当前位置:文档之家› 纳米压痕力学模式总结(中文)

纳米压痕力学模式总结(中文)

::: Application Report

先进表面力学测试

安东帕压痕模式总结

介绍

仪器化压痕技术在当今学术和工业研究以及质量控 制等许多领域都得到了广泛的应用。这种方法通常被称 为纳米压痕,因为压痕深度通常比传统的维氏或洛氏硬 度测量要小得多。仪器化压痕技术通过施加载荷和测量 压痕深度来测量多种材料的硬度和弹性模量。由于包括 分析在内的测量是自动化的,许多测量可以在不需要操 作员干预的情况下自动执行和分析。鉴于安东帕纳米压 痕系统及其软件的多功能性,可以在特定材料上应用各 种加载方式以揭示特殊材料特性。例如,可以用循环加 载探测具有分级特性或表面涂层的材料,以测量它们的 硬度梯度; 具有时间依赖性的材料如聚合物可以以恒定 的应变速率模式或以各种压痕速率压痕以获得它们的动 态响应。可以在位移控制模式中有效地实现一些与压痕 相关的实验,例如微柱压缩,以观察滑移现象。

本应用报告总结了安东帕压痕软件中包含的各种方法。 详细描述了每种方法,并给出了应用实例。本文档的目 的是指导纳米压痕器的用户选择最佳的测试方法。

1. 标准压痕模式

标准压痕是最常见的压痕类型,用于简单有效的硬度 和弹性模量测量。 它在ISO 14577标准中定义。用户只需

输入最大压痕载荷和保载时间。载荷曲线如图.1a 所示, 载荷位移曲线如图.1b 所示。

图1-a )标准压痕载荷曲线,

b )得到的载荷 - 位移压痕曲线。 1.1. 高级压痕模式(单载荷压痕)

高级压痕模式是一种仪器化压痕技术,允许执行一 次压痕测量,用户可以独立定义加载和卸载速率。由于 这种模式,可以选择不同的加载类型,从而加快总测试 时间或分析不同材料对不同加载速率的响应。此模式可 用于大多数常规压痕测试应用。

安东帕仪器压痕(纳米压痕)测试仪提供三种主要类型 的载荷加载:

? 线性加载

? 二次方加载,

? 恒定应变率加载。

基于线性或恒定应变率加载类型的试验程序可以是力控 制器或位移控制。

1.2. 具有不同加载速率的线性加载

这种加载式的高级压痕模式可用于大多数常规压痕 测试应用。加载速率的增加会缩短测试时间,尤其是在

运行大型矩阵时。它也可用于聚合物模拟阶跃载荷(载 荷快速增加),并研究随后保载期间的蠕变或应力弛 豫。

压头的加载遵循以下公式:f =k×t (图2),其中k 是加载

速率,单位为m n/min 。假设硬度恒定,深度遵循平方根 演变与时间(f ~√h )的关系。

图 2 –线性加载实例 。

用户必须要输入最大载荷、加载和卸载速率以及保载 时间。也可以手动增加采集频率(默认设置为10赫兹), 以

便在加载期间记录更多数据,并在确定接触点时获得更 好的精度。增加线性加载速率可以加速测量。ISO 14577和 ASTM 2808中建议的加载时间为30秒,但是,当测试非粘 弹性材料时,为了减少时间,该值可以减少到几秒(通常 为10或5秒)。加载和卸载时间不应减少到小于2s ,采集 率应相应增加,以记录足够的数据点,以便适当控制压痕 过程和接触点确定。

以下曲线说明了在施加不同加载加载速率时在熔融石英 上获得的结果。图3a 显示了三种不同的载荷曲线,图3b 显示了三种产生的载荷-位移曲线(熔融石英不具有时间 依赖性,因此,尽管加载速率不同,所有载荷-位移曲线 都被叠加)。

图3-高级压痕在熔融石英上采用不同加载速率

a )叠加压痕载荷曲线,

b )产生的载荷-位移压痕曲线(叠加)。

1.3. 二次方加载

压头的加载遵循以下公式:f=k×t^2(图4),其中k 是加 载速率,单位为[mn/min]。假设硬度不变,深度随时间 (h~t )的变化而变化。这种加载类型最常用于连续多循 环(CMC )压痕模式,以获得等间距的深度硬度和弹性 模量值。

图4 -二次加载压痕力随时间的变化

这种加载类型允许保持线性深度增加(与线性加载相 反,其中深度增加遵循平方根曲线)。 用户必须要输入 最大载荷、加载和卸载速率以及保载时间。也可以手动 增加采集频率(默认设置为10赫兹)。

1.4. 恒应变速率加载

压头的加载公式如下: dP/dt×1/P=const. 图. 5).

图5 -恒应变率加载压痕时力随时间的变化。

对于具有应变率依赖机械性能的粘弹性材料,推荐这种

类型的载荷。 使用不同的加载速率可以有利地用于观察 不同应变速率载荷后的蠕变响应,并且还用于找到最佳 压痕条件,以在测试粘弹性材料时降低加载速率对弹性 模量的影响。

用户必须指定要达到的最小和最大深度(深度控制)或 最小和最大负载(载荷控制),应变速率和保载。 默认 情况下,采集速率设置为10 Hz ,但可以手动增加。

图6显示了压痕深度随应变速率变化的响应。 对于所有压 痕,最大施加的法向载荷保持恒定,而应变率从0.05/s 逐 渐增加到1/s 。

图6-不同应变率值的压痕深度与时间曲线的关系图。

众所周知,用深度传感压痕法测量弹性模量的标准

Oliver & Pharr 是利用假定为弹性的材料的卸载响应。然 而,粘弹性材料的卸载会受到材料粘性行为的影响,从 而影响弹性模量,弹性模量由压痕曲线的卸载部分计算 得出。文献中有几种修正公式,但在最大载荷下引入 足够长的保载期,也可以很容易地减小蠕变对计算弹性 模量的影响。

::: Application Report

2.

循环加载

在一个过程(加载 - 部分卸载)期间具有循环加载的压 痕对于获得具有梯度力学性能的材料(例如功能梯度材 料(FGM )或具有多层涂层的材料)的硬度或弹性模量 的深度分布特别有用。 这种材料的机械性能从表面朝向 基底或内部材料变化。 循环压痕程序允许作为压痕深度 的函数的硬度和弹性模量的离散表征。 安东帕仪表压痕 测试仪提供三种类型的循环压痕程序:

? 连续多循环 (CMC) ? 渐进多循环 ?

