当前位置:文档之家› 智慧建筑能源管理系统方案

智慧建筑能源管理系统方案

智慧建筑能源管理系统方案
智慧建筑能源管理系统方案

智慧建筑能源管理

修订记录

一、概述

随着社会的发展,大型建筑在逐年增加,其能耗也在不断增大,能源与发展的矛盾日益突出。未来几年内写字楼、公寓、饭店、会展中心等大型公共建筑会大幅度增加,而我国约90%以上的大型公共建筑是典型的能耗大户。

建筑行业的能耗消耗种类较为单一,大致分为5类,电能、水能、燃气、集中供热、集中供冷。根据中国建筑能耗信息网提供的资料显示,就电能消耗分析,大型建筑的能耗比重约为空调能耗40%,公共与办公照明能耗47%,一般动力能耗2.9%,其他用电能耗10.1%。而在大型商场中的照明能耗占40%左右,电梯能耗占10%左右,空调系统的能耗则是占到了50%左右。在提倡节能减排的当今,做好节能工作不仅对实现“十二五”建筑节能目标具有重大意义,更是为高耗能建筑进一步节能提供准备条件。

二、能耗现状分析

2.1 能源流失

不同的建筑类型关注能耗的变化所有不同,比如:酒店类型关注客房入住率与能源消耗的变化关系;大型超市关注空调使用率的变化、单位面积能耗值以及照明范围等多个指标;公司、写字楼关注空调末端使用率、不同功能的照明分类等等。大型商业中心关注不仅关注各类能源消耗的情况,同时对于中央空调、水泵等重点设备的运行和效率也更为关注。

一栋大楼的能源消耗如下图几个方面所显示:

2.2能耗构成比重

2.3能源管理中的问题

A能源数据采集没有完全自动化

能源管理及节能是基于大数据分析,数据的实时、准确采集是系统关键一步,建设一套功能强大,易实施,免布线,工作稳定可靠,易于维护的系统级数据采集、控制mesh网络对智慧能效管理系统至关重要。

B统计分析困难复杂

能源管理及节能是基于大数据分析,各种能耗数据统计分析困难复杂,需要专业的系统支撑;

C能源使用计划及预测困难

D能源管理缺乏系统支撑

E缺乏有效的监控和调度

目前节能一般通过职员的主动性或公司的一些硬性制度来规范,对于一些公共区域,难于实施,缺乏有效的系统从全局来监控和调度。

综合起来,大型建筑普遍面临着环境的日趋舒适,能耗却在快速增加的情况。在目前楼宇自动化系统中,基本可以完成进行各个系统的分散监视、控制和管理。但缺少对各种能耗数据的统计、分析,并且结合建筑的建筑面积、内部的功能区

域划分、运转时间等客观数据,对整体的能耗进行统计分析并准确评价建筑的节能效果和发展趋势。

另外,从设备管理角度来看,大型建筑的空调设备不仅仅消耗单一的能源,对于能源的转化,单纯的设备监测就不能够综合评估设备的运行效率和帮助挖掘节能潜力。

面对上述的这些问题,有必要通过一个专用的能源系统,将大型建筑、商场、学校、公共建筑等各能源数据进行集中统一的分析,并将分析结果整体展现出来。这不同于以往的楼宇自动化或其他的设备运行自动化系统。

三、系统架构

智慧建筑能源管理系统可以获取能源消耗监控点能耗数据,对能源供应、分配和消耗进行监测,实时掌握能源消耗状况,了解能耗结构,计算和分析各种设备能耗标准,监控各个运营环节的能耗异常情况,评估各项节能设备和措施的相关影响,并通过WEB把各种能耗日报报表、各种能耗数据曲线以及整体能耗情况发布给相关管理和运营人员,分享能源信息化带来的成果,完成对企业能源系统的监控及电力负荷耗能状态的监测和管理。为进一步的节能工程提供坚实的数据支撑。

系统采用分层分布式结构,方便用户的管理和维护工作。系统采用专用的能源监控和管理软件。服务器+工作站模式便于工程部门进行日常维护管理,并且支持局域网或Internet访问。

本着技术上理性应用,系统上务实设计的思路从系统结构、技术措施、设备性能、系统管理、技术支持及维修能力等方面综合评估、选型,确保系统运行的可靠性和稳定性,达到最大最优的效果。

方案采用如下的设计思路,从本方案的提出设计、开发、实施、调整、维护试运行,直到系统的最后运行,可以帮助管理者实时的反映建筑整体能源运行的现状及趋势,从日常耗能的环节本身发现能源问题,通过对建筑内不同功能区域的耗能特点的分析,建立“数据采集 - 集中数据 - 数据分析处理 - 提供各类对比考核方法–帮助完成整个管理流程”的能源管理流程,将建筑物或建筑群内的变配电、照明、电梯、空调、供热、给排水等能源使用状况及节能管理实行集中监测、管理和分散控制的建筑物管理和控制系统,逐渐提升大型建筑能源利用的综合性能源管理系统。

四、建筑能源管理解决方案

4.1 分类分项计量

数据是能源管理分析的基础,对于每一类建筑,需要采集的数据指标分为建筑基本情况数据和能耗数据采集指标两大类。能源管理系统的分析基础来自于建筑内的各种能耗数据的采集,依据建筑物的不同功能区域和系统设计,针对能源管理系统的分析需要进行选择性的数据采集,采集依据下表中的分类标准。

能耗数据采集指标包括各分类能耗和分项能耗的逐时、逐日、逐月和逐年数据,以及各类相关能耗指标。各分类能耗、分项能耗以及相关能耗指标的具体内容见下表。

除此之外,建筑基本情况数据包括建筑名称、建筑地址、建设年代、建筑层数、建筑功能、建筑总面积、空调面积、采暖面积、建筑空调系统形式等表征建筑规模、建筑功能、建筑用能特点的参数。此类数据通过系统录入或导入获得。

对应于能耗类型,需要按以下能耗类型指标进行分类采集:

对应于电能能耗分项采集:

系统考核的能耗指标

4.1.1 用电能耗采集

可分为配电室总采集部分和区域用电采集部分,通过2部分的电能流向可以发现电能损耗。在二级区域计量处采用分项计量,如下图:

A .一级总计量配电室进出线(变配电监测)

采集对象:10kV/0.4kV 变配电室所有进出线回路。

采集信号类型:模拟量:I--电流、U--电压、P--有功功率、Q--无功功率、PF--功率因数、E--电能量。

状态量:断路器状态、故障信号等。

采集方法:通过能源网关+高精度三相电能总表直接采集数据。

B .二级区域用电计量

能耗指标 1建筑总能耗量(折算标准煤量) 2分类能耗量 3单位建筑面积能耗量(折算标准煤量) 4单位建筑面积分类能耗量

5单位空调面积能耗量量(折算标准煤量)(只空调相关分类能耗)

6单位空调面积分类能耗量(只空调相关分类能耗)

7其它指标(功率、流量、压力、温度、效率等)

采集对象:建筑内部所有功能区域和动力机房的配电柜/箱、进户配电箱。

采集信号类型:单相电能表、三相电能表。

采集分项类型:照明、插座、换热站用电、空调机房用电、新风盘管用电、室内公共照明、应急照明、室外景观照明、电梯、给排水泵、通风机、信息中心。

采集方法:通过无线mesh网络远程采集系统采集数据。

4.1.2 用水能耗采集

用水能耗采集可分为生活冷水系统、中水系统2部分计量分析,对排水系统和消防系统不进行计量分析。

A.一级总表计量

采集对象:生活冷水给水机房、中水给水机房。

采集信号类型:累计耗水量。

采集方法:通过远传计量系统数据交换,或者通过能源网关直接采集数据。

B.二级区域用水计量

采集对象:所有用水功能区域。

采集信号类型:累计耗水量。

采集分类类型:生活冷水、中水。

采集系统:通过远传计量系统数据交换,或者通过能源采集器直接采集数据。

4.1.3 空调能量采集

对于中央空调的能量进行采集,即空调冷水和空调热水,分别对冷热源入口计量、出口和分区能量计量。

A.一级总表计量

采集对象:能源中心入户主管道(冷水和热水)、换热站换热总出口和分支管道(冷水和热水)

