小型压力机的用途﹑特点和要求,利用液压传动的基本原理,拟定出合理的液压系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格和进行系统的结构设计。小型压力机的液压系统呈长方形布置,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。

四柱液压机工作原理解读

四柱液压机工作原理 四柱液压机四柱液压机是油泵把液压油输送到集成插装阀块,通过各个单向阀和溢流阀把液压油分配到油缸的上腔或者下腔,在高压油的作用下,使油缸进行运动。液压机是利用液体来传递压力的设备。液体在密闭的容器中传递压力时是遵循帕斯卡定律。 四柱液压机由主机及控制机构两大部分组成。液压机主机部分包括液压缸、横梁、立柱及充液装置等。动力机构由油箱、高压泵、控制系统、电动机、压力阀、方向阀等组成。[1](二用途8 该液压机适用于可塑性材料的压制工艺。如粉末制品成型、塑料制品成型、冷(热挤压金属成型、薄板拉伸以及横压、弯压、翻透、校正等工艺。 四柱液压机具有独立的动力机构和电器系统,采用按钮集中控制,可实现调整、 手动及半自动三种操作方式。 (三特点 机器具有独立的动力机构和电气系统,采用按钮集中控制,可实现调整、手动及 半自动三种工作方式:机器的工作压力、压制速度,空载快下行和减速的行程和范围,均可根据工艺需要进行调整,并能完成顶出工艺,可带顶出工艺、拉伸工艺三种工艺方式,每种工艺又为定压,定程两种工艺动作供选择,定压成型工艺在压制后具有顶出延时及自动回程。 液压机简介 (又名:油压机利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。当然,用途也根据需要是多种多样的。如按传递压强的液体种类来分,有油压机和水压机两大类。水压机机产生的总压力较大,常用于锻造和冲压。锻造水压机又分为模锻水压机和自由锻水压机两种。模锻水压机要用模具,而自由锻水压机不用模具。我国制造的第一台万吨水压机就是自由锻造水压机。 工作原理

四柱液压机[2]的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。动力机构通常采用油泵作为动力机构,一般为积式油泵。为了满 足执行机构运动速度的要求,选用一个油泵或多个油泵。低压(油压小于2.5用齿轮泵;中压(油压小于6.3用叶片泵;高压(油压小于32.0用柱塞泵。各种可塑性材料的压力加工和成形,如不锈钢板钢板的挤压、弯曲、拉伸及金属零件的冷压成形,同时亦可用于粉末制品、砂轮、胶木、树脂热固性制品的压制。 安全操作 1、液压机操作者必须经过培训,掌握设备性能和操作技术后,才能独立作业。 2、作业前,应先清理模具上的各种杂物,擦净液压机杆上任何污物。 3、液压机安装模具必须在断电情况下进行,禁止碰撞启动按钮、手柄和用脚踏在脚踏开关上。 4、装好上下模具对中,调整好模具间隙,不允许单边偏离中心,确认固定好后模具再试压。 5、液压机工作前首先启动设备空转5分钟,同时检查油箱油位是否足够、油泵声响是否正常、液压单元及管道、接头、活塞是否有泄露现象。深圳油压机系列引 &开动设备试压,检查压力是否达到工作压力,设备动作是否正常可靠,有无泄露现象。 7、调整工作压力,但不应超过设备额定压力的90%,试压一件工件,检验合格后再生产。 8、对于不同的液压机型材及工件,压装、校正时,应随时调整压机的工作压力和施压、保压次数与时间,并保证不损坏模具和工件。

小型液压机课程设计报告书

前言 液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压元件集成化、标准化,以有效防止泄露和污染等四个方面。 作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国外机型无较大差距,主要差别在于加工工艺和安装方面。良好的工艺使机器在过滤、冷却及防止冲击和振动方面,有较明显改善。在油路结构设计方面,国外液压机都趋向于集成化、封闭式设计,插装阀、叠加阀和复合化元件及系统在液压系统中得到较广泛的应用。特别是集成块可以进行专业化的生产,其质量好、性能可靠而且设计的周期也比较短。 近年来在集成块基础上发展起来的新型液压元件组成的回路也有其独特的优点,它不需要另外的连接件其结构更为紧凑,体积也相对更小,重量也更轻无需管件连接,从而消除了因油管、接头引起的泄漏、振动和噪声。逻辑插装阀具有体积小、重量轻、密封性能好、功率损失小、动作速度快、易于集成的特点,从70年代初期开始出现,至今已得到了很快的发展。我国从1970年开始对这种阀进行研究和生产,并已将其广泛的应用于冶金、锻压等设备上,显示了很大的优越性。 液压机工艺用途广泛,适用于弯曲、翻边、拉伸、成型和冷挤压等冲压工艺,压力机是一种用静压来加工产品。适用于金属粉末制品的压制成型工艺和非金属材料,如塑料、玻璃钢、绝缘材料和磨料制品的压制成型工艺,也可适用于校正和压装等工艺。 由于需要进行多种工艺,液压机具有如下的特点: (1)工作台较大,滑块行程较长,以满足多种工艺的要求; (2)有顶出装置,以便于顶出工件; (3)液压机具有点动、手动和半自动等工作方式,操作方便; (4)液压机具有保压、延时和自动回程的功能,并能进行定压成型和定程成型的操作,特别适合于金属粉末和非金属粉末的压制; (5)液压机的工作压力、压制速度和行程围可随意调节,灵活性大。