恒定多循环

在所有这些测试过程中,压头保持与样品接触,并且材 料的所有力学性能都是从每次部分卸载获得的。当然, 可以在高级或 可视化矩阵中组合几个循环压痕测试(甚 至是不同类型的压痕测试)。

2.1

连续多循环

连续多循环(CMC )程序包括重复加载和部分卸载,如 图7a 中示意性所示。用户必须指定第一个周期中的最大 载荷,最后一个周期中的最大载荷,周期数(通常为10 到20个)和最大负载增量的类型(通常是二次方的,以 获得等间隔深度的结果)。每个循环中的卸载按给定循 环中最大负载的百分比进行(通常使用最大负载的20

%)。结果,每次卸载产生离散的硬度和弹性模量值, 因此获得深度分布(图7b )。该深度示意图显示了作为 压痕深度的函数的硬度和弹性模量的变化趋势。这种趋 势可以揭示力学性能的梯度或有助于确定涂层材料上的 最大压痕深度,其中可以看到涂层材料有没有受到基底 的影响。在CMC 深度趋势中,通常使用大约十到二十个 循环,并且压痕加载和卸载时间更短以减少测试时间。

2.3 恒定多循环 对于一些具有多孔结构的材料,

例如热喷涂涂层,其他 循环方法也可能有用。最常用的方法是恒定多循环

(CM ),它是基于两级荷载之间同一点的循环荷载(见 图8)。与CMC 测量类似,压头在循环压痕的整个过程中 与表面保持接触。当测试材料对压实循环荷载的响应 时,CM 方法特别有用,因此它适用于重复压痕导致孔隙 闭合的多孔材料。CM 方法的主要优点是,压痕深度的增 加可以作为循环次数的函数来监控,因此可以很容易地 评估材料的恢复能力。

恒定多循环(CM )主要在载荷控制模式下执行,但深度 控制模式也可用。在恒定多循环中,用户必须指定每个 循环中需要达到的最大和最小载荷、加载和卸载速率、 保载时间和循环次数。

典型的CM 载荷示意图如图8a 所示,多孔陶瓷的典型结果 如图8b 所示。

图8-a )典型恒定多周期(cm

)荷载和深度示意图。 b )最大压痕深度随循环次数的变化。

2.4

Indentation in Depth control mode

在某些情况下,最好在深度(位移)控制模式下进行压 痕测量,而不是在荷载控制模式下进行压痕测量。一个 典型的例子是研究压缩微柱时pop-in (剪切带滑动)(图 9)。在这些测量中,支柱突然变形,产生大的压缩载荷 下降,而只有轻微的深度下降 。在针对负载控制模式的 有限元仿真中,深度控制模式也是优选的。 全深度控制 模式还允许通过保持最大深度恒定来测量具有时间依赖 性质的材料(例如聚合物或水凝胶)的:当材料弛豫 时,压头上的负载减小。 因此全深度控制模式能够计算 材料的弛豫

7 – a )典型的连续多循环(CMC )载荷和深度分布,b )得到的标 准材料和具有梯度特性的材料的硬度深度分布。

2.2 渐进多循环

渐进多循环与连续多循环曲线几乎相同,只是每个循环 中的卸载是针对用户自定义的载荷而不是每个循环中的 最大载荷的百分比。

图9 - 金微柱的全深度控制模式压痕(压缩)的示例。 注意在压缩微柱

时由于POP In 效应而导致力下降。

深度模式有两种的控制: ?

全深度控制模式,通过控制压头的位移(深度)速率 (nm / min ),可以达到指定的最大穿透深度。

G71IA046EN-A

?通过载荷控制模式的最大深度可以通过控制加载和卸载速率达到最大深度。

在具有载荷控制的最大深度模式中,用户必须指定最大深度,加载/卸载速率(mN / min)和保载时间。在全深度控制模式中,必须指定穿透位移速率,保载时间和位移卸载速率,单位为nm / min。

载荷控制模式下的最大深度主要用于必须达到特定压痕深度的实验,但与位移控制相比,用户更喜欢载荷控制。全深度控制模式用于需要位移控制的应用中,例如对pop-in的研究或对时间相关材料的应力弛豫实验。图10比较了使用全深度控制和最大深度控制压痕模式获得的压痕曲线。在用户定义模式中,单个压痕测量被分成可由用户编程的段。每个段可包括装载,保载和卸载部分。每个段可以独立编程,以满足各种加载/卸载速率或保持时间。在整个压痕期间,压头与被测材料保持接触。

有三种主要类型的用户段:负载控制、深度(带负载控制)和深度(带深度控制),允许选择最大应用负载或最大穿透深度。在每个卸载段计算硬度和弹性模量。此压痕模式允许在同一点上创建非常规压痕循环。

图.11显示了对TiN样本执行的用户定义的测试的示例。该压痕示意图由在不同施加载荷下的三个连续压痕组成。在这三个压痕中的每一个之间温度增加。由于分段定义,可以选择保持时间以确保温度变化后足够的热稳定性。

图11 用户定义的压痕示意图例子

图.10 –全深度模式(a)和带负载控制的最大深度模式

(b)及其产生的载荷与穿透深度曲线(c,d)。

要正确设置全深度控制模式和使用载荷控制模式的最大深度参数,建议首先使用载荷控制模式执行标准压痕。以这种方式,可以将达到指定最大深度的加载速率设置为合理的值,以避免速率太快或太慢。

对于全深度控制模式,建议在表面接近过程中调整接近压头接近速度的位移率。达到规定最大深度所需的载荷不应超过仪器的载荷范围。

2.5 用户自定义模式

用户定义模式是一种特殊的仪器化压痕技术,允许用户通过组合加载、保载和卸载来创建特定的压痕测试程序。这种特殊的技术允许完全自定义压痕测试过程,以匹配用户的特殊应用测试需求。这种类型压痕的主要应用是需要在不同温度下进行测量,因此需要在压痕循环的相应段之前进行稳定,或者在相同循环内具有不同加载速率的段。

结论

仪器化压痕系统允许多种测试加载模式用于各种目的。无论用户是对简单的硬度和弹性模量值、还是对蠕变性能或其他机械性能感兴趣,安东帕压痕软件中提供的不同加载模式都能满足大多数客户对纳米压痕程序的要求。本应用报告中介绍的压痕程序总结了安东帕压痕软件中最常用的压痕模式,并帮助用户选择最适合的压痕模式。

所有显示的压痕示意图可用于自动矩阵测量或可视化矩阵,所有测量均使用仪器化压痕的重要特征,即无需用户干预即可自动分析结果。此外,用户还可以以ASCII格式导出数据,以便对压痕数据应用自定义分析。