采集信号类型:冷能量、热能量

采集系统:通过远传计量系统数据交换,或者通过能源采集器直接采集数据。

B.二级区域能量计量

采集对象:区域内部分功能区域。

采集信号类型:冷量能量、热量能量。

采集系统:通过远传计量系统数据交换,或者通过能源采集器直接采集数据。

五、系统应用

5.1 系统功能

系统具备实时监控功能和多种的数据分析功能,通过对数据的多维属性定义和分析,反映能源管理系统各子系统(包括电能子系统、用水子系统、空调子系统、重点设备子系统)中的能耗数据。

为用户提供交互式的、面向对象的、方便灵活的、易于掌握的、多样化的组态工具,多种的编程手段和实用函数,可以灵活方便扩展组态软件的功能。用户能很方便的对图形、曲线、报表、报文进行在线生成、修改。

5.1.1能耗数据采集

系统对水、电、燃气、冷/热源和设备的电能消耗进行实时自动采集计量、保存和归类,代替繁重的人工记录。经过分析计算能耗数据可以以各种形式(表格、坐标曲线、饼图、柱状图等)加以直观地展示。

5.1.2能耗管理

系统按照能耗类型的不同分别进行管理,对其分类分项计量的数据进行统计计算,对实时数据、历史数据进行横向纵向分析对比,并且可以根据底层设备的自动化程度实现远方控制。

A.电能管理+配电监控

对高低压配电室的配电回路进行电能质量监测及配电监控,对二、三级回路进行电力测量,建设监测网络。对用电量进行统计对比,实时监控配电系统。进行模拟电费的计算,优化设备的运行方式,降低维护成本,减少电能消耗成本,提高电气系统运行管理效率。对配电系统运行进行全过程和全方位管理。

B.水能管理

对供给的生活冷水系统、中水系统、热水系统进行系统计量分析,按规范要求对各系统机房用水、设备补水及其他需要计量的用水点等亦应设置表单独计量(本系统不计量排水系统、消防系统水量)。水能计量部位均采用远传水表或超

声波流量计,纳入能源控制中心检测范畴。

C.燃气管理

对建筑内部的燃气系统进行计量,计量部位均采用远传流量计或超声波流量计,纳入能源控制中心检测范畴。

5.1.3设备管理

对设备进行重点能耗监测,依据实际运行参数和耗电系数、单位面积电负荷等计算出单位时间的用电负荷,得到设备的负荷变化特征,作为设备诊断和运行效率分析的依据,发现节能空间,从管理方式上实现节能的可能性。

A.空调分析

对入户冷热源,温度、流量进行监测,结合环境温度综合分析,直观展示环境温度曲线、体现空调系统效率,帮助加强空调系统的运行管理,出具节能诊断,改善并促进空调系统优化运行。

B.照明

系统对照明系统进行分项计量,照明分为室内照明、室内公共照明、室外景观照明、应急照明四项。在工作时间段、非工作时间段、景观时间段、应急时间段等多种不同的照明启动时间内,分析计算出各项所占比例、单位面积照明电耗等。帮助查找管理漏洞,发现节能空间。

同时在现有照明系统上加装节能控制设备,对于纯照明负载为例,

直接节能:可达30%以上。

间接节能:智能调控装置高稳定的最佳照明电压,能够延长电光源寿命2~4倍,减少照明运行、维护成本30%~50%。

可实现对灯具的智能化集中调控管理。

C.电梯

系统对建筑内部的电梯实际运行所消耗的电能、运行参数的监测,多角度的分析在建筑内的特定工作时间段(一天内商场内的客流高峰期tm、一周内的客流高峰期twm等)内所耗的电能,相同功能区域内同种类电梯(扶梯和直梯)所耗电能,单位面积电梯电耗、每台电梯运行累计时间、次数等。通过对电梯的设备管理,可以帮助发现节能空间,制定更为优化的电梯运行策略,节约电梯运行

成本。

同时可在系统中进行电梯基本信息的管理,如电梯的厂家、层站、载重、速度等有关技术参数,电梯故障信息,维保人员姓名、呼机号码、电话等维护信息。

D.水泵

系统对于建筑内部(以中央空调系统冷冻站、冷水泵和冷却水泵、生活冷热水泵为主)的各类水泵进行耗电量的计量监测、工作效率的综合计算。分别对工作时间内配合水泵在变频运行的同时,根据系统分析的结果在适当的工况点调整运行水泵的数量,使水泵始终保证在高效率区域运行。

同时可在系统中进行水泵基本信息的管理,如水泵的类型、厂家、功率、转速、流量、扬程等有关技术参数信息。

5.1.4能耗综合查询

对能耗进行统计和分析。按时、日、月、年不同时段,或不同区域,或不同的能源类别,或不同类型的耗能设备对能耗数据进行统计。分析能耗总量、单位面积能耗量及人均耗能量,标准煤转换,以及历史趋势,同期对比能源数据等之后,自动生成实时曲线、历史曲线、预测曲线、实时报表、历史报表、日/月报表等资料,为节能管理提供依据,为技术节能提供数据分析,并预测能耗趋势。

5.1.5能耗数据补录

对一些暂时未实现自动化采集的设备,且这些设备无法通过已接入自动化采集设备换算出来的,要求人工补录,以保证数据的完整性和统计数据的准确性。同时对建筑面积、功能区域划分、人员情况、运转时间等客观数据实现录入或导入。

5.1.6能源审计

系统主要按照以下3中评价指标对于企业的能耗情况进行分析,根据企业的发展情况进行半年或一年期的审计工作。

?A单位服务量能耗指标:如每平米照明能耗,或人均生活热水能耗,人均用电,每平米用电;

?B反映系统效率的无量纲指标:如冷水机组COP,冷冻水泵输送系数WTFCH,空调风机输送系数ATF等;

?C反映使用者节能意识和管理水平的不同时段动态指标:如“非工作时段能耗比”,如照明、办公电器等分项能耗的夜间/工作时段比,周末/工作日比等;还包括空调系统的COP或输送系数全年变化特征等。

通过这些指标对企业进行能源审计,帮助发现节能空间并为节能工作提供整改建议。

5.1.7决策支持

提供故障查询、专家节能诊断和节能方案。系统借助能源预测分析算法,结合企业的能耗结构、业务特点,对能源消耗作出预测,以曲线方式直观展现。为企业管理者和决策者提供了能源决策、能源分配和能源平衡的支持。

系统配备了专家建议数据库,可根据用户能耗情况和能耗指标,自动生成专家建议报告,综合反映用户的节能意识和管理水平。

5.2能源监管平台

能源监管平台采用主流的B/S架构,集数据的采集抽取、过滤清洗、业务转换、分析挖掘和直观展现等功能为一体,可实现用户业务分析人员、管理人员和决策人员对能源监管的各种需求,为企业管理者和决策者提供能源决策、分配和平衡的支持。

1)系统实现能源消耗逐日、月、季、年统计、管理和分析的功能,并以曲线、棒图、饼图等方式进行显示。实现各能源总耗占建筑总能耗的百分比;同一设备不同时间段的能耗对比分析;同一时间段不同设备的能耗对比分析;重点设备能耗按月、季、年时间段的峰谷值对比,建筑总能耗年趋势曲线、棒图(按月统计)。