四柱液压机说明书模板

四柱液压机说明书 1、主液压泵( 恒功率输出液压泵) , 2、齿轮泵, 3、电机, 4、滤油器, 5、7、8、22、25、溢流阀, 6、18、24、电磁换向阀, 9、21、电液压换向阀, 10、压力继电器, 11、单向阀, 12、电接触压力表, 13、19、液控单向阀, 14、液动换向阀, 15、顺序阀, 16上液压缸, 1 7、顺序阀, 20、下液压缸, 23节流器, 26、行程开关 四柱万能液压机的启动: 电磁铁全断电, 主泵卸荷。主泵( 恒功率输出) →电液换向阀9的M型中位→电液换向阀21的K型中位→T 四柱万能液压机的启动: 电磁铁全断电, 主泵卸荷。主泵( 恒功率输出) →电液换向阀9的M型中位→电液换向阀21的K型中位→T 液压缸16活塞快速下行: 2YA、5YA通电, 电液换向阀9右位工作, 道通控制油路经电磁换向阀18, 打开液控单向阀19, 接通液压

缸16下腔与液控单向阀19的通道。 进油路: 主泵( 恒功率输出) →电液换向阀9→单向阀11→液压缸16上腔回油路: 液压缸16下腔→电液换向阀9→电液换向阀21的K型中位→T 液压缸活塞依靠重力快速下行: 大气压油→吸入阀13→液压缸16上腔的负压空腔 液压缸16活塞接触工件, 开始慢速下行( 增压下行) : 液压缸活塞碰行程开关2XK使5YA断电, 切断液压缸16下腔经液控单向阀19快速回油通路, 上腔压力升高, 同时切断( 大气压油→吸入阀 13 →上液压缸16上腔) 吸油路。进油路: 主泵( 恒功率输出) →电液换向阀9→单向阀11→液压缸16上腔回油路: 液压缸16下腔→顺序阀17→电液换向阀9→电液换向阀21的K型中位→T 四柱液压机的启动保压: 液压缸16上腔压力升高达到预调压力, 电接触压力表12发出信息, 2YA断电, 液压缸16进口油路切断, (单向阀11 和吸入阀13的高密封性能确保液压缸16活塞对工件保压, 利用液压缸16上腔压力很高, 推动液动换向阀14下移, 打开外控顺序阀15, 防止控制油路使吸入阀1误动而造成液压缸16上腔卸荷) 当液压缸16上腔压力降低到低于电接触压力表12调定压力, 电接触压力表12又会使2YA通电, 动力系统又会再次向液压缸16上腔供应压力油……。主泵( 恒功率输出) 主泵→电液换向阀9的M型中位→电液换向阀21的K型中位→T, 主泵卸荷。 保压结束、液压缸16上腔卸荷后: 保压时间到位, 时间继电器发出信息, 1YA通电( 2TA断电) , 液压缸16上腔压力很高, 推动液动

小型液压机液压系统课程设计

$ 攀枝花学院 学生课程设计(论文) 题目:小型液压机的液压系统 学生姓名: vvvvvv 学号: vvvvvvvv < 所在院(系):机械工程学院 专业: 班级: 指导教师: vvvvvv 职称: vvvv # 2014 年 06 月 15 日 攀枝花学院教务处制

》 攀枝花学院本科学生课程设计任务书

目录 前言 (1) 一设计题目 (2) 二技术参数和设计要求 (2) 三工况分析 (2) 四拟定液压系统原理 (3) . 1.确定供油方式 (3) 2.调速方式的选择 (3) 3.液压系统的计算和选择液压元件 (4) 4.液压阀的选择 (6) 5.确定管道尺寸 (6) 6.液压油箱容积的确定 (7) 7.液压缸的壁厚和外径的计算 (7) 8.液压缸工作行程的确定 (7) [ 9.缸盖厚度的确定 (7)

10.最小寻向长度的确定 (7) 11.缸体长度的确定 (8) 五液压系统的验算 (9) 1 压力损失的验算 (9) 2 系统温升的验算 (11) 3 螺栓校核 (11) 总结 (13) : 参考文献 (14)

前言 液压传动是以流体作为工作介质对能量进行传动和控制的一种传动形式。利用有压的液体经由一些机件控制之后来传递运动和动力。相对于电力拖动和机械传动而言,液压传动具有输出力大,重量轻,惯性小,调速方便以及易于控制等优点,因而广泛应用于工程机械,建筑机械和机床等设备上。 作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便﹑调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。 液压压力机是压缩成型和压注成型的主要设备,适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本文根据小型压力机的用途﹑特点和要求,利用液压传动的基本原理,拟定出合理的液压系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格和进行系统的结构设计。小型压力机的液压系统呈长方形布置,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。