Authors

Jiri Nohava, Mihaela Dubuisson, Aurélien Tournier-Fillon,

Anton Paar TriTec SA

G71IA046EN-A

4

土力学试卷及答案总结

土力学试卷及参考答案 一、填空题(每空1分,共10分) 1. ___________________ 在工程中常用_____________ 标准贯入试验试验来判别天然砂层的密实度。 2 .在土层中,通过土粒传递的粒间应力称为____________ 有效应力。 3. 土在侧限条件下的压缩性可以用 _________孔隙比____ 和____ 应力关系曲线(或e-p曲线)的 关系曲线来表示。 4 .地基的总沉降为瞬时沉降、固结沉降和______________ 次固结 ___ 沉降三者之和。 5 .地基沉降计算深度下限,一般可取地基附加应力等于自重应力的_ c。 6 . 土中的液态水可分为自由水和―结合水______ 两大类。 7 .砂土和粘性土的工程分类分别按_颗粒的粒径大小____________ 和_塑性指数__________ 进行。 二、选择题(每小题1分,共10分) 1 .建筑物基础作用于地基表面的压力,称为( A ) A、基底压力 B、基底附加压力 C、基底净压力 D、附加压力 2. 在土的三相比例指标中,直接通过试验测定的是( B ) A、G s,w ,e B、G s,w, C、G s,,e D,w,e 3 ?地下水位长时间下降,会使(A ) A 、地基中原水位以下的自重应力增加 B 、地基中原水位以上的自重应力增加 C、地基土的抗剪强度减小 D 、土中孔隙水压力增大 4?室内压缩试验的排水条件为(B) A、单面排水 B 、双面排水C、不排水D先固结,后不排水 5 ?设条形基础的宽度B,沉降量S,若基底单位面积平均附加压力相同,则(A ) A、B大S大B 、B大S小C、B对S无影响 D 无法确定 6?土中一点发生剪切破坏时,破裂面与小主应力作用方向的夹角为( B )

材料力学性能复习总结

绪论 弹性:指材料在外力作用下保持与恢复固有形状与尺寸得能力。 塑性:材料在外力作用下发生不可逆得永久变形得能力。 刚度:材料在受力时抵抗弹性变形得能力。 强度:材料对变形与断裂得抗力。 韧性:指材料在断裂前吸收塑性变形与断裂功得能力。 硬度:材料得软硬程度。 耐磨性:材料抵抗磨损得能力。 寿命:指材料在外力得长期或重复作用下抵抗损伤与失效得能。 材料得力学性能得取决因素:内因——化学成分、组织结构、残余应力、表面与内部得缺陷等;外因——载荷得性质、应力状态、工作温度、环境介质等条件得变化。 第一章材料在单向静拉伸载荷下得力学性能 1、1 拉伸力—伸长曲线与应力—应变曲线 应力—应变曲线 退火低碳钢在拉伸力作用下得力学行为可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形与不均匀集中塑性变形与断裂几个阶段。 弹性变形阶段:曲线得起始部分,图中得oa段。 多数情况下呈直线形式,符合虎克定律。 屈服阶段:超出弹性变形范围之后,有得材料在 塑性变形初期产生明显得塑性流动。此时,在外力 不增加或增加很小或略有降低得情况下,变形继续产 生,拉伸图上出现平台或呈锯齿状,如图中得ab段。 均匀塑性变形阶段:屈服后,欲继续变形,必须 不断增加载荷,此阶段得变形就是均匀得,直到曲 退火低碳钢应力—应变曲线 线达到最高点,均匀变形结束,如图中得bc段。 不均匀塑性变形阶段:从试样承受得最大应力点开始直到断裂点为止,如图中得cd段。在此阶段,随变形增大,载荷不断下降,产生大量不均匀变形,且集中在颈缩处,最后载荷达到断裂载荷时,试样断裂。 弹性模量E:应力—应变曲线与横轴夹角得大小表示材料对弹性变形得抗力,用弹性模量E表

土力学期末试题及答案

土力学期末试题及答案. 一、单项选择题 1.用粒径级配曲线法表示土样的颗粒组成 情况时,若曲线越陡,则表示土的 ( )

A.颗粒级配越好 B.颗粒级配越差C.颗粒大小越不均匀 D.不均匀系数越大 2.判别粘性土软硬状态的指标是 ( ) A.塑性指数 B.液性指数 C.压缩系数 D.压缩指数 3.产生流砂的充分而必要的条件是动水力( )

A.方向向下 B.等于或大于土的有效重度 C.方向向上 D.方向向上且等于或大于土的有效重度 4.在均质土层中,土的竖向自重应力沿深度的分布规律是 ( ) A.均匀的 B.曲线的 C.折线的 D.直线的 5.在荷载作用下,土体抗剪强度变化的原因是 ( ) A.附加应力的变化 B.总应力的变化C.有效应力的变化 D.自重应力的变化6.采用条形荷载导出的地基界限荷载P用于矩1/4. 形底面基础设计时,其结果 ( ) A.偏于安全 B.偏于危险 C.安全度不变 D.安全与否无法确定

7.无粘性土坡在稳定状态下(不含临界稳定)坡角β与土的内摩擦角φ之间的关系是( ) A.β<φ B.β=φ C.β>φ D.β≤φ 8.下列不属于工程地质勘察报告常用图表的是 ( ) A.钻孔柱状图 B.工程地质剖面图

C.地下水等水位线图 D.土工试验成果总表 9.对于轴心受压或荷载偏心距e较小的基础,可以根据土的抗剪强度指标标准值φk、Ck按公式确定地基承载力的特征值。偏心 为偏心方向的基础边长)Z(注:距的大小规定为( ) A.e≤ι/30 B.e≤ι/10 .e≤b/2 DC.e≤b/4 对于含水量较高的粘性土,堆载预压法处理10. ( ) 地基的主要作用之一 是.减小液化的可能性A B.减小冻胀.消除湿陷性 D .提高地基承载力C. 第二部分非选择题 11.建筑物在地面以下并将上部荷载传递至地基的结构称为____。

工程力学知识点总结(良心出品必属精品)

工程力学知识点总结 第0章 1.力学:研究物体宏观机械运动的学科。机械运动:运动效应,变形效应。 2.工程力学任务:A.分析结构的受力状态。B.研究构件的失效或破坏规律。C.分研究物体运动的几何规律D.研究力与运动的关系。 3.失效:构件在外力作用下丧失正常功能的现象称为失效。三种失效模式:强度失效、刚度失效、稳定性失效。 第1章 1.静力学:研究作用于物体上的力及其平衡的一般规律。 2.力系:是指作用于物体上的一组力。 分类:共线力系,汇交力系,平行力系,任意力系。 等效力系:如果作用在物体上的两个力系作用效果相同,则互为等效力系。 3.投影:在直角坐标系中:投影的绝对值 = 分力的大小;分力的方向与坐标轴一致时投影 为正;反之,为负。 4.分力的方位角:力与x 轴所夹的锐角α: 方向:由 Fx 、Fy 符号定。 5.刚体:是指在力的作用下,其内部任意两点之间的距离始终保持不变。(刚体是理想化模型,实际不存在) 6.力矩:度量力使物体在平面内绕一点转动的效果。 方向: 力使物体绕矩心作逆时针转动时,力矩为正;反之,为负 力矩等于0的两种情况: (1) 力等于零。(2) 力作用线过矩心。 力沿作用线移动时,力矩不会发生改变。力可以对任意点取矩。 7.力偶:由大小相等、方向相反且不共线的两个平行力组成的力系,称为力偶。(例:不能单手握方向盘,不能单手攻丝) 特点: 1.力偶不能合成为一个合力,也不能用一个力来平衡,力偶只能有力偶来平衡。 2.力偶中两个力在任一坐标轴上的投影的代数和恒为零。 3.力偶对其作用面内任一点的矩恒等于力偶矩。即:力偶对物体转动效应与矩心无关。 三要素:大小,转向,作用面。 力偶的等效:同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效。 推论1:力偶可以在作用面内任意转动和移动,而不影响它对刚体的作用。(只能在作用面内而不能脱离。) 推论2:只要保持力偶矩的大小和转向不变的条件下,可以同时改变力偶中力 和力偶臂的大小,而不改变对刚体的作用。 8.静力学四大公理 A.力的平行四边形规则(矢量合成法则):适用范围:物体。 B.二力平衡公理:适用范围:刚体 (对刚体充分必要,对变形体不充分。) 注:二力构件受力方向:沿两受力点连线。 C.加减平衡力系公理:适用范围:刚体 D.作用和反作用公理:适用范围:物体 特点:同时存在,大小相等,方向相反。 注:作用力与反作用力分别作用在两个物体上,因此,不能相互平衡。(即:作用力反作用力不是平衡力) ()O M F Fd =±