2)具备数据分析和过滤功能,可以分时、分类、有选择的抽取数据,采用当今最新的数据分析技术,如价值树分析、对标分析、联想分析等,对能耗数据进行过滤,只抽取其中有用的数据。

3)具备自由数据钻取功能,实现对同一问题从不同角度进行全面的分析。

4)软件功能展现通过系统具备专门的Web门户展现和管理平台,支持基本的Web开发功能和嵌入任意的Web页,并集成网络报表、智能图表和仪表盘、自由查询、快速索引和自动报告等专业化的展现方法。

5)能效考核帮助建立企业能耗的考核制度,以能耗总量和各部门、建筑物的单位能耗等统计数据,引入KPI指标计算方法作为能耗考核依据。

6)系统人性化管理,在远程通过Internet直接进行编辑管理,不受地域限制。当

系统出现报警,发邮件或短信通知管理人员,使管理者的决策更加及时准确,提高系统的应用价值。

7)决策与支持:分析运行数据,提出优化方案。电能子系统的决策与支持;用水子系统的决策与支持;空调子系统的决策与支持;重点设备子系统的决策与支持。

5.3 能源监测系统

能源监测系统实现了各类能源数据的分散采集和集中管理,帮助企业提高配电、水循环、热力等系统的自动化管理水平,以减少故障和简化日常维护工作。同时将能耗数据提供给能源监管平台进行统计分析。

5.3.1供配电管理子系统

1)实时监控:对变配电室进行实时监控,实现高低压进出线、母联开关的运行状态、电力参数查询、故障报警等功能。

2)分项计量:客观准确地反应系统能源消耗状况,为制定有效的节能措施提供数据基础。依据用电环节的不同,详细分解出商业用电、动力用电、空调用电等,做到分项计量、综合对比分析的目的。

3)数据采集周期、方式、参数等可由用户在线定义,实时数据采样为秒级,历史EMS 能源管理系统

数据存储要求最小间隔1分钟,分辨率1分钟。

4)第三方通讯:电能子系统提供了与直流屏、变压器、发电机组、应急电源、模拟屏、楼宇自控系统或其它自动化系统的通讯功能。

5)历史数据:系统可根据用户需求,对遥测数据进行实时记录,记录时间超过两年以上。历史数据可以通过曲线方式和数据表格方式直观地显示,用户可方便对选择欲查看回路的历史数据。

6)报警及事件管理:当出现开关事故变位、遥测越限、保护动作或其他报警信号时,系统发出音响提示,并自动弹出报警画面。报警需操作员确认后方可复位。报警系统记录入监控数据库。

7)电能管理:对关键回路的电流和功率变化进行监控,实现故障的及时修正和预测、设备的运行调配管理。

8)系统自诊断和自恢复:能在线诊断系统软件和硬件,发生故障时,能自动在屏幕上显示故障单元、故障部位及故障性质,单个元件的故障不得引起整套装置的误动,也不影响其它装置和监控系统的运行。

5.3.2水能管理子系统

1)分项计量:客观准确地反应系统能源消耗状况,为制定有效的节能措施提供数据基础。依据用水环节的不同,分解出生活冷热水、中水系统,做到分项计量、综合对比分析的目的。

2)数据采集周期、方式、参数等可由用户在线定义,实时数据采样为秒级,历史数据存储要求最小间隔1分钟,分辨率1分钟。

3)历史数据:系统可根据用户需求,对遥测数据进行实时记录,记录时间超过两年以上。历史数据可以通过曲线方式和数据表格方式直观地显示,用户可方便对选择欲查看回路的历史数据。

4)报警及事件管理:当出现用水量越限或其他报警信号时,系统发出音响提示,EMS 能源管理系统

并自动弹出报警画面。报警需操作员确认后方可复位。报警系统记录入监控数据库。

5)系统自诊断和自恢复:能在线诊断系统软件和硬件,发生故障时,能自动在屏幕上显示故障单元、故障部位及故障性质,单个元件的故障不得引起整套装置的误动,也不影响其它装置和监控系统的运行。

5.3.3电能质量

系统嵌入电能质量专用监控软件。对建筑内的电能质量进行全面的监测和分析。

利用全新的现场谐波畸变诊断工具,加快谐波抑制的诊断过程,优化解决方案的成本,预测已运行系统的技术风险。根据GB/T 14549《电能质量—公用电网谐波》的要求,对各种非线性负荷注入电网的谐波电压和谐波电流加以限制。通过对谐波的监测和分析,确保设备运行的可靠性。

六、无线Mesh自组网网络

6.1无线Mesh自组网网络组成

本智慧建筑能源管理系统采用无线mesh自组网网络,实现以能源网关为中心,以无线能源采集器、无线智能电表为骨干节点,利用无线和有线完美结合;有线部分采用 RS485或MBus总线将多台计量表计连接到无线采集器。无线网络部分采用433/470MHz 无线传输网将多台无线能源采集器连接到能源网关。能源网关使用GPRS/CDMA 连接到数据中心。

6.2无线Mesh自组网网络特点

无线Mesh自组网网络适应各种复杂、多变的现场环境,已在各种复杂环境和低功耗组网方案中成功使用;

智慧能源管理系统

智慧能源管理系统 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

智慧能源管理系统 一、建筑能源管理系统................................................... 系统概述............................................................. 法规要求............................................................. 设计依据............................................................. 核心理念............................................................. 优势特点............................................................. 建设目标............................................................. 系统结构............................................................. 能源网络组建......................................................... 二、建立绿色建筑评价体系.............................................. 能源数据采集范围..................................................... 建立用能计量体系 .................................................... 建立绿色建筑评价体系................................................. 三、系统功能详述...................................................... 建筑基础信息配置..................................................... 能耗数据实时监测..................................................... 建筑分类能耗分析..................................................... 建筑分项能耗分析..................................................... 能耗同比、环比分析................................................... 能耗数据分析......................................................... 能耗指标统计......................................................... 能源消耗分析......................................................... 四、界面展示设计...................................................... 界面总览示意图....................................................... 系统分析图........................................................... 实时数据监测......................................................... 设备分项分析饼图..................................................... 空调能耗分析图....................................................... 能耗分户计量图.......................................................

智慧建筑能源管理系统方案-最新版本

智慧建筑能源管理 系 统 方 案

修订记录 日期版本描述作者2015-04-25 1.0 初稿完成

一、概述 随着社会的发展,大型建筑在逐年增加,其能耗也在不断增大,能源与发展的矛盾日益突出。未来几年内写字楼、公寓、饭店、会展中心等大型公共建筑会大幅度增加,而我国约90%以上的大型公共建筑是典型的能耗大户。 建筑行业的能耗消耗种类较为单一,大致分为5类,电能、水能、燃气、集中供热、集中供冷。根据中国建筑能耗信息网提供的资料显示,就电能消耗分析,大型建筑的能耗比重约为空调能耗40%,公共与办公照明能耗47%,一般动力能耗2.9%,其他用电能耗10.1%。而在大型商场中的照明能耗占40%左右,电梯能耗占10%左右,空调系统的能耗则是占到了50%左右。在提倡节能减排的当今,做好节能工作不仅对实现“十二五”建筑节能目标具有重大意义,更是为高耗能建筑进一步节能提供准备条件。