四柱液压机工作原理、结构、特点

四柱液压机工作原理、结构、特点 四柱液压机工作原理,四柱液压机是一种利用油泵输送液压油的静压力来加工金属、塑料、橡胶、木材、粉末等制品的机械设备。下面随小编去了解下四柱液压机。 一、四柱液压机工作原理 四柱液压机的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。动力机构通常采用油泵作为动力机构,一般为积式油泵。为了满足执行机构运动速度的要求,选用一个油泵或多个油泵。低压(油压小于2.5MP)用齿轮泵;中压(油压小于6.3MP)用叶片泵;高压(油压小于32.0MP)用柱塞泵。各种可塑性材料的压力加工和成形,如不锈钢板钢板的挤压、弯曲、拉伸及金属零件的冷压成形,同时亦可用于粉末制品、砂轮、胶木、树脂热固性制品的压制。 二、四柱液压机结构 按作用力的方向区分,液压机有立式和卧式两种。多数液压机为立式,挤压用液,结构压机则多用卧式。按结构型式分,液压机有双柱、四柱、八柱、焊接框架和多层钢带缠绕框架等型式,中、小型立式液压机还有用C型架式的。C型

架式液压机三面敞开,操作方便,但刚性差。冲压用的焊接框架式液压机刚性好,前后敞开但左右封闭。在上传动的立式四柱自由锻造液压机中,油缸固定在上梁中,柱塞与活动横梁刚性连接,活动横梁由立柱导向,在工作液的压强作用下上下移动。横梁上有可以前后移动的工作台。在活动横梁下和工作台面上分别安装上砧和下砧。工作力由上、下横梁和立柱组成的框架承受。采用泵-蓄能器驱动的大、中型的自由锻水压机常采用三个工作缸,以得到三级工作力。工作缸外还设有向上施加力的平衡缸和回程缸。 三、四柱液压机特点 机器具有独立的动力机构和电气系统,采用按钮集中控制,可实现调整、手动及半自动三种工作方式:机器的工作压力、压制速度,空载快下行和减速的行程和范围,均可根据工艺需要进行调整,并能完成顶出工艺,可带顶出工艺、拉伸工艺三种工艺方式,每种工艺又为定压,定程两种工艺动作供选择,定压成型工艺在压制后具有顶出延时及自动回程。 更多四柱液压机的相关资讯,请持续关注变宝网资讯中心。 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.doczj.com/doc/5f5937101.html,/?cjq 买卖废品废料,再生料就上变宝网,什么废料都有!

四柱液压机技术参数

四柱液压机技术参数 四柱液压机是各类铝、镁合金压铸制品的毛边冲切及整形,塑料制品的整切;也适用于塑性材料的成形如板料的落料、拉伸等、是TM106普通型的升级产品, 四柱液压机采用先进的子母缸液压回路.无论是噪音,速度, 耗电功率,均优于普通液压冲床是款高效率高速度,高出力,高环保的新一代液压冲床本机在压铸行业应用最为广泛。(欢迎来电咨询:400-6626-500) 四柱液压机特点: 1、采用四柱三板式结构,活动板与工作面平行精度高,四个精密导套使下压垂直精度高。 2、安全设计周全,双手操作,设有紧急按钮(光电保护装置需另加装)及上下寸动调模按钮; 3、工作台面配有落料槽及吹气装置,提高生产效率; 4、压力、行程、速度、保压时间、闭合高度均可按需求调整,方便操作; 5、工作台下方装有脚轮和脚杯,可轻便移动,省力高效; 四柱液压机适用范围: 各类铝、镁合金压铸制品的毛边冲切及整形,塑料制品的整切;也适用于塑性材料的成形如板料的落料、拉伸、压印等以及塑料、粉末制品的压制等多种用途。汽车和摩托车配件行业用途最广泛; 四柱液压机 适用范围:(精密压铸品切边机,精密四柱三板液压机,50吨油压冲切机,30吨快速油压机,铝镁制品切边机,五金制品冲边机,按键切割机)。本系列油压机是各类铝、镁合金压铸制品的毛边冲切及整形,塑料制品的整切;也适用于塑性材料的成形如板料的落料、拉伸等、是TM106普通型的升级产品, 采用先进的子母缸液压回路.无论是噪音,速度, 耗电功率,均优于普通液压冲床是款高效率高速度,高出力,高环保的新一代液压冲床本机在压铸行业应用最为广泛. 四柱液压机产品技术特点: 1.该系列液压机床以2-20MPA的液体压力为动力源,外接三相AC380V 50HZ或三相 AC220 60HZ交流电源. 2.该系列设备以液体作为介质来传递能量, 采用先进的子母缸液压回路,油温低,空行程速度均在150MM/秒以上, 工进速度30 MM/秒以下 3. 设备待机,滑快上下移动时噪音均不超过75分贝. 4.采用四柱三板式结构,活动板的垂直精度由四个精密导套控制,下工作面与上工作面任意点的平行精度达到0.1MM以下. 5.冲床具有废料吹气装配.并在下工作台中央开有废料落料槽. 6.冲床的冲切下止点位置一般通过压力开关,位置感应器进行控制. 7.具有自动计数功能,分手动和半自动两种控制方式,手动可将压装上模停在任意行程范围内,配有紧急回升按钮,也可加装红外线护手装置 8.压力、行程、冲切速度、吹气时间、闭合高度客户均可自行调整,方便操作; 9.液压系统内置油箱底部,外观整洁,稳重。