材料力学性能重点总结

名词解释: 1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。 2弹性比功:表示金属材料吸收弹性变形功的能力。 3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。 4包申格效应:金属材料通过预先加载产生少量塑性变形(残余应变小于1%-4%),而后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5塑性:金属材料断裂前发生塑性变形的能力。常见塑性变形方式:滑移和孪生 6弹性极限:以规定某一少量的残留变形为标准,对应此残留变形的应力。 7比例极限:应力与应变保持正比关系的应力最高限。 8屈服强度:以规定发生一定的残留变形为标准,如通常以0.2%的残留变形的应力作为屈 服强度。 9韧性断裂是材料断裂前发生产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的断裂 过程,在裂纹扩展过程中不断的消耗能量。韧性断裂的断裂面一般平行于最大切应力并于主 应力成45度角。 10脆性断裂是突然发生的断裂,断裂前基本上不发生塑形变形,没有明显征兆,危害性很大。断裂面一般与主应力垂直,端口平齐而光亮,常呈放射状或结晶状。 11剪切断裂是金属材料在切应力作用下,沿着滑移面分离而造成的断裂,又分滑断和微孔聚集性断裂。 12解理断裂:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,总是脆性断裂。 13缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生变化,产生所谓缺口效应“ ①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。 ②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。 8缺口敏感度:有缺口强度的抗拉强度Z bm与等截面尺寸光滑试样的抗拉强度Zb的比值. NSR=Z bn / Z S NSR越大缺口敏感度越小 9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商 10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J 11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解 理,断口特征由纤维状变为结晶状,这种现象称为低温脆性 12脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间 16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI越大,则应力场各应力分量也越大 17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象第一章 3?金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指 标? 答:由于弹性变形时原子间距在外力作用下可逆变化的结果,应力与应变关系实际上是原子

土力学试卷(A卷及其答案)

《土力学》试卷(A卷) 学号姓名成绩 一、填空题:(每空2分,共20分) 1.确定各粒组相对含量的方法称为颗粒分析试验,分为法和比重计法。 2、当砾类土或砂类土同时满足Cu≥5,Cc = 两个条件时,视为良好级配。 3、渗透系数的测定方法:常水头试验(砂土),(粘土)。 4、土坡分为和人工土坡。 5、地基破坏的形式有整体破坏、冲剪切破坏。 6、土压力的类型有:静止土压力、、被动土压力。 7、土的物理性质指标中可描述土体中孔隙被水充满的程度。 8、土渗透变形的基本形式有管涌和。 9、土体的压缩系数被认为是由于土体中减小的结果。 10、根据粘性土地基在荷载作用下的变形特征,可将地基最终沉降量分成三部分:瞬时沉降,沉降和次固结沉降。 二、选择题(单选):(每题2分,共20分) 1.下列哪个物理性质指标可直接通过土工试验测定()。 A.孔隙比e B.孔隙率n C.饱和度S r D.土粒比重G s 2.在土工试验室中,通常用()测定土的密度 A.联合测定法B.环刀法C.比重计法D.击实仪 3.土的强度是特指土的() A.抗剪强度B.抗压强度C.抗拉强度 4.由建筑物荷载或其它外载在地基内产生的应力称为() A.自重应力B.附加应力C.基底压力D.基底附加压力 5.地基中,地下水位的变化,会引起地基中的自重应力() A.增大B.减小C.不变D.可能增大,也可能减小 6.下列说法正确的是() A.土体的压缩是由于土体中孔隙体积减小 B.土体的压缩是由于土体中土颗粒体积减小 C.土体的压缩是由于土体中水和气体体积减小D.土体的压缩是由于动水压力的作用 7浅基础的判断标准为() A.d≤b B.d=b C.d>b D.d≥b 8.土坡的稳定计算中其中瑞典圆弧法、瑞典条分法、毕肖普法计算其滑裂面的形状为( ) A.直线 B.折线 C.圆弧 9.粘性土的状态有:() ①固态②半固态③可塑态④流态⑤气态 A.①②③④ B.①⑤②④ C.①③④D.①②③④⑤ 10.在土体应力计算中,当条形基础的长度和宽度之比L/b ∞时,地基中的应力状态属于平面问题,但是实际工程中不存在这样的条形基础,根据研究当L/b为()是条形基础。 A.≤10 B.≥10 C.≤ 5 D.≥5 三、判断正误,用“√”或者“×”(每空1分,共10分) 1.粘土与砂土的分界粒径是1mm。() 2..级配良好的土,较粗颗粒间的孔隙被较细的颗粒所填充,因而土的密实度较好。() 3..常水头试验适用于透水性较强的粗粒土。() 4.在同一类土中,土的级配良好的土,易于压实,反之,则不易于压实。()5.管涌常发生在砂砾土中。() 6.从流动状态转变为可塑状态的界限含水率,称为液限。() 7. 土压力的类型有:静止土压力、水压力、挡土墙压力。() 8.土粒的比重在数值上等于土的密度。() 9.孔隙率为空隙体积占颗粒体积的百分比。() 10.压缩系数是表征土压缩性的重要指标之一。e—p曲线愈陡,压缩系数就愈大,则压缩性就愈高。() 四、解答题(每题4分,共20分) 1.何谓土的级配?土的级配曲线是怎样绘制的?