二、能耗现状分析 2.1 能源流失 不同的建筑类型关注能耗的变化所有不同,比如:酒店类型关注客房入住率 与能源消耗的变化关系;大型超市关注空调使用率的变化、单位面积能耗值以及照明范围等多个指标;公司、写字楼关注空调末端使用率、不同功能的照明分类等等。大型商业中心关注不仅关注各类能源消耗的情况,同时对于中央空调、水泵等重点设备的运行和效率也更为关注。 一栋大楼的能源消耗如下图几个方面所显示: 1浪费: 未使用房间的空调 未使用房间的照明 水龙头未关 7设计工程: 建筑节能设计不合理 节能系统未启用 使用高耗能设备 6能量转变效率 电-光 电-热 电-动力 热-电气设备 2设备机器效率 锅炉、空调 水泵、鼓风机电梯 主要的能源流失 5热流: 从配管、通风管道的热量损失 配管、通风管道阻力损失 3运行及保障管理不完备:过大容量运行 设备陈旧 4未充分利用自然条件: 固定窗 没有有效利用外部空气制冷的空调设备 窗口周围边的照明控制

能耗管理系统设计施工方案

能耗管理系统设计施工方案 1、电的能耗计量:针对各楼栋、各区域、各楼层各用电回路电能耗数据进行实时监测,根据每个配电箱的电力回路的不同用途进行分项计量,根据电力远传仪表的数量和位置设置相应的电表数据采集器,然后通过采集器将所有电力回路能耗数据上传到本地能耗监测管理平台,实现建筑电能分项能耗数据动态监测和远程传输。 2、水的能耗计量:根据设计院给水系统设计,在建筑进水总管和每层楼有表具的总管上安装数字式远传水表。通过水表数据采集器将水能耗数据上传到本地能耗监测管理平台。 3、系统架构:网络传输分两层架构。网络控制层采用TCP/IP 协议,数据采集器支持双服务器上传,将相关数据上传至本地能耗管理平台。现场层数据采集器需要支持RS485、M-BUS、LONWORKS 等接口,支持各类标准的MODBUS、DLT-645 等各类标准国家协议。 4、系统要求:本项目能源管理平台设置在管理中心。现场采集器通过网络和上一级能耗监测平台的联网,同时本地服务器软件进行网络进行同步数据采集和分析,完成相关的能耗分析功能。采集器通过485协议将对应的数据采集。现场采集器必须按照建设部《国家机关办公建筑及大型公共建筑分项能耗数据采集传输导则》和《国家机关办公建筑及大型公共建筑分项能耗数据采集技术导则》进行数据采集和传输,技术规程要求必须上传的能耗数据必须从采集器直接上传省市平台。 对整个建筑的水、电等用能情况进行实时信息采集,并实现显示、分析、处理、维护及优化管理的目的。从而实现以下功能:实现建筑能耗实时监测,确切掌握各能耗总量及动态变化; 对建筑各能耗进行系统诊断,指导合理用能; 协助管理方建立节能长效机制; 对采用的节能新技术进行后评估; 在系统基础上实现分项用能定额管理制度;

建筑物节能管理系统

建筑物节能分析管理系统 建筑能耗是指民用建筑(包括居住建筑和公共建筑以及服务业)使用过程中的能耗,主要包括采暖、空调、通风、热水供应、照明、炊事、家用电器、办公设备、电梯等方面的能耗。其中采暖空调通风能耗约占2/3 左右。 海博能认为,当前造成我国建筑能耗过高的情况大致分为以下几种: (1)建筑设计上不节能,直接导致建筑物能耗需求过高; (2)采暖、通风与空调系统容量选择不合理,造成“大马拉小车”; (3)各能耗系统相互独立,未对能源综合利用作出合理规划,导致能量浪费; (4)设备运行管理不正确,导致能耗过高; (5)设备长时间使用后没有进行正确维护或更换低效率设备,造成能效低下。 从上面可以看出,建筑节能是一项涵盖建筑设计、设备选型、能源规划、运行管理和系统维护的复杂的系统工程。 XX公司建筑节能全面解决方案是建立在建筑节能物分析管理系统基础上的建筑节能综合解决方案,它以仿真预测模型为基础,采用系统工程的理论和方法,实现建筑节能分析、设计、改造和管理的一体化全面技术解决方案,是当前最先进、最有效的建筑节能全面解决方案。 建筑节能分析管理信息系统将建筑设计、设备工艺、自动控制、能源规划、系统优化和信息技术有效集成,在决策、设计、施工组织管理、运行维护及管理、优化及节能改造等各个环节为客户提供全程服务,从而从根本上降低建筑物的设计能耗和运行能耗。 3.2.1 节能设计 节能设计包括建筑物节能设计、设备选型和能源规划三个部分。其目的是为用户降低能耗需求,提高能源综合利用率。 3.2.1.1 建筑物节能设计 BEAMS系统通过对建筑物围护结构模型、设备模型以及当地历史气象信息进行仿真和综合分析,得到建筑物的设计日冷、热负荷,并根据《公共建筑设计节能标准》对建筑物维护结构(墙体材料、外墙保温、外遮阳、内遮阳、玻璃幕墙等)进行优化,使之设计日的冷、热负荷降到最低,从根本上解决建筑物能耗过高的问题。 3.2.1.2 设备选型 以仿真分析为基础的设备选型是解决当前建筑中普遍存在的“大马拉小车”现象的唯一手段,只有在精确预测建筑物负荷的情况下才能真正做到“车马相配”。同时,在设备选型的过程中必须遵循以下原则: (1)满足建筑物的最大冷、热负荷需求,并按规定留出余量; (2)在考虑综合成本及建筑物实际情况的前提下尽量避免运行过程中的“大马拉小车”的情况; (3)兼顾空调主机维护保养计划,避免主机连续运行时间过长,影响主机寿命。 3.2.1.3 能源规划 能源规划是提高能源综合利用率的重要手段。海博能公司根据当前建筑物的用能情况制定了一整套包括热回收、有源能量回馈、太阳能、风能、地热能、沼气等在内的综合能源利用规

园区建筑能源管理系统能耗分析节能方案

我们的园区建筑也是能耗大户,高效的能源管理是园区运营和服务的重要支撑,包括水、电、气等能源的大量消耗也占据了园区成本的较大比例,而其中也有一部分能源消耗是被浪费的,并不产生效益,对这部分浪费的资源需要加以管理。源中瑞源管理系统则是对园区的能源使用情况进行的全面监测,统计园区建筑各区域中各类能源的用量、高峰低谷值、一般规律、异常使用等等数据,并在系统内进行分区域分类别分析,给出管理人员对园区能源高效、绿色使用的管理和优化信息。 园区能源管理系统,大型公建能源管理系统,面向园区建筑能源消耗为主的能源用户进行能源管理ruiecjo微加;包括能源消耗情况的可视化、能源设备实时监测、能源计划管理、能源分析预测、优化节能方案等; 通过使用源中瑞138.2311.8291园区能源管理系统的应用,能够对园区内各区域各类能源的使用情况进行阶段性的统计分析,发现不同类型的能源使用的规律,并结合实际的业务发生情况,发现园区能源利用的不合理之处和异常状况,从而制定能源管理的优化方案,避免不必要的能源浪费,降低能源消耗、节约运营成本,进而减少园区的综合运营成本,源中瑞能源管理系统产品技术特点 1、远程监测,实现站点无人值守: 对于具备自动化条件变电站、水泵站、机房、煤气站、加压

站、气柜、空压站等可实现无人值守,由能源管理系统对无人值守站点进行远程实时动态数据监测。 2、支持C/S、B/S结构: 系统支持采用B/S(浏览器/服务器)结构和C/S(客户端/服务器)结构相结合模式。 3、支持多种系统: 系统采用分层分布式跨平台设计,全面支持HP、IBM、X86等各种硬件平台和UNIX、Linux、Windows各种操作系统。4、数据库稳定可靠: 支持多重冗余和负载均衡功能,可以把不同的数据应用进程分布到不同的服务器上,使得每个服务器都能运行在负载比较均衡的状态下。支持灾难恢复、数据同步功能,实现数据库稳定可靠运行。 5、智能通讯网关: 采用新一代嵌入式技术,构筑分布式的数据采集系统,实现能源介质参数连续、稳定、可靠采集传输。 6、模块化结构、扩展性强: 系统采用模块化设计,支持ODBC、OPC、API、DDE等标准数据变换方式,支持多种关系型数据,包括Oracle、SQLServer 等。 7、支持互联网、移动终端: 支持手机、平板等移动终端进行登录浏览访问。