四柱万能液压机系统设计

目录 摘要 (Ⅱ) 第一章设计课题及主要技术参数、工作原理 (3) 1.1设计课题 (3) 1.2设计参数 (5) 第二章工况分析 (6) 2.1绘制液压缸速度循环图、负载图 (6) 2.2参数 (6) 第三章确定液压缸参数 (7) 第四章液压元、辅件的选择 (10) 4.1液压元件的选择 (10) 4.2液压辅件的选择 (11) 第五章液压系统主要性能验算 (14) 5.1系统压力损失计算 (14)

5.2系统效率计算 (16) 5.3系统发热与升温计算 (17) 设计心得 (18) 参考文献 (19)

第一章设计课题及主要技术参数、工作原理 1.1设计课题 设计一台YA32-1000KN型四柱万能液压机,设该四柱万能液压机下行移动部件重G=1吨,下行行程1.0-1.2m,其液压系统图如下 1、主液压泵(恒功率输出液压泵), 2、齿轮泵, 3、电机, 4、滤油器, 5、7、8、 22、25、溢流阀,6、18、24、电磁换向阀,9、21、电液压换向阀,10、压力 继电器,11、单向阀,12、电接触压力表,13、19、液控单向阀,14、液动换 向阀,15、顺序阀,16上液压缸,17、顺序阀,20、下液压缸,23节流器,26、

行程开关 A、启动:电磁铁全断电,主泵卸荷。 主泵(恒功率输出)→电液换向阀9的M型中位→电液换向阀21的K型中位→T B、液压缸16活塞快速下行: 2YA、5YA通电,电液换向阀9右位工作,道通控制油路经电磁换向阀18,打开液控单向阀19,接通液压缸16下腔与液控单向阀19的通道。 进油路:主泵(恒功率输出)→电液换向阀9→单向阀11→液压缸16上腔回油路:液压缸16下腔→电液换向阀9→电液换向阀21的K型中位→T 液压缸活塞依靠重力快速下行:大气压油→吸入阀13→液压缸16上腔的负压空腔 C.液压缸16活塞接触工件,开始慢速下行(增压下行): 液压缸活塞碰行程开关2XK使5YA断电,切断液压缸16下腔经液控单向阀19快速回油通路,上腔压力升高,同时切断(大气压油→吸入阀13 →上液压缸16上腔)吸油路。 进油路:主泵(恒功率输出)→电液换向阀9→单向阀11→液压缸16上腔 回油路:液压缸16下腔→顺序阀17→电液换向阀9→电液换向阀21的K型中位→T D、保压: 液压缸16上腔压力升高达到预调压力,电接触压力表12发出信息,2YA断电,液压缸16进口油路切断,(单向阀11 和吸入阀13的高密封性能确保液压缸16活塞对工件保压,利用液压缸16上腔压力很高,推动液动换向阀14下移,打开外控顺序阀15,防止控制油路使吸入阀1误动而造成液压缸16上腔卸荷) 当液压缸16上腔压力降低到低于电接触压力表12调定压力,电接触压力表12又会使2YA通电,动力系统又会再次向液压缸16上腔供应压力油……。 主泵(恒功率输出)主泵→电液换向阀9的M型中位→电液换向阀21的K型中位→T,主泵卸荷。 E、保压结束、液压缸16上腔卸荷后: 保压时间到位,时间继电器发出信息, 1YA通电(2TA断电),液压缸16上腔压力很高,推动液动换向阀14下移,打开外控顺序阀15,主泵1→电液压换向阀9的大部分油液经外控顺序阀15流回油箱,压力不足以立即打开吸入阀13通油箱的通道,只能先打开吸入阀13的卸荷阀(或叫卸荷阀的卸荷口),实现液压缸16上腔(只有极小部分油液经卸荷阀口回油箱)先卸荷,后通油箱的顺序动作,此时: 主泵1大部分油液→电液压换向阀9→外控顺序阀15→T F、液压缸16活塞快速上行: 液压缸16上腔卸压达到吸入阀13开启的压力值时,液动换向阀14复位,外控制顺序阀15关闭,切断主泵1大部分油液→电液换向阀9→外控顺序阀15→T的油路,实现: 进油路:主泵1→电液换向阀9→液控单向阀19→液压缸16下腔 回油路:液压缸16上腔→吸入阀13→T G、顶出工件: 液压缸16活塞快速上行到位,碰行程开关1XK,1YA断电,电液换向阀9复位,4YA通电,电液换向阀21右位工作 进油路:主泵1→电液换向阀9的M型中位→电液换向阀21→液压缸20下腔