工程力学复习汇总重点教材

工程力学复习资料 一、填空题(每空1分,共16分) 1.物体的平衡是指物体相对于地面__________或作________运动的状态。 2.平面汇交力系平衡的必要与充分条件是:_____。该力系中各力构成的力多边形____。 3.一物块重600N,放在不光滑的平面上,摩擦系数f=0.3, 在左侧有一推力150N,物块有向右滑动的趋势。 F max=__________,所以此物块处于静止状态,而其 F=__________。 4.刚体在作平动过程中,其上各点的__________相同,每一 瞬时,各点具有__________的速度和加速度。 5.AB杆质量为m,长为L,曲柄O1A、O2B质量不计,且 O1A=O2B=R,O1O2=L,当φ=60°时,O1A杆绕O1轴转 动,角速度ω为常量,则该瞬时AB杆应加的惯性力大 小为__________,方向为__________ 。 6.使材料丧失正常工作能力的应力称为极限应力。工程上一 般把__________作为塑性材料的极限应力;对于脆性材 料,则把________作为极限应力。 7.__________面称为主平面。主平面上的正应力称为______________。 8.当圆环匀速转动时,环内的动应力只与材料的密度ρ和_____________有关,而与 __________无关。 二、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在 题干的括号内。每小题3分,共18分) 1.某简支梁AB受载荷如图所示,现分别用R A、R B表示支座A、B处的约束反力,则它们的 关系为( )。 A.R AR B C.R A=R B D.无法比较 2.材料不同的两物块A和B叠放在水平面上,已知物块A重0.5kN,物块B重0.2kN,物块 A、B间的摩擦系数f1=0.25,物块B与地面间的摩擦系数f2=0.2,拉动B物块所需要的最 小力为( )。 A.0.14kN B.0.265kN C.0.213kN D.0.237kN 3.在无阻共振曲线中,当激振力频率等于系统的固有频率时,振幅B趋近于( )。 A.零 B.静变形 C.无穷大 D.一个定值 4.虎克定律应用的条件是( )。 A.只适用于塑性材料 B.只适用于轴向拉伸 C.应力不超过比例极限 D.应力不超过屈服极限 5.梁的截面为T字型,Z轴通过横截面的形心,弯矩图如图所示,则有( )。 A.最大拉应力和最大压应力位于同一截面C

工程力学课程认识与学习感受

工程力学课程认识与学习感受 工程力学是一门专业基础课,它不仅是力学学科的基础,而且也是《粉末冶金》和《高分子材料》等后续相关专业课程的基础课。它在许多工程技术领域中有着广泛的应用,学习这门课程是让我们掌握静力学和材料力学的基本概念和研究方法,为学习后继课程打好必要的基础,并为将来学习和掌握新的科学技术创造条件。通过本课程的学习使我们掌握了分析和解决一些简单的工程实际问题的方法。 力的作用与物质的运动是自然界和人类活动中最基本的现象。这正是力学学科研究的对象,从而也奠定了力学在自然科学中的基础地位。工程力学是现代工程科学技术交叉发展的一门力学分支学科,已成为土木、水利、机械、电子与信息、能源与矿山、交通、环境保护、材料与加工、自动化技术、农业、生物、海洋、船舶、石油化工、航空与航天及国防建设等工程科学的基础。工程力学具有广泛性、复杂性和多样性,体现了多学科交叉发展和相互促进,以及力学在解决重大工程技术问题中的基础性和必不可缺少重要的作用。工程力学研究的是有关机械或工程结构的各个组成部分在受外力的情况下发生的变形,分析变形对构件的影响,并设计一些简单的构件,使它满足稳定性的要求。开始学习这门课程,对课本主要知识结构不是很了解的话,就会觉得学习的知识很多,而且公式也非常多,有些公式还很难记,当时感觉就是有点难。对于理科的课程,我觉得最主要的是要抓住其主要的,形成一条线,让它贯穿整个知识结构,然后拖住一些细节知识。学习工程力学的基础是基本假设,在满足工程要求的情况下,提出合理的假设,然后在用简单高等数学分析,推理出一些简单实用的公式。而我一直喜欢的就是对一些简单的公式自己根据已知条件,再用学过的知识推理出公式,这样得出的公式就一般很容易记住,并且对其推理过程也有所掌握,不会乱套。但是力学不象数学那样有要求严格的数学公式,它要求的是满足工程要求,适当的简化公式,简化计算。所以有的时候我们要记住各种公式的适用条件,不能一概而论,否则很容易出错。 通过老师的介绍,我知道了力是物体之间的相互机械作用,明白了静力学是研究作用于物体上的力及其平衡的一般规律。力学的内容好比一条有机结合的知识链,知识点多,前后内容联系强,一环套一环,因此在学习中一旦疏漏了某个环节,就势必要影响到后续课程的学习。在这一个学期的学习过程中,我不仅学到了专业知识,还觉的工程力学这门功课锻炼了我的思维能力。比如说一道题可以有很多种方法,就看那一种比较简便。就我个人而言,我认为要学好结构力学,最关键的还是要多问多听多看多做。多问是指遇到不懂的要问,碰到不会的要问。在课前要做好预习工作。接触新知识,不可避免地会遇到很多较难理解的知识点。我觉得我们可以先向同学提出来,大家讨论。这样不仅可以创造良好的学习气氛,还可以提高大家对结构力学的兴趣,有助于对新知识点的理解。多听是指上课时要听老师讲课,讨论时要听同学提问。很多人只知道上课要认真,但是在其他同学提出问题时却毫不理会,如果

材料力学性能总结材料

材料力学性能:材料在各种外力作用下抵抗变形和断裂的能力。 屈服现象:外力不增加,试样仍然继续伸长,或外力增加到一定数值时突然下降,随后在外力不增加或上下波动情况下,试样继续伸长变形。 屈服过程:在上屈服点,吕德斯带形成;在下屈服点,吕德斯带扩展;当吕德斯带扫过整个试样时,屈服伸长结束。 屈服变形机制:位错运动与增殖的结果。 屈服强度:开始产生塑性变形的最小应力。 屈服判据: 屈雷斯加最大切应力理论:在复杂应力状态下,当最大切应力达到或超过相同金属材料的拉伸屈服强度时产生屈服。 米赛斯畸变能判据:在复杂应力状态下,当比畸变能等于或超过相同金属材料在单向拉伸屈服时的比畸变能时,将产生屈服。 消除办法: 加入少量能夺取固溶体合金中溶质原子的物质,使之形成稳定化合物的元素; 通过预变形,使柯氏气团被破坏。 影响因素: 1.因: a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。 b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。 c)溶质元素:固溶强化。 d)第二相 2.外因:温度(-);应变速率(+);应力状态。 第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。

强化效果: 在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好; 在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好; 第二相数量越多,强化效果越好。 细晶强化:通过减小晶粒尺寸增加位错运动障碍的数目(阻力大),减小晶粒位错塞积群的长度(应力小),从而使屈服强度提高的方法。 同时提高塑性及韧性的机理: 晶粒越细,变形分散在更多的晶粒进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量,即表现出较高的塑性。 细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高的韧性。 固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。 原因:溶质原子与位错的弹性相互作用,使溶质原子扩散到位错周围,形成柯氏气团;柯氏气团钉扎位错,提高位错运动阻力。 强化效果:间隙固溶体的强化效果大于置换固溶体;溶质和溶剂原子尺寸差越大,强化效果越好;溶质浓度越大,强化效果越好。 应变硬化(形变强化):金属材料塑性变形过程中所需要的外力不断增大,表明金属材料有一种阻止继续塑性变形的能力。 原因:塑性变形过程中,位错不断增殖,运动受阻所致。 断裂韧度:临界或失稳状态下的应力场强度因子的大小。 塑性变形:作用在物体上的外力取消后,物体的变形不完全恢复而产生的永久变形。 1.单晶体:滑移+孪生;