智慧能源管理系统

智慧能源管理系统 一、建筑能源管理系统................................................... 系统概述............................................................. 法规要求............................................................. 设计依据............................................................. 核心理念............................................................. 优势特点............................................................. 建设目标............................................................. 系统结构............................................................. 能源网络组建......................................................... 二、建立绿色建筑评价体系.............................................. 能源数据采集范围..................................................... 建立用能计量体系 .................................................... 建立绿色建筑评价体系................................................. 三、系统功能详述...................................................... 建筑基础信息配置..................................................... 能耗数据实时监测..................................................... 建筑分类能耗分析..................................................... 建筑分项能耗分析..................................................... 能耗同比、环比分析................................................... 能耗数据分析......................................................... 能耗指标统计......................................................... 能源消耗分析......................................................... 四、界面展示设计...................................................... 界面总览示意图....................................................... 系统分析图........................................................... 实时数据监测......................................................... 设备分项分析饼图..................................................... 空调能耗分析图....................................................... 能耗分户计量图.......................................................

智慧能源管理解决方案

力控科技智慧能源管理解决方案 1概述 能源紧缺和环境恶化已经成为全球面临的最大问题,在中国,持续高速的经济增长的同时也引发了能源供应危机及环境严重污染等问题。节能减排、低碳环保不再只是一个社会的热点话题,更是我们未来的必经之路。认真贯彻落实党的十八大精神,实现“十三五”规划任务,要求加快推进节能降耗,加快实施清洁生产,加快资源循环利用,向节约、清洁、低碳、高效生产方式转变,实施节约与开发并举、把节约放在首位的能源发展战略。 要实现能源的智慧管理不仅要考虑提高能源利用效率,改进能源生产系统和开发可再生能源等能源问题,还要可以将IT云计算、物联网等新技术应用到管理平台中,最终建设能源互联网,推广可再生能源应用以及完成能源智慧调峰等。要实现智慧能源管理需建设一套能管理和保证中心高效运转的信息管理系统——能源管控平台,实现能源管理自动化,推动能源管理的标准化、系统化、智能化。 ●实现能源的在线平衡调节; ●实现动力能源设备的集中监控; ●规范能源设备的运行管理; ●完善能源数据的核算体系; ●实现计量仪表的实时管理; ●实现能耗数据分析; ●进行能源预测预警分析; ●节能评价辅助决策支持。 能源管控平台管理内容包含企业能源使用的管理和能源成本的管理。 ●能源使用的管理 ?企业用能状况和能源流程;

?能源使用的安全性、可靠性和可用性; ?能源使用的效率; ?能源排放; ?能源使用意识; ●能源成本的管理 ?能源使用和主要耗能设备台账; ?企业能源成本统计核算; ?产品综合能耗和产值能耗指标计算分析; ?能源成本分摊和账单管理; 2系统整体拓扑结构介绍。 2.1集团集团级管控平台系统架构 集团级能源管控平台产品采用力控“工业采集网关+pSpace+能耗分析平台”的产品部署方案。以下属企业能源平台、及智慧城市相关平台为基础,关联企业综合办公平台及智

智慧能源管理系统审批稿

智慧能源管理系统 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

智慧能源管理系统

一、建筑能源管理系统 系统概述 绿色建筑是指最大限度地节约资源、保护环境和减少污染,为人们提供健康、适用和高效的使用空间,与自然和谐共处的。建筑能源管理系统以绿色建筑为核心,在保障高舒适的同时,坚持以“低碳、高效”为原则,打造低能耗、高舒适的绿色建筑。 关键的核心产品采用非常先进的绿色建筑的能源管理技术,实时监测各弱电子系统的运行状态,并将数据汇集到中心数据库,系统自动分析各设备的能耗、能效情况并给出合理建议,从而进一步对设备进行优化,以实现整个弱电系统信息资源的合理共享与分配,确保建筑内所有设备处于高效、节能的最佳运行状态。侧重于系统整体的节能运行,其运行管理模式及系统控制策略易于理解和应用。 法规要求 为能耗统计、能源审计、能效公示、用能定额和超定额加价等制度的建立准备条件,促使办公建筑和大型公共建筑提高节能运行管理水平,住房和城乡建设部在2008 年6 月正式颁布了一套国家机关办公建筑及大型公共建筑能耗监测系统技术导则,共包括5 个导则 ◆《分项能耗数据采集技术导则》 ◆《分项能耗数据传输技术导则》 ◆《楼宇分项计量设计安装技术导则》 ◆《数据中心建设与维护技术导则》 ◆《系统建设、验收与运行管理规范》 设计依据 《绿色建筑评价标准》 《公共建筑节能改造技术规范》JGJ 176-2009 《智能建筑设计标准》GBT50314-2006 《中央空调水系统节能控制装置技术规范》GBT26759-2011 《民用建筑电气设计规范》JGJT 16-2008 《综合布线工程设计规范》GB50311-2007_ 《电子计算机机房设计规范》GB50174-93 《电子设备雷击保护守则》GB7450-87

建筑能源管理系统

建筑能源管理系统 一、能源管理系统的概念 能源管理系统英文简称EMS。建筑能源管理系统(BEMS),家庭能源管理系统(HEMS)。建筑能源管理系统就是将建筑物或者建筑群内的变配电、照明、电梯、空调、供热、给排水等能源使用状况,实行集中监视、管理和分散控制的管理与控制系统,是实现建筑能耗在线监测和动态分析功能的硬件系统和软件系统的统称。它由各计量装置、数据采集器和能耗数据管理软件系统组成。基本上,通过实时的在线监控和分析管理实现以下效果:1)对设备能耗情况进行监视,提高整体管理水平;2)找出低效率运转的设备;3)找出能源消耗异常;4)降低峰值用电水平。BEMS的最终目的是降低能源消耗,节省费用。家庭能源管理系统:为削减家庭的功耗电量,首先需要减少各个家电产品的耗电量。要提高核心部件的效率,利用传感器等来优化运行等。接着,还要实现整个家庭的优化。它将住宅内的家电产品等能耗设备网络化,并通过对其的控制来削减能源消耗量。对于消费者来说,具有可在无损生活舒适性的前提下减少光热费支出。 二、能源管理系统的领先企业及各大企业能源管理系统的代理概况 达希能源借助其上海建筑科学研究院科、同济大学、上海电力大学等机构的科研、学术、专业背景,在2010年推出了BEMCloud建筑能源管理云服务平台,该系统能提供强大的功能组态、界面组态功能,并拥有地理信息、综合凭条、能耗监测、节能量分析、、用能诊断、能源审计、信息发布、报警管理、设备管理、专家系统等四十多个子系统模块,该系统平台其强大的子系统功能适用于任何行业用户,用于定位用户能源系统中的高能耗症结,并为其提供有效的改进建议。 研华推出了BEMS楼宇能源管理系统,对建筑的水、电、气消耗情况进行数据搜集,计算出优化用电建议,并配合Web-enabledDDC控制器,进行时序控制,执行优化动作,体现出高度的智能性和自动化水平。 江森智控推出了Metasys5.0升级版本通过能源管理软件提高了可持续性。任何楼宇管理人员或服务专家都能够轻松配置、监控和诊断Metasys站点信息。定