小型液压机的液压系统课程设计

小型液压机的液压系统课程设计

学生课程设计(论文) 题目:小型液压机的液压系统 学生姓名: vvvvvv 学号:vvvvvvvv 所在院(系):机械工程学院 专业: 班级: 指导教师:vvvvvv 职称:vvvv 2014 年06 月15 日

课程设计任务书 题 小型液压机的液压系统设计 目 1、课程设计的目的 液压系统的设计和计算是机床设计的一部分。设计的任务是根据机床的功用、运动循环和性能等要求,设计出合理的液压系统图,再经过必要的计算,确定液压系统的主要参数,然后根据计算所得的参数,来选用液压元件和进行系统的结构设计。 使学生在完成液压回路设计的过程中,强化对液压元器件性能的掌握,理解不同回路在系统中的各自作用。能够对学生起到加深液压传动理论的掌握和强化实际运用能力的锻炼。

2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) 要求学生在完成液压传动课程学习的基础上,运用所学的液压基本知识,根据液压元件、各种液压回路的基本原理,独立完成液压回路设计任务。 设计一台小型液压机的液压系统,要求实现的工作循环:快速空程下行——慢速加压——保压——快速回程——停止。快速往返速度为4m/min,加压速度为40-250mm/min,压制力为300000N,运动部件总重量为20000N。。设计结束后提交:①5000字的课程设计论文;②液缸CAD图纸2号一张;③三号系统图纸一张。 3、主要参考文献 [1]左健民.液压与气压传动.第 2 版.北京机械工业出版社2004. [2]章宏甲.液压与气压传动.第 2 版.北京机械工业出版社2001. [3]许福玲. 液压与气压传动. 武汉华中科技大学出版社2001. [4]张世伟.《液压传动系统的计算与结构设计》.宁夏人民出版社.1987. [5]液压传动手册. 北京机械工业出版社2004.

四柱液压机简介

四柱液压机简介 四柱液压机是一种利用油泵输送液压油的静压力来加工金 山属、塑料、橡胶、木材、粉末等制品的机械设备。它常用于压东制工艺和压制成形工艺,如:锻压、冲压、冷挤、校直、弯曲、威翻边、薄板拉深、粉末冶金、压装等等。它的原理是利用帕斯力卡定律制成的利用液体压强传动的机械,种类很多。当然,用重途也根据需要是多种多样的。如按传递压强的液体种类来分,工有油压机和水压机两大类。 机械种类 四柱液压机又名油压机,是利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。当然,用途也根据需要是多种多样的。如按传递压强的液体种类来分,有油压机和水压机两大类。水压机机产生的总压力较大,常用于锻造和冲压。锻造水压机又分为模锻水压机和自由锻水压机两种。模锻水压机要用模具,而自由

锻水压机不用模具。我国制造的第一台万吨水压机就是自由锻造水压机。四柱液压机由主机及控制机构两大部分组成。液压机主机部分包括液压缸、横梁、立柱及充液装置等。动力机构由油箱、高压泵、控制系统、电动机、压力阀、方向阀等组成。该液压机适用于可塑性材料的压制工艺。如粉末制品成型、塑料制品成型、冷(热)挤压金属成型、薄板拉伸以及横压、弯压、翻透、校正等工艺。四柱液压机具有独立的动力机构和电器系统,采用按钮集中控制,可实现调整、手动及半自动三种操作方式。 设备特点 机器具有独立的动力机构和电气系统,采用按钮集中控制,可实现调整、手动及半自动三种工作方式:机器的工作压力、压制速度,空载快下行和减速的行程和范围,均可根据工艺需要进行调整,并能完成顶出工艺,可带顶出工艺、拉伸工艺三种工艺方式,每种工艺又为定压,定程两种工艺动作供选择,定压成型工艺在压制后具有顶出延时及自动回程。 独立的动力组织和电气系统,并选用按钮集中控制,可完成调整和半自动两种操作方法。它的挪动作业台由变频控制器驱动,其电气选用世界领先的PLC可编程控制器。经过对YH25—315D“T”形挪动作业台描绘制作的立异,有利于进步该系列液压机的自动化程度,进步出产功率,下降操作人员的劳动强度。

四柱液压机的安全操作规程

行业资料:________ 四柱液压机的安全操作规程 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共5 页

四柱液压机的安全操作规程 1、禁止无工作经验人员控制液压机,新员工要培训后再上岗。 2、发现机械、模具异常及时上报,待修理合格后方可生产。 3、克服麻痹大意违规操作,禁止二人以上同时操作液压机。 (开动前应先检查各紧固件是否牢靠,各运转部分及滑动面有无障碍物,限位装置及安全防护装置是否完善。) 4、机械维修、保养必须切断电源,垫上枕木。 5、液压机运转中,严禁进入模腔内修理模具,进出产品要严格注意安全。用安全器先把产品往边上移,等确认安全后再用手拿。 6、安装模具必须规范,压板压好后再检查一次,压机的闭合高度要控制在能调节的范围内,压机的压力要由小到大调节,首件必须要点动作业。 7、工具、压板、螺杆、螺帽、垫块要轻拿轻放,用后要放在架子上摆放好。 8、按照润滑图表的规定加注润滑油,检查油量、油路是否畅通,油质是否良好。 (严禁乱调调节阀及压力表,应定期校正压力表。保持液压油的油质,工作油温度不许超过45℃,若出现异常,即停机。) 9、检查液压机各紧固件是否牢靠、限位装置及安全防护装置是否完整、可靠。 10、液压机作空行程试运转;检查各按钮、开关、阀门、限位装置等是否灵活可靠;确认液压系统压力正常、工作横梁运动灵活后,方可工作。 第 2 页共 5 页