土力学试题及答案

土力学试卷及标准答案 二、是非题(每题 1 分) 1.附加应力大小只与计算点深度有关,而与基础尺寸无关。(×)2.完全饱和土体,含水量w=100%(×) 3.固结度是一个反映土体固结特性的指标,决定于土的性质和土层几何尺寸,不随时间变化。(×) 4.饱和土的固结主要是由于孔隙水的渗透排出,因此当固结完成时,孔隙水应力全部消散为零,孔隙中的水也全部排干了。(×)5.土的固结系数越大,则压缩量亦越大。(×) 6.击实功能(击数)愈大,土的最优含水率愈大。(×)7.当地下水位由地面以下某一深度上升到地面时地基承载力降低了。(√)8.根据达西定律,渗透系数愈高的土,需要愈大的水头梯度才能获得相同的渗流速度。(×) 9.三轴剪切的CU试验中,饱和的正常固结土将产生正的孔隙水应力,而饱和的强超固结土则可能产生负的孔隙水应力。(√)10.不固结不排水剪试验得出的值为零(饱和粘土)。(√) 三、填空题(每题 3 分) 1 .土的结构一般有___单粒结构__、__蜂窝状结构__和___絮状结构__等三种,其中__絮状结构____结构是以面~边接触为主的。 2. 常水头渗透试验适用于_透水性强的无粘性土___土,变水头试验适用于__透水性差的粘性土_。 3. 在计算矩形基底受竖直三角形分布荷载作用时,角点下的竖向附加应力时,应作用两点,一是计算点落在___角点___的一点垂线上,二是B始终指___宽度___方向基底的长度。 4.分析土坡稳定的瑞典条分法与毕肖甫法其共同点是__假设滑动面是圆弧面__、假定滑动体为刚体_,不同点是瑞典条分法不考虑条间力。 5. 地基的破坏一般有 整体剪切破坏 、 局部剪切破坏 和__冲剪破坏_等三种型式,而其中 整体剪切破坏 破坏过程将出现三个变形阶段。 四、问答及简述题(共30 分) 1. 为什么说在一般情况下,土的自重应力不会引起土的压缩变形(或沉降),而当地下水位下降时,又会使土产生下沉呢?(10分) 一般情况下,地基是经过了若干万年的沉积,在自重应力作用下已经压缩稳定了。自重应力已经转变为有效应力了,这种情况下,自重应力不会引起土体压缩。但如土体是新近沉积,自重应力还未完全转变未有效应力,则自重应力将产生压缩。

结构力学知识点总结

结构力学知识点总结

1.关于∞点和∞线的下列四点结论: (1) 每个方向有一个∞点(即该方向各平行线的交点)。 (2) 不同方向上有不同的∞点。 (3) 各∞点都在同一直线上,此直线称为∞线。 (4) 各有限远点都不在∞线上。 2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。 3.W>0, 缺少足够约束,体系几何可变。W=0, 具备成为几何不变体系所要求 的最少约束数目。W<0,体系具有多余约束。 4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。 两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。 两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。

9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。 10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。 11.分布力q(y)=0时(无分布载荷),剪力图为一条水平线;弯矩图为一条斜直线。 () ()Q dM x dF x dx =2 2 ()()()Q dF x d M x q y dx dx ==-,,B A B A B A x NB NA x x x QB QA y x x B A Q x F F q dx F F q dx M M F dx =-=- =+ ? ? ?

分布力q(y) = 常数时,剪力图为一条斜直线;弯矩图为一条二次曲线。 12.只有两杆汇交的刚结点,若结点上无外力偶作用,则两杆端弯矩必大小相等,且同侧受拉。 13.对称结构受正对称荷载作用, 内力和反力均为对称(K行结点不受荷载情况)。对称结构受反对称荷载作用, 内力和反力均为反对称。 14.三铰拱支反、内力计算公式(竖向荷载、两趾等高)

工程力学学习心得

不知不觉中,本学期又过大半,同时,学习工程力学这门课程也快一年了。刚开始学时觉得这门课和高中的物理力学没啥大的区别,都是分析力学问题。但是随着深入的学习,慢慢的,发现了这门课程没那么简单,并不只是简单的分析力的构成。 工程力学这门课程包括有理论力学和材料力学两大部分。理论力学主要讲述的是经典力学部分的内容,讲述了静力学和运动学和动力学三大部分。静力学是研究物体在力系作用下的平衡规律的科学,动力学主要研究了点和刚体的简单运动和合成运动,动力学研究物体的机械运动和作用力之间的关系。材料力学研究物体(变形体模型)在外力作用下的内力、应力、变形及失效规律。 理论力学不像是生物化学,很多知识要靠记忆去扩展,这是一门更多得靠逻辑和推理去构建知识构架的学科。我对需要大量记忆的课程并不擅长,但我喜欢在错综复杂的力学体系中用最基本的东西去思考,解决问题,并想出自己真正有个性的办法,我也觉得这样对自己的智力和思维方式才是有帮助的。而理论力学又不同于以前作为基础学科的物理,其分析的问题更加复杂,更加接近实际,对问题的剖析也更加深刻,因此对思维也提出了更多的挑战,激起人的兴趣。 在具体学习的过程中,自己还是碰到了很多的困难的,有时觉得会烦躁,但最后静下心来好好把书上的内容系统地过一遍,有时甚至往复地看好多遍,直到自己真正理解,成为让自己接受的知识。理论力学的难点不在于知识的多,而是真正要学好这门课,对其中没一点知识必须有足够深的理解,然后各种综合性交叉性的题目也便能很自然得想到用书中不同的知识去解决。自己也便能顺利地去推倒自己想要的结论了。 另外这门课最有特色的地方就是将理论和实际结合起来了,我们不仅在可以学到课本上的内容,同时,我们还可以亲自动手在实验中检验理论。这与以往学习理论力学的过程中有很大的不同,也更加激起了我们的学习兴趣。 工程力学理论性强且与专业课、工程实际紧密联系,是科学、合理选择或设计结构的尺寸、形状、强度校核的理论依据。具有承上启下的作用。所以,学好工程力学,为后续专业课的应用和拓展奠定了很强的理论基础。

土力学英文试卷及答案(B)