智慧能源管理解决方案

智慧能源管理解决方案 一、背景概述 能源是经济增长的动力源,同时也是影响城市环境与可持续发展的一个制约因素。 ●能源作为经济系统的基础要素,促进了国民经济的发展; ●能源要素高投入和经济高速发展可能带来巨大的资源环境压 力; ●经济增长为能源发展和环境保护提供前提,能源特别是新能源 与可再生能源的大规模开发和利用要依靠经济的有力支持。 因此,能源、环境和发展已成为世界各国共同关注的议题,“低碳经济”的理念应运而生。所谓低碳经济(Low-Carbon Economy),是在可持续发展理念指导下,通过技术创新、制度创新、产业转型、新能源开发等多种手段,尽可能地减少煤炭、石油等高碳能源消耗,减少温室气体排放,达到经济社会发展与生态环境保护双赢的一种经济发展形态。 “低碳经济”是实现全球减排目标、促进经济复苏和可持续发展的重要推动力量,已成为世界潮流,它将引领全球生产模式、生活方式、价值观念和国家权益的深刻变革。 在我国,能源问题受到中国政府的高度关注,发展低碳经济、建设资源节约型、环境友好型社会已成为中国的战略选择。2010年

3月,政府工作报告对2010年我国环境保护和节能减排方面工作提出了要求和指示:打好节能减排攻坚战和持久战。一要以工业、交通、建筑为重点,大力推进节能,提高能源效率;二要加强环境保护;三要积极发展循环经济和节能环保产业;四要积极应对气候变化。2010年4月,温家宝总理在国家能源委员会第一次全体会议中强调,要抓好以下几项重点工作:一要加强能源发展战略研究,谋划长远发展大计;二要加快能源调整优化结构,大力培育新能源产业;下大力气落实2020年非化石能源消费比重提高到15%的目标;三要积极应对气候变化,打好节能减排攻坚战,要实现2020年单位国内生产总值二氧化碳减排40%-45%的目标;四要提高能源科技创新能力,支撑现代能源体系建设;五要继续实施“走出去”战略,深化能源国际务实合作;六要推进能源体制机制创新,加强能源法制建设。 在低碳经济和节能减排政策背景下,很多国际大都市如英国伦敦、日本横滨等都以建设发展“低碳城市”为荣,关注和重视在经济发展过程中的代价最小化以及人与自然的和谐相处。上海、保定两市也成为了世界自然基金会(WWF)“中国低碳城市发展项目”的试点城市。根据WWF提出的“CIRCLE”原则,低碳城市建设应遵循:紧凑型城市遏制城市膨胀(Compact)、个人行动倡导负责任的消费(Individual)、减少资源消耗潜在的影响(Reduce)、减少能源消耗的碳足迹(Carbon)、保持土地的生态和碳汇功能(Land)、提高能效和发展循环经济(Efficiency)。可见,能源管理是城市低碳化的关键,“低碳城市”离不开城市能源管理平台的有效支撑。

智能楼宇能源管理系统

智能楼宇能源管理系统 一、前言 随着我国经济社会的发展,大型公共建筑耗能的问题日益突出,对建筑执行能耗量化管理以及效果评估,来控制降低建筑运营过程中所消耗的能量,最终降低建筑的运营成本,提高能源使用效率,已经成为社会最为关注的问题。 中恒汇鼎长期致力于为客户提供广泛的能源管理解决方案,此能源系统作为智能楼宇管控一体化的能源综合监控信息化平台,采用先进的在线监测技术、云计算、物联网等技术的应用实现供能设备与耗能设备的直接对话,传感器和执行器、监测和检测间环环相扣,从而实现智能楼宇的数字化管理。 整个能源管理系统将从以下几个方面着手,最终实现建筑管理辅助决策系统。 (1)实现对楼宇自控、门禁、智能空调、、电梯、变配电、照明、消防等子系统的大融合,通过汇总后由控制中心统一调度。 (2)减少能源消耗,采用实时能源监控、分户分项能源统计分析、优化系统运行。通过重点能耗设备监控、能耗费率分析等多种手段,使管理者能够准确掌握能源成本比重和发展趋势,制订有的放矢的节能策略。与蓄能装置、无功补偿装置联动,达到移峰填谷、提高功率因数的目的。 (3)监控办公、居住环境舒适信息:主要包括环境的温度、湿度、空气质量指标等。二、系统架构设计 智能楼宇能源管理系统设计采用分层分布式结构, 系统自上而下共分四层: 现场设备层:指分布于高低压配电柜中的测控保护装置、仪表、以及楼宇自控、门禁、智能空调、、电梯、变配电、消防等子系统。 网络通信层:使用通信网关可以将各个子系统所使用的非标准通信协议统一转换为标准的协议, 将监测数据及设备运行状态传输至智能楼宇能源管理平台,并下发上位机对现场设备的各种控制命令。 监控层:具有良好的人机交互界面,软件负责和国内外各种楼宇控制厂家的检测、控制设备构成任意复杂的监控系统,实现完美的过程可视化,并且可与“第三方”的软、硬件系统来进行集成。实时历史数据库提供丰富的企业级信息系统客户端应用和工具,大容量支持企业级应用,内部实现高数据压缩率,实现历史数据的海量存储。 能源管理层:为现场操作人员及管理人员提供充足的信息(包含楼宇供用能信息, 电能质量信息, 各子系统运行状态及用能信息等)制定能量优化策略, 优化设备运行, 通过联动控制实现能源管理, 提高经济效益及环境效益。

智慧能源管理系统

智慧能源管理系统 一、建筑能源管理系统 (2) 1.1系统概述 (2) 1.2法规要求 (2) 1.3设计依据 (2) 1.4核心理念 (4) 1.5优势特点 (5) 1.6建设目标 (5) 1.7系统结构 (6) 1.8能源网络组建 (7) 二、建立绿色建筑评价体系 (9) 2.1能源数据采集范围 (9) 2.2建立用能计量体系 (12) 2.3建立绿色建筑评价体系 (12) 三、系统功能详述 (13) 3.1建筑基础信息配置 (13) 3.2能耗数据实时监测 (13) 3.3建筑分类能耗分析 (13) 3.4建筑分项能耗分析 (14) 3.5能耗同比、环比分析 (14) 3.6能耗数据分析 (15) 3.7能耗指标统计 (15) 3.8能源消耗分析 (15) 四、界面展示设计 (16) 4.1界面总览示意图 (17) 4.2系统分析图 (18) 4.3实时数据监测 (18) 4.4设备分项分析饼图 (19) 4.5空调能耗分析图 (20) 4.6能耗分户计量图 (20) 4.7管理诊断示意图 (21) 五、用户收益 (21)

一、建筑能源管理系统 1.1系统概述 绿色建筑是指最大限度地节约资源、保护环境和减少污染,为人们提供健康、适用和高效的使用空间,与自然和谐共处的建筑。建筑能源管理系统以绿色建筑为核心,在保障高舒适的同时,坚持以“低碳、高效”为原则,打造低能耗、高舒适的绿色建筑。 关键的核心产品采用非常先进的绿色建筑的能源管理技术,实时监测各弱电子系统的运行状态,并将数据汇集到中心数据库,系统自动分析各设备的能耗、能效情况并给出合理建议,从而进一步对设备进行优化,以实现整个弱电系统信息资源的合理共享与分配,确保建筑内所有设备处于高效、节能的最佳运行状态。侧重于系统整体的节能运行,其运行管理模式及系统控制策略易于理解和应用。 1.2法规要求 为能耗统计、能源审计、能效公示、用能定额和超定额加价等制度的建立准备条件, 促使办公建筑和大型公共建筑提高节能运行管理水平,住房和城乡建设部在2008 年6月正式 颁布了一套国家机关办公建筑及大型公共建筑能耗监测系统技术导则,共包括5个导则 ◆《分项能耗数据采集技术导则》 ◆《分项能耗数据传输技术导则》 ◆《楼宇分项计量设计安装技术导则》 ◆《数据中心建设与维护技术导则》 ◆《系统建设、验收与运行管理规范》 1.3设计依据 《绿色建筑评价标准》 《公共建筑节能改造技术规范》JGJ 176-2009 《智能建筑设计标准》GBT50314-2006 《中央空调水系统节能控制装置技术规范》GBT26759-2011 《民用建筑电气设计规范》JGJT 16-2008 《综合布线工程设计规范》GB50311-2007_ 《电子计算机机房设计规范》GB50174-93