四柱裁断机安全操作规程 1注意事项: 1.1四柱裁断机操作人员必须经过相关培训,掌握操作技能,并严格遵守本安全操作规程进行作业; 1.2必须遵守通用机床安全操作规程的相关要求。 2工作前认真做到: 2.1工作前按规定穿戴好防护用品,扎好袖口,不准戴围巾、戴手套。女工发辫应挽在帽子内; 2.2按点检表要求仔细检查设备,润滑相应加油部位。并空转试车12分钟。 3工作中认真做到: 3.1裁刀设定时,一定要先放松设定手轮,使设定杆接触到裁断点控制开关,否则裁刀设定开关转至ON时,无法产生设定的动作; 3.2工作时裁刀尽量置于上压板的中央位置,以免造成机械之单边磨损,影响其寿命; 3.3更换新裁刀,如高度不一样时,应按设定方法重新设定; 3.4裁断动作时,双手请离开裁刀或斩板,严禁用手去扶助刀模而来裁断,以免产生危险; 3.5操作人员如需暂离岗位时,请务必关闭电机开关,以免他人不当操作而导致损坏机台和他人受伤; 第 3 页共 5 页

YA30-3150KN型四柱万能液压机集成块及其加工工艺的设计

分类号 学号 学士学位论文 YA30-3150KN型四柱万能液压机集成块及其加 工工艺的设计

设计总说明 关键词:液压系统、集成块的设计、加工工艺 Keywords: hydraulic system, manifold design, processing technology

第1章

第一章绪论 集成式液压系统广泛应用于机械、冶金、航空、航天、锻压、船舶、车辆等各个行业,在当前的液压生产企业中,液压集成块是其关键性的零件。但是其设计与制造却处于相对落后的局面。因此我们的研究工作是立足于学科前沿,致力于工程应用的紧密结合,较彻底的解决液压集成块自动优化设计难题,从而提高集成块设计水平和质量,以及为自动化程度提供有力的技术保障。 液压集成块系统由集成式液压元件构成,是在集成块的表面上安装各种液压元件并在其内部按照液压原理图要求实现元件之间油路连通的复杂系统。用集成式液压元件组成液压系统时,不需要另外的连接管路,它以自身的阀体作为连接体直接叠合而成。该方法是将空间六面的集成块展开到平面上,通过平面图形设计确定集成块上液压油道在空间的位置,便于检查油道之间的相互关系,在实际应用中该方法确实是行之有效的。液压集成块的作用是根据集成块中所包含的集成元件决定的,集成元件不同,作用不同。液压系统中之所以选择集成块为连接装置,是因为它具有以下一个特点: (1)液压系统结构紧凑,安装方便,装配周期短。 (2)若液压系统有变化,改变工况需要增减元件时,组装方便迅速,节省时间。 (3)元件之间实现无管连接,消除了因油管、管接头等引起的泄漏、振动和噪声等弊端。 (4)整个系统配置灵活,外观整齐,维护保养容易。 (5)标准化、通用化和集成化程度高。 液压技术是实现现代化传动与控制的关键技术之一,世界各国对液压工业的发展都给予很大重视。 20世纪 80 年代以来,随着计算机技术的发展,研究人员对液压集成块设计方法进行了较为深入的研究。目前,国内外研究的各种液压集成块 CAD 技术和应用软件在原理图绘制、实体造型、孔道校核、工程图输出,以及 CAD/CAM 集成等方面达到了较高的水平,有效地提高了设计质量和工作效率。目前普遍应用的液压集成块设计方法主要体现在建模、智能优化设计、孔道校核、虚拟设计、管网液流特性仿真等方面。 目前,国内大部分液压系统都采用集成式系统设计,液压集成块是集成式液压系统中的关键零件,具有结构紧凑、元件密度高和占据面积小等优点,但由于集成块孔道立体交叉,图纸表现不直观,设计和校验都比较困难,因此设计开发已成为集成式液压系统开的关键环节和瓶颈。近年来国内外学者对此进行了大量研究,在集成块实体造型、油路干涉校核、液压阀布局与油路自动优化设计算法等方面都取得了一定的研究成果。