沈阳建筑大学考试评分标准专用纸 2007 年 春 季学期 科目 土力学(B) 适用年级、专业 土木04-9,10 —————————————————————————————————— 一 Fill in the blanks (total 15 points, 1 points per blank) 1. mm d mm 2075.0≤< 2. G s , w 3.一个有效应力园 4. 水 , 孔隙. 5. 2 45? - 6. 水力梯度 7, 沉降, 承载力 8, 主固结, 次固结 9, 4C 10, 40 11, 孔隙体积 二、Judge the following statement right or wrong. Mark with R for the rights and W for the wrongs (total 10 points, 2 points per problem) W R R W W 三、Explain the following concepts or definition(total 15 points, 3points per problem) 1. void ratio 孔隙比:孔隙体积与土粒体积之比, s v v v e /= 2. coefficient of curvature C c 曲率系数定义为(C c )60 102 30d d d C c =,曲率系数C c 描写累积曲线的分布范围,反映曲线的整体形 状。 3. compression modulus 压缩模量:土体在完全侧限的条件下,竖向应力增量与竖向应变增量的比值 4. overconsolidation 土在应力历史上(固结过程中)所受到的最大有效应力,称之为前期固结应力. 前期固结应力与现有的自重应力之比大于1时,土体处于超固结状态。

结构力学知识点考点归纳与总结

结构力学知识点的归纳与总结 第一章 一、简化的原则 1. 结构体系的简化——分解成几个平面结构 2. 杆件的简化——其纵向轴线代替。 3. 杆件间连接的简化——结点通常简化为铰结点或刚结点 4. 结构与基础间连接的简化 结构与基础的连接区简化为支座。按受力特征,通常简化为: (1) 滚轴支座:只约束了竖向位移,允许水平移动和转动。提供竖向反力。在计算简图中用支杆表示。 (2) 铰支座:约束竖向和水平位移,只允许转动。提供两个反力。在计算简图中用两根相交的支杆表示。 (3) 定向支座:只允许沿一个方向平行滑动。提供反力矩和一个反力。在计算简图中用两根平行支杆表示。 (4) 固定支座:约束了所有位移。提供两个反力也一个反力矩。 5. 材料性质的简化——对组成各构件的材料一般都假设为连续的、均匀的、各向同性的、完全弹性或弹塑性的 6. 荷载的简化——集中荷载和分布荷载 §1-4 荷载的分类 一、按作用时间的久暂 荷载可分为恒载和活载 二、按荷载的作用范围 荷载可分为集中荷载和分布荷载 三、按荷载作用的性质 荷载可分为静力荷载和动力荷载 四、按荷载位置的变化 荷载可分为固定荷载和移动荷载 第二章几何构造分析 几何不变体系:体系的位置和形状是不能改变的讨论的前提:不考虑材料的应变 2.1.2 运动自由度S S:体系运动时可以独立改变的坐标的数目。 W:W= (各部件自由度总和 a )-(全部约束数总和) W=3m-(3g+2h+b) 或w=2j-b-r.注意:j与h的区别 约束:限制体系运动的装置

2.1.4 多余约束和非多余约束 不能减少体系自由度的约束叫多余约束。 能够减少体系自由度的约束叫非多余约束。 注意:多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。 2.3.1 二元体法则 约束对象:结点 C 与刚片 约束条件:不共线的两链杆; 瞬变体系 §2-4 构造分析方法与例题 1. 先从地基开始逐步组装 2.4.1 基本分析方法(1) 一. 先找第一个不变单元,逐步组装 1. 先从地基开始逐步组装 2. 先从内部开始,组成几个大刚片后,总组装 二. 去除二元体 2.4.3 约束等效代换 1. 曲(折)链杆等效为直链杆 2. 联结两刚片的两链杆等效代换为瞬铰

工程力学公式总结

刚体 力的三要素:大小、方向、作用点 静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律 约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。 平面汇交力系平衡几何条件:力多边形自行封闭 合力投影定理合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。它表明了合力与分力在同一坐标轴投影时投影量之间的关系。 平面汇交力系平衡条件:∑F ix =0;∑F iy =0。2个独立平衡方程 第三章 力矩 平面力偶系 力矩M 0(F)=±Fh(逆时针为正) 合力矩定理:平面汇交力系的合力对平面上任一点力矩,等于力系中各分力对与同一点力矩的代数和。 Mo(F )=Mo(F1)+Mo(F 2)+...+Mo(F n)=∑Mo(F ) 力偶;由大小相等,方向相反,而作用线不重合的两个平行力组成的力系称为力偶 力偶矩M =±Fd(逆时针为正) 力偶的性质:性质1 力偶既无合力,也不能和一个力平衡,力偶只能用力偶来平衡。性质2 力偶对其作用面内任一点之矩恒为常数,且等于力偶矩,与矩心的位置无关。性质3 力偶可在其作用面内任意转移,而不改变它对刚体的作用效果。性质4 只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短, 而不改变其对刚体的作用效果。 平面力偶系平衡条件是合力偶矩等于零。 第四章 平面任意力系 力的平移定理:将力从物体上的一个作用点,移动到另外一点上,额外加上一个力偶矩,其大小等于这个力乘以2点距离,方向为移动后的力与移动前力的反向力形成的力偶的反方向 平面力向力系一点简化可得到一个作用在简化中心的主矢量和一个作用于原平面内的主矩,主矢量等于原力系中各力的矢量和,而主矩等于原力系中各力对点之矩的代数和。 平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。3个独立方程 平面平行力系平衡条件:∑F iy =0,∑M 0(Fi)=02个独立方程 摩擦,阻止两物体接触表面发生切向相互滑动或滚动的现象。静摩擦力,若两相互接触且相互挤压,而又相对静止的物体,在外力作用下如只具有相对滑动趋势,而又未发生相对滑动,则它们接触面之间出现的阻碍发生相对滑动的力,谓之“静摩擦力”。动摩擦力,两物体相对运动时的摩擦力。 重心是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。 第五章 空间力系 P53 空间力系平衡条件:6个方程。空间平行力系:3个方程 影响构件持久极限的主要因素:构件尺寸外形和表面质量。 质点的运动:点的速度dt ds v = ,加速度:切向加速度dt dv a = τ,速度大小变化;法向加速度ρ 2 v a n = , 速度方向变化,加速度2 2n a a a +=τ 刚体的基本运动角速度dt d ?ω= ,角加速度dt d ωα= ,角速度n πω2=(n 是转速,r/s) 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==, 质心运动定理:e F ma ∑= 转动定理z z M J ∑=α,转动惯量:圆环2mR J z =;圆盘2/2 mR J z =:

工程力学教学的一些思考

工程力学教学的一些思考 “建设现代职业教育体系”是继“卓越工程师”之后的又一工程教育导向。土木工程作为军用和民用工程中的重要分支,面临着与时俱进的挑战,作为土木工程专业基础性、前瞻性的力学分析能力,根植于力学课程,反映在土木工程分析现场。由于工程性、实践性和创新性的错位,使得目前力学与专业、专业与职业在相互衔接系统化的教学上尚有很大差距。笔者针对力学教学中的一些现象进行反思,提出了从教学指导思想,教学方法和教学评价方面的积极探索,有利于融合力学为专业人才培养服务。 标签:力学分析能力;系统观念;开放式课堂;评价方式 目前应用技术型大学的力学课程仍旧沿用研究型大学的课程设置,课程落后于产业发展,从大一的基础课不知方向到大三密集的专业课,整个学习过程反馈路径漫长,相当一部分学生的主动性不足;同时力学与土木工程专业课程间的呼应、深化之平台不牢固。工程力学课程与结构专业课各自为营,教师间缺少指向职业核心能力的交流,学生的知识点割裂;从职业的愿景而言,人才培养方式与职业对接程度不高,屡见不鲜的工程事故,彰显了土木专业毕业生结合所学知识进行预警处理能力的不足。针对工程建设期内各种安全措施所涉及的力学原理,现有课程的教学内容存在不足。这些现象和问题迫切的需要学生和老师从纷繁的信息中搜索专业的内核,搭建一个完整的知识框架,形成一个从力学到专业的系统。以整体化的工程观,构建教学内容和形式。笔者结合近年的力学教学的情况,从力学的课堂教学谈一点粗浅的认识。 1.力学课程教学的思想指导-系统化 工程是以一系列科学知识为依托,应用这些科学知识,并结合经验判断、经济的利用自然资源为人类服务的一种专门技术。工程活动历来就是一个复杂的体系,规模大、涉及的因素多。尤其是现代社会实施的大型工程都具有:多种基础理论学科交叉、复杂技术综合运用、众多社会组织部门和复杂的社会管理系统纵横交织、复杂的从业者个性特征的参与、广泛的社会时代影响等因素的综合运作的特点。作为土木工程专业培养的毕业生,在工程的实现中扮演者工程师的灵魂角色。美国学者J.波多格纳说“工程师在组织化社会中的基本作用是一种整合作用,工程师的作用是构建整体”。 服务于土木工程的力学课程教学[1]应围绕培养学生具备力学基本知识和解决力学问题的技能,这种基本知识和技能能够适应后续课程的需要,具有把工程中的力学现象转化为工程力学问题的基本经验,能把所学理论知识转化为实际应用能力,具有适应今后工作岗位对工程力学知识的要求,并在实际岗位上不断补充提高工程力学知识的能力。而在实际的教学中由于力学课程以逻辑性见长,学生往往迷失于庞杂的公式和理论推演中,一些数学基础一般的学生力学学习兴趣不浓厚,课堂上共鸣不高,对于力学作用的甚了了引发了被动机械的接受知识,在实际施工现场中不能将其转化为主动分析的诉求。比如虽然国家出台了一系列

工程力学(力学基础)习题总结

1-2试画出以下各题中AB杆的受力图。 解:1-3 (d) A (e) B (c) (a) (b) B A (b) A (c) F B F (a) (c) F (b)

解: 1-4 试画出以下各题中指定物体的受力图。 (a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。 解: (a) F (b) W A (c) C A B (d) q (e) F Bx (a) (b) (c) (d) D (e) W (f) (a) D B (c) B F D F C D W B F AB F BC

1-5 试画出以下各题中指定物体的受力图。 (a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。 解:(c) 2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445N ,F 2=535N ,不计杆重,试求两杆所受的力。 解:(1)取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆, (2) 列平衡方程: 121 40 sin 60053 0 cos6005 207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N =?+-==?--=∴==∑∑ C A A B C F ’Bx F 1 F

AC与BC两杆均受拉。 2-3 水平力F作用在刚架的B点,如图所示。如不计刚架重量,试求支座A和D处的约束力。解:(1) 取整体ABCD为研究对象,受力分析如图,画封闭的力三角形: (2) 21 1 1.12 22 D A D D A F F F F F BC AB AC F F F F F ===== ∴=== 2-4 在简支梁AB的中点C作用一个倾斜45o的力F,力的大小等于20KN,如图所示。若梁的自重不计,试求两支座的约束力。 解: (1) 研究AB,受力分析并画受力图: (2) 相似关系: B A F F F CDE cde CD CE ED ?≈?∴== 几何尺寸: 11 222 CE BD CD ED ===== F D F F A F D F F B F A d c e

《土力学》期末试卷及答案

《土力学》期末试卷及答案 一、填空题(每空1分,共20分) 1、无粘性土的性质主要取决于颗粒的粒径、级配 2、用三轴试验测定土的抗剪强度指标,在其它条件都相同的情况下,测的抗剪强度指标值最大的是固结排水剪切、试验,最小的是不固结不排水剪切试验。 3、评价粗颗粒土粒径级配的指标有不均匀系数、曲率系数和。 4、τf表示土体抵抗剪切破坏的极限能力,当土体中某点的剪应力τ=τf时,土体处 于状态;τ>τf时,土体处于状态;τ<τf时,土体处于状态。 5、桩按受力分为和。 6、用朗肯土压力理论计算土压力时,挡土墙墙背因、,墙后填土表面因。 7、桩的接头方式有、和。 8、建筑物地基变形的特征有、、和倾斜四种类型。 二、选择题(每小题2分,共10分) 1、采用搓条法测定塑限时,土条出现裂纹并开始断裂时的直径应为() (A)2mm (C) 4mm(D) 5mm 2、《地基规范》划分砂土的密实度指标是() (A)孔隙比(B)相对密度(D) 野外鉴别 3、建筑物施工速度较快,地基土的透水条件不良,抗剪强度指标的测定方法宜选用() B)固结不排水剪切试验(C)排水剪切试验(D)直接剪切试验 4、地基发生整体滑动破坏时,作用在基底的压力一定大于()。 (A)临塑荷载(B)临界荷载(D)地基承载力 5、夯实深层地基土宜采用的方法是 ( ) (B)分层压实法(C)振动碾压法(D)重锤夯实法 三、简答题(每小题5分,共20分) 1、直剪试验存在哪些缺点? 2、影响边坡稳定的因素有哪些? 3、产生被动土压力的条件是什么? 4、什么是单桩竖向承载力?确定单桩承载力的方法有哪几种? 四、计算题(共50分) 1、某土样重180g,饱和度S r=90%,相对密度为2.7,烘干后重135g。若将该土样压密,使其干密度达到1.5g/cm3。试求此时土样的天然重度、含水量、孔隙比和饱和度。(10分) 1、解:由已知条件可得原土样的三相数值为: m=180g m s=135g m w=180-135=45g V s=135/2.7=50cm3 V w=45 cm3 V v=45/0.9=50cm3 V=50+50=100 cm3 土样压密后的三相数值为:V=135/1.5=90cm3 V v=90-50=40 cm3 V w=40 cm3 m w=40g m=135+40=175g γ=175/90×10=19.4 kN/m3 w=40/135×40%=30% e=40/50=0.8

相关主题
文本预览
相关文档 最新文档