能源管理系统与能耗监测的解决方案

能源管理系统与能耗监测的解决方案 1 概述 能源管理系统是以帮助工业生产企业在扩大生产的同时,合理计划和利用能源,降低单位产品能源消耗,提高经济效益为目的信息化管控系统。 通过能源计划,能源监控,能源统计,能源消费分析,重点能耗设备管理,能源计量设备管理等多种手段,使企业管理者对企业的能源成本比重,发展趋势有准确的掌握,并将企业的能源消费计划任务分解到各个生产部门车间,使节能工作责任明确,促进企业健康稳定发展。 能源管理系统的基本管理职能: ●能源系统主设备运行状态的监视 ●能源系统主设备的集中控制、操作、调整和参数的设定 ●实现能源系统的综合平衡、合理分配、优化调度。 ●异常、故障和事故处理。 ●基础能源管理。 ●能源运行潮流数据的实时短时归档、数据库归档和即时查询。 在我国的能源消耗中,工业与大型公建是我国能源消耗的大户,能源消耗量占全国能源消耗总量的70%左右,而不同类型工业企业的工艺流程,装置情况、产品类型、能源管理水平对能源消耗都会产生不同的影响。建设一个全厂级的集中统一的能源管理系统可以完成对能源数据进行在线的采集、计算、分析及处理从而实现对能源物料平衡、调度与优化、能源设备运行与管理等方面发挥着重要的作用。 能源管理系统(简称EMS)是企业信息化系统的一个重要组成部分,因此在企业信息化系统的架构中,把能源管理作为MES系统中的一个基本应用构件,作为大型企业自动化和信息化的重要组成部分,安科瑞(Acrel)公司的Acrel-5000产品以实时数据库系统为核心可以从数据采集、联网、能源数据海量存储、统计分析、查询等提供一个EMS的整体解决方案,达到公司调度管理人员在能源管控中心实时对系统的动态平衡进行直接控制和调整,达到节能降耗的目的。 2 系统软件 Acrel-5000能耗监测系统以计算机、通讯设备、测控单元为基本工具,为大型公共建筑的实时数据采集、开关状态监测及远程管理与控制提供了基础平台,它可以和检测、控制设备构成任意复杂的监控系统。该系统主要采用分层分布式计算机网络结构,一般分为三层:站控管理层、网络通讯层和现场设备层,如图1所示。

智能建筑能源管理系统

JL-BEM智能建筑能源管理系统 系统概述 JL-BEM智能建筑能源管理系统(Intelligent system of Jadelite-building energy management,以下简称JL-BEM系统)是基于JL-BUS总线标准和EnOcean自获能式无线传感技术设计的建筑电气控制系统,是珏朗站在节能增效角度,对建筑用能终端实现智能化自动控制的优化解决方案。JL-BUS总线标准,主要通过对灯光、卷帘、暖通空调、电动门窗等设备的自动控制实现对建筑光照、温度、湿度、空气清新度等环境参数的全面管理,最终使建筑的管理者获得更大的经济效益,使使用者获得更好的体验感受。EnOcean是一种基于能量收集技术的无线通信标准,基于该标准开发的自获能式无线传感及控制产品,能够从光、热、电波、振动、人体动作等获得微弱能量供电,而不需要额外提供能量。无需布线和维护,可以使建筑的控制更智能、安装更方便、节能更有效。 JL-BEM系统采用强弱电完全分离的控制形式,利用单一多芯的总线实现系统各个设备的连接,扩容时只需把增加的元件和总线简单地连接起来,无需重新布线,智能化的元件可通过编程改变功能,具有高度的灵活性。照明、遮光/百叶窗、保安系统、能源管理、供暖、通风、空调系统、信号和监控系统、服务界面及楼宇控制系统、远程控制、计量、视频/音频控制、大型家电等,所有这些功能通过一个统一的系统就可以进行控制、监视和发送信号,不需要额外的控制中心。通俗的说,JL-BEM系统可实现自动管理功能:上班期间动态地维持照明亮度,优化办公室内的光照环境,下班后不仅能满足大楼维护、安全人员及夜班值班者的工作需要,为保障人身安全提供必要的照明亮度,而且使办公楼不必在深更半夜点亮所有照明而浪费能源。 该系统的照明控制涉及以下内容: ◇采用调光高频电子镇流器的荧光灯为办公室工作空间提供照明; ◇在敞开式办公空间内用PC机和局域网为用户提供照明; ◇使用动静探测传感器自动控制照明; ◇对自然光的光照进行充分利用; ◇采用具有动感和色彩变化的LED灯标志牌; ◇使用DCOM在TCP/IP网上与楼宇管理系统(BMS)相连实现双向控制。 用户体验 办公楼 当你到达入口接待处时,就被邻近的JL-IR12传感器检测到。或者你按一下墙装面板上的“到达”键就可启动系统。接待台上的低压筒灯这时开始局部照明。场景面板在系统处在“正常”模式时,可启动所选的任务和场景。 当你进入总经理办公室这一公司的领导核心区域。根据企业特色,我们设计出各种复杂的照明场景组合,多功能传感器和墙装用户控制面板加强了对整个区域范围的控制。便捷的是,总经理通过台式PC机网络,就能像墙装控制面板一样设置和控制JL-BUS系统。

大学校园智慧能源建设方案

大学校区智慧能源 建设方案

目录 1 前言 (3) 1.1项目背景 (3) 1.2项目意义 (3) 1.3立项依据 (5) 1.4编制依据 (5) 2 项目概况 (7) 2.1建设原则 (7) 2.2总体目标 (8) 2.3存在的问题 (8) 2.4建设思路 (12) 3 现状分析 (15) 4 智慧能源技术方案 (16) 4.1总体方案设计 (17) 4.2智慧能源层级结构 (18) 4.3智慧能源综合信息监控系统 (20) 4.3.1 硬件架构 (21) 4.3.2 软件架构 (24) 4.3.3 应用功能 (26) 4.3.4 关键技术简介 (43) 4.4智慧能源通信网络 (45) 4.5智慧能源应用系统 (46) 5 智慧能源建设方案 (48) 5.1分布式电源建设 (48) 5.1.1 概述 (48) 5.1.2 建设情况 (49) 5.1.3 建设思路 (50) 5.1.4 建设方案 (51) 5.2校园配电自动化建设 (53) 5.2.1 概述 (53) 5.2.2 建设目标 (54) 5.2.3 建设思路 (54) 5.2.4 建设方案 (55) 5.3用电信息采集建设 (59) 5.3.1 概述 (59) 5.3.2 建设目标 (59) 5.3.3 建设思路 (60) 5.3.4 建设方案 (61) 5.4智能教室、宿舍、办公室建设 (63) 5.4.1 概述 (63) 5.4.2 建设目标 (64) 5.4.3 建设思路 (66) 5.4.4 建设方案 (67) 5.5电动汽车充电设施建设 (70) 5.5.1 概述 (70) 5.5.2 建设目标 (70) 5.5.3 建设思路 (71) 5.5.4 建设方案 (71)