液压课程设计要求及题目2014-5

题目1: 一卧式钻镗组合机床动力头要完成快进-工进-快退-原位停止的工作循环;最大切削力为F L=11500N,动力头自重F G=19500N;工作进给要求能在0.02~1.2m/min范围内无级调速,快进、快退速度为6m/min;工进行程为100mm,快进行程为300mm;导轨型式式平导轨,其摩擦系数取fs=0.2,fd=0.1;往复运动的加减速时间要求不大于0.5s。 设计要求: (1)确定执行元件(液压缸)的主要结构尺寸(D、d等) (2)确定系统的主要参数; (3)选择各类元件及辅件的形式和规格,列出元件明细表; (4)绘制正式液压系统图(A3手绘) (5)进行必要的性能估算(系统发热计算和效率计算)。

题目1: 一台专用双面铣床,最大的切削力为9000N,工作台、夹具和行程的总重量4000N,工件的总重量为1800N,工作台最大行程为600mm,其中工进行程为350mm。工作台的快进速度为4.5m/min,工进速度在50~100mm/min范围内无级调速。工作台往复运动的启制(加速减速时间)为0.05s,工作台快退速度等于快进速度,滑台采用平面导轨。静摩擦系数为0.2s,动摩擦系数为0.1。(夹紧力大于等于最大静摩擦力) 机床的工作循环为:工作定位-工件夹紧-工作台快进-工作台工进-加工到位后停留-快退-原位停止-工件松开-定位销拔出。 要求系统采用电液结合实现自动化循环,速度换接无冲击,且速度要平稳,能承受一定量的反向负载。 试完成: (1)按机床要求设计液压系统,绘制液压系统图;(A3手绘) (2)确定夹紧缸、主工作液压缸的结构参数; (3)计算系统各参数,选择液压元件型号,列出元件明细表; (4)列出设计系统中的电磁铁动作顺序表。

四柱液压机课程设计

四柱液压机课程设计

液压与气压传动课程设计 说明书 设计题目:四拄液压机 专业:机械设计制造及自动化 班级:14机械卓越 姓名:xxx 学号:140111xx 指导教师:徐建方 常州工学院机械与车辆工程学院 2016年6月13日

前言 本设计为四柱式液压机,四柱液压机的主机主要由上梁、导柱、工作台、移动横梁、主缸、顶出缸等组成。其中主缸可完成快速下行、慢速加压、保压延时、释压换向、快速返回、原位停止的动作;顶出缸可实现向上顶出、停留、向下退回、原位停止的动作。本设计主机最大工作负载为7000000N。通过对液压缸工况分析确定液压缸负载的变化,拟定液压系统图和电磁铁动作顺序。并设计主液压缸,计算主液压缸的尺寸和流量,主缸的速度换接与安全行程限制通过行程开关来控制。根据技术要求及设计计算选择液压泵、GE系列电磁阀等液压元件。通过液压系统压力损失和温升的验算,液压系统的设计可以满足液压机顺序循环的动作要求,设计的四柱液压机能够实现塑性材料的锻压、冲压、冷挤、校直、弯曲等成型加工工艺。本液压系统选用PLC控制系统,通过泵和油缸及各种液压阀实现能量的转换,调节和输送,完成各种工艺动作的循环。液压机采用集中式布置,液压系统油源与控制调节装置置于主机之外。 该液压机结构紧凑,动作灵敏可靠,速度快,能耗小,噪音低,压力和行程可在规定的范围内任意调节,操作简单。

目录 第一章概论 (1) 第一节液压机的工作原理及其组成 (1) 第二节发展趋势 (3) 第三节液压传动的优缺点及应用 (4) 第二章液压系统的合成 (6) 第一节液压传动工作原理 (6) 第二节搭建部分回路 (9) 第三节其他考虑 (10) 第三章液压缸结构设计及液压系统工况分析 (11) 第一节液压缸基本结构设计 (11) 第二节载荷的组成和计算 (11) 第三节确定主液压缸的、顶出液压缸结构尺寸 (12) 第四节液压缸动作时的流量 (14) 第五节缸的设计计算 (14) 第四章液压元件的选择及性能验算 (26) 第一节液压元件的选择 (26) 第二节液压系统性能验算 (32) 第五章立柱结构设计 (35) 第一节立柱设计计算 (35) 第二节连结形式 (37) 第三节立柱的螺母及预紧 (39) 第四节立柱的导向装置 (40) 第五节限程套 (41) 第六章横梁参数的确定 (42) 第一节上横梁结构设计 (42) 第二节活动横梁结构设计 (42)

2000kN四柱液压机液压系统工作原理

2000kN四柱液压机液压系统工作原理 作者殷洪福 2000kN四柱液压机是一台宽工作台的压力机,工作台尺寸为2000mm(左右)×1500mm(前后)。这台机的设计目标是大尺寸薄板零件的拉深、翻边、冲裁工艺。这台机的液压系统有几个特点:1.设置高压、低压两个可以根据工艺力的大小而自动切换的油源;2.上下油缸可以单独运行,也可以差动运行;3.主油缸的柱塞内包含顶出油缸,可以进行上顶出(脱模)操作。 为说明液压系统的工作原理,以设备的典型运作过程(凹模在上方、凸模在下方的反向拉深工艺过程)为例。 图示液压系统是完成一次工作循环之后的状态。下一次工作循环从系统升压开始。系统工作原理说明如下。 1.系统升压 先导式溢流阀12原处于卸荷状态,高压油源失效。低压油源仍处于供油状态。 将手动换向阀11的手柄推到位置Ⅰ,控制油路X1升压,使溢流阀12恢复正常工作状态,高压油源恢复供油,系统压力升高至设定数值。 2.滑块快速下降 将手动换向阀9的手柄拉到位置Ⅲ,支承滑块的油缸4的下腔回油路接通,滑块在自重的作用下,快速下降,直至上模(凹模)接触工件。滑块在下降过程中一方面将上油缸3的柱塞向下拉,使上油缸3内腔产生负压,造成正向打开液控单向阀(大流量的充液阀)2的趋势;另一方面压迫油缸4下腔的油,使之压力升高,压力油通过控制油路X2迫使液控单向阀2彻底打开(正反向都处于开启状态),于是,充液过程开始,油箱1内的油通过大直径油管被吸进上油缸3。与此同时,另一部分来自两个油源的油通过换向阀9进入上油缸3。

有一个问题需要说明:滑块快速下降主要靠自重作用,但是,自重作用并不可靠,如果滑块下降受阻(或许是因为滑块与立柱之间的滑动付力学异常),就可能发生下降不顺甚至卡死的现象。这种现象通常不会发生。然而,这种现象一旦发生,就会进入如“工作行程”那样的过程,滑块被上油缸3的柱塞强迫下降,系统依然正常工作。 单向节流阀13的作用是增加油缸4下腔回油路上的阻力,以求提高控制油路X2的压力,以便打开液控单向阀2。 3.滑块工作行程 滑块快速下降,直至上模接触工件,之后,滑块工作行程开始,下降阻力(包括拉深力、压边力)增加,下降速度降低,致使油缸4下腔的压力迅速降低(因为通过单向节流阀13的流量减少, 节流阀前后压力差减小),控制油路X2的压力亦随之降低,以至无力保持液控单向阀2反向开启状态,此时两个油源(低压油)继续通过换向阀9进入上油缸3,使上油缸3的压力升高,液控单向阀2关闭,充液停止。随后,上油缸3的压力迅速升高,如果此时低压油仍不足以克服工作阻力(通常是这样),那么,系统即时自动切换油源,高压油将接着进入上油缸3,升压,工作行程继续进行。 4.滑块回程 工作行程终止后,将换向阀9的手柄推到位置Ⅰ,油缸4上腔以及上油缸3的压力消失,而油缸4下腔的压力升高,通过油路X2使液控单向阀2再次反向打开,接通上油缸3的回油路,滑块被油缸4顶推上升,上油缸3的油通过大直径油管返回油箱。 滑块上升到适当高度后,将换向阀9的手柄拉回位置Ⅱ(放开手后,手柄会自动回复到位置Ⅱ),滑块停止上升,并由油缸4支承。 5.上顶出行程 上油缸3柱塞的中部装有顶出油缸。该油缸活塞由换向阀8控制顶出、退回,并由单向调速阀15调节顶出速度。 6.下油缸动作 下油缸5在本例工艺过程中的作用是压边。滑块下降之前,下油缸5处于顶出状态,即换向阀10的手柄处于位置Ⅰ,并且在滑块下降过程中(包括快速行程和工作行程),换向阀10的手柄位置始终保持不变。因此,在滑块工作行程中,下油缸5始终与上油缸3“对着干”,从而产生压边力。但由于上油缸3的截面积远大于下油缸5下腔的截面积,在相等的油压下,上油缸3向下的推力远大于下油缸5向上的顶力,以至除了克服拉深力、油缸4的阻力外,剩余推力还足以克服下油缸5的对抗力,迫使下油缸5的活塞向下退缩。在下油缸5的活塞退缩过程中,下油缸5下腔的油通过换向阀10(反向流动)、换向阀9进入上油缸3,使上油缸3获得“额外”的高压油,提高工作行程速度(提高90 %)。上下油缸如此运行称为“差动运行”。 滑块完成工作行程之后转入回程时,换向阀10的手柄位置可以保持不变,即仍处于位置Ⅰ,这时下油缸5的活塞将随着滑块上升而顶出(使工件脱出凸模),这样,下油缸5将会耗用部分压力油,从而降低滑块回程速度。为了提高滑块回程速度,应关闭下油缸5的进油路,即将换向阀10的手柄拉到回位置Ⅱ,待滑块上升到终点后,再将手柄推回到位置Ⅰ。 换向阀10的手柄位置Ⅲ是为适应其它工艺操作而设的(实施本例操作时,位置Ⅲ实为空置)。 溢流阀14用来调节下油缸5的顶出力(压边力)。实施本例操作时,如前面所述,上下油缸的运行方式为“差动运行”,此时溢流阀14的设定压力大于溢流阀12的设定压力(供油压力),这样,下油缸5下腔的油就不可能通过溢流阀14排出,而是全部进入上油缸3。当要实施拉深力较大而压边力较小的工艺操作时,就应采用“非差动运行”方式,即令溢流阀14的设定压力小于溢流

相关主题
文本预览
相关文档 最新文档