智慧能源系统解决方案

一、系统概述 本项目为XX产业园区应用智慧园区能源管控系统,主要实现园区内部配电保护、能耗监测、水电缴费管理等功能,并安装屋顶光伏发电设施,为园区提高清洁能源。 智慧园区能源管控系统利用新一代信息技术-物联网技术,采集器通过RS485/RJ45/Lora/M_Bus等方式与水、电、气、热表实现通信。网络层通过4G/5G /NB-IoT等方式与平台通讯,实现对电、水、气、热表实时数据、历史数据和事件记录等信息的采集;数据应用层实现对电、水、气、热表各类数据的处理和存储,支持有序用能管理,异常用能分析,电、水、气、热能源质量数据统计、报表管理、损耗分析、增值服务等应用功能;应用层是用户和系统之间交互的桥梁,支持WEB浏览器、手机等多种查看方式,支持报表、柱状图、曲线图等多种图表形式,实现数据可视化。同时,结合3D可视化技术,直观、全面地反映系统运行状态,并能提供建筑关键场所的各子系统综合运行报告,提高突发事件的响应能力。

二、需求分析 目前产业园规划建设用地303亩,建筑面积XXX平方米,其中生产厂房XXX平方米;办公用房XXX平方米;配套用房XXX平方米。为提升园区能源信息化管理水平,达到绿色智慧园区,需要对各类能源进行信息采集,分类分项管理。 三、系统设计原则与目标 3.1设计原则 系统的软件设计方案需以计算机网络为基础、软件为核心,通过信息交换和共享,集成监控、管理整个园区的能源,提高系统维护水平、管理自动化水平、协调运行能力及详细的管理功能。 3.2设计目标 能源管控系统的设计目标就是要在提高能源系统的运行、管理效率的同时,结合3D可视化技术,通过与生产系统的数据共享与对比分析,更加快速、直观地统计能源消耗数据,为企业提供一个有效的能源系统整体管控解决方案;建立一套先进的、可靠的能源系统运行、操作和管理平台,并实现安全稳定、经济平衡、优质环保、监督考核的基本目标。 四、方案设计 整个方案从四个方面进行规划设计,主要包括配电监控、园区能效管理、缴费管理、光伏发电。 4.1 配电室及用电设备监控方案 实现对园区内配电室的实时监控,实时采集各厂站远动工作站遥测、遥信、电能量、数字量、微机保护信息等数据, 数据类型包

浅析基于互联网的智慧能源管理系统

浅析基于互联网的智慧能源管理系统 发表时间:2019-09-21T21:09:07.813Z 来源:《基层建设》2019年第18期作者:涂建华 [导读] 摘要:近年来,智能家居的发展尤为迅速,智慧能源管理系统的复杂程度也越来越高,人们对智能家居节能的关注程度也越来越大。 汉唐配售电(广东)有限公司 身份证:51022619760319xxxx 摘要:近年来,智能家居的发展尤为迅速,智慧能源管理系统的复杂程度也越来越高,人们对智能家居节能的关注程度也越来越大。本文阐述了基于互联网的智慧能源管理系统的研究意义,并对系统具体设计展开了探讨。 关键词:互联网;智慧;能源管理系统 引言 智慧能源管理系统作为智能家居子系统之一,其发展程度已成为智能家居成熟度的重要标志。随着人们对电力的需求量越来越大,电能浪费情况不断增高,如何有效缓解电气能耗与电力需求之间的矛盾,已成为亟待解决的重要课题。 一、智慧能源管理系统的研究意义 早在2012年《节能减排“十二五”规划中,便明确了大力发展能源管理推广工程、节能改造工程等节能减排重点工程。且伴随着人们的节能意识提高,智能家居的能源管理系统研究便极具使用价值与研究意义"。研究意义包括几点:(1)用户体验角度。智慧能源管理系统的设计前提在于不损害用户的体验度,确保用户使用电器便利性的同时,尽可能的降低电力能源消耗;(2)控制方式角度。实现实时在线控制工程,便于用户对电气的能源观测与控制,并完成无人值守时的节能功能;(3)节能角度。能源管理系统能大大降低电力能源的浪费与消耗,切实的减少用户电费总量。 二、基于互联网的智慧能源管理系统设计 2.1系统总体设计 本文研究的基于互联网的智慧能源管理系统,旨在通过远程控制实现节能目的,系统功能框架如图1所示。 智慧能源管理系统主要分为四个部分,即数据显示部分、智能:主控器部分、内部组网部分以及数据采集部分。其中,数据采集部分主要通过智能插座实现,电能参数进行采集,包括电器能耗、功率、电流、电压等。家庭内部组网通过ZigBee模块实现,完成命令传送与数据参数传输工作。智能主控器部分通过搭建的Linux操作系统实现的,负责智能预测算法运行、命令处理。数据显示部分通过互联网实现,负责电能参数储存于网页数据交互12。 2.2 ZigBee网络设计 ZigBee网络组建优先考虑网络稳定性、成本、延迟时间。从稳定性角度来说,网络拓扑结构越复杂,那么其自我修复能力越高,则稳定性越强。从成本、延迟时间来说,网络拓扑结构约简单,则用于路由功能的节点越少,成本越低,延迟时间越低。仅仅就智能家居而言,其对于网络数据的传输延迟时间要求较高,且整体成本是限制其是否能大规模普及的重要应为,但是对于稳定性要求并不高。本文ZigBcc控制芯片选用CC2530,是一款集中型的C51单片机内核,可在组网后控制家居电器开关.ZigBcc网络节点软件设计是在Z-Stack协议基础上的二次开发,用于应用层软件编写,设计终端节点和协调器节点。其中,终端节点软件设计负责传感器信息传输到协调器设备。协调器节点软件设计的功能在于组建、维护家庭内部局域网和主控模块的通信。接口网关控制器数据,通过点播通信传输到终端设备。 2.3智能网关主控器设计 (1)智能网关主控器是智慧能源管理系统的核心,功能是协调全体命令传输与任务调度,包括智能预测控制、网页交互命令传输以及数据储存等。首先,主控器应储存搜集到的能耗功率、电流、电压等参数,并进行详细分析,而得出多个特征值,并通过智能算法予以预测,随后,基于互联网,实现客户端与主控器的交互,并在网页上体现出采集数据,并根据网页指令做出动作。(2)智能网关主控器硬件设计方案主要包括JTAG下载电路、复位电路、电源电路、时钟电路、串口电路、网卡、SD卡、NORFLASH/NANADFLASH以及微处理器CPU。CPU作为任务执行核心,系统选用S3C2440A作为智慧能源管理系统CPU。(3)智能网关主控器软件设计涵盖控制子程序、电器的智能预测、电器模式识别子程序以及系统子程序。系统子程序用于完成节能系统的任务调度,确保各任务有条不紊正常运行。电器识别子程序用于识别电器的类型与状态,并根据结果返回主程序。电器的智能预测用于预测各电能参数,并通过模式识别子程序做出动作,实现智慧节能。 2.4控制软件服务器设计 远程控制系统主要通过Internet实现网络通信,主要包括网页交互程序、系统数据库、网页服务器三部分组成,web服务器选用BOA服务器与SQlite数据库。 (1)BOA服务器设计:本文智慧能源管理系统控制终端为网页界面,故而要求有网页服务器程序用于与客户交互,因智慧能源管理系统的并发访问较少,故而选用BOA网页服务器作为网页服务器,处理网页用户数据,并上传于CGI程序进行信息处理,处理完毕后将结果返回,再开通过网页客户端传达内容。(2)SQlite数据库设计:智慧能源管理系统主要有两个数据库,即用户数据库与电能参数数据库,其中,电能参数数据库用于储存全部电器工作参数,如电器数据表、电气类型数据表、电气属性数据表、电气属性类型数据表、电气

相关主题
文本预览
相关文档 最新文档