当前位置:文档之家› 常用溶剂的表面张力及黏度

常用溶剂的表面张力及黏度

溶剂表面张力(达厘/厘米) (mN/m)水72.7

乙二醇48.4

丙二醇36.0

邻二甲苯30.0

醋酸丁酯25.2

正丁醇24.6

石油溶剂油24.0

甲基异丁酮23.6

甲醇23.6

脑石油22.0

正辛烷21.8

脂肪烃石脑油19.9

正己烷18.4

涂料中典型聚合物和助剂的表面张力:聚合物/表面张力(达因/厘米)

三聚氰胺树脂57.6

聚乙烯醇缩丁醛53.6

苯代三聚氰胺树脂52

聚乙二酸己二酰胺46.5

Epon 828 46

环氧树脂47

脲醛树脂45

聚酯三聚氰胺涂膜44.9

聚环氧乙烷二醇,Mw6000 42.9

聚苯乙烯42.6

聚氯乙烯41.9

聚甲基丙烯酸甲酯41

65%豆油醇酸38

聚醋酸乙烯酯36.5

聚甲基丙烯酸丁酯34.6

聚丙烯酸正丁酯33.7

Modaflow 32

聚四氟乙烯Mw 1,088 21.5

聚二甲基硅氧烷Mw 1,200 19.8

聚二甲基硅氧烷Mw162 15

乙醇22.27

丙醇23.8

异丙醇21.7

正丁醇24.6

硝基乙烷31.0

异丁醇23.0

环己酮34.5

丙酮23.7

二丙酮醇31.0

甲基丙酮23.97

乙二醇乙醚乙酸酯31.8

丁酮24.6

二氯甲烷28.12

甲基异丁基酮23.9

二甘醇乙醚31.8

醋酸正丙酯24.2

乙二醇乙醚28.2

醋酸异丙酯21.2

乙二醇丁醚27.4

醋酸丁酯25.09

苯28.18

醋酸异丁酯23.7

甲苯28.53

醋酸乙酯23.75

间二甲苯28.081

水-正丁醇(4.1‰)34

液体表面张力与液体表面现象

液体的表面张力与液体的表面现象 在日常生活中,只要你稍加留意,就会观察到许多与液体表面张力有关的现象。如草叶上晶莹剔透的露珠,荷叶上滚动着的小水滴,玻璃板上的小水银滴等,它们为什么都是球形或近似球形?这就是因为液体表面张力的作用结果。当用细管吹出一个个五彩缤纷的肥皂泡时,在泡膜的表面上就布满了液体表面张力。用数学可以证明,在体积相同的各种形状的几何体中,球体的表面积最小。正是由于表面张力的作用,才会出现露珠、小水银滴等都收缩为球形的现象。 你若有机会观察护士给病人输液,你会看到在输液之前,护士总是要把输液管中的空气泡排除干净。不然的话,若让那些气泡混入人体血管中,在表面张力的作用下,气泡将会阻碍血液的正常流动。 下面就来分析一下液体的表面张力,以及液体表面现象发生的原因。 1 表面张力的成因、大小和方向 表面张力就是促使液体表面收缩的力。液体与气体的交界面(属于液体薄层),称为表面层。在表面层中,液体分子因受到液体内部分子的引力,而有一部分会被拉入液体内,致使表面层液体分子密度小于液内分子密度。表面层中液体分子的这种布局,使得液体表面层就像一张“绷紧”的橡皮膜,而具有收缩趋势。表面层一直处在具有收缩趋势的表面张力作用之下。 这里应指出,液体表面张力与橡皮膜张力在本质上是不同的。橡皮膜的分子间距会随着膜面积的增大而增大。而液体表面张力却不受面积变化的影响,当液体表面层面积增大时,液内分子会自动进入液面来补充,从而维持液面内分子间距不变。 可以用一个很简单的实验,来可说明表面张力的存在。取一段铜丝制成一个直径约 cm ~85的圆环,在环上跨系一根细红线(用红线易于观察) 。将环浸入洗洁精溶液再取出,环上蒙了一层液膜,这时用粉笔头轻触线一侧的液膜,原来自由弯曲的红线则立即被液膜拉向另一侧,成为一段张紧的弧线。实验表明,液体表面具有收缩到最小面积的趋势。同时它还表明,表面张力的方向垂直于任一周界线且与液面相切。 理论和实验表明,表面张力的大小,可用如下公式表示: ???==)(2)(双表面层单表面层L F L F αα 上式中,α称为表面张力系数。α与液体的种类、温度等因素有关。不同的液体,α不同;同一种液体,α随温度升高而减小。另外,α也与液体中的杂质有关。因此,当人体使用了某些药物后,血液或尿液的表面张力系数则会发生变化。 在生活中有许多与表面张力有关的现象。例如,对人来说,重力有时会造成很大的麻烦。人若不慎从高处落下,可能会被摔得不轻。而小昆虫一点也不害怕重力,它在落下时一点危险也没有。但表面张力对某些昆虫来说则有可能造成很大威胁,小昆虫有时最怕表面张力。当一个成人从浴池中站起时,他身上会带起厚约mm 2.0的一层水,这些水大约kg 5.0,不到人体重的%1,这对人来说不会感到有什么负担。即使是人的全身涂满了肥皂泡沫,其表面张力对人也不会产生任何威胁。而一只蚊子一旦被肥皂泡沫弄湿,它将很危险。这时蚊子将难逃表面张力“法网”。

常用溶剂的性质

常用溶剂的性质 常用溶剂的性质 常用溶剂的极性顺序:水(最大) >甲酰胺>乙腈>甲醇>乙醇>丙醇>丙酮>二氧六环>四氢呋喃>甲乙酮>正丁醇>乙酸乙酯>乙醚>异丙醚>二氯甲烷>氯仿>溴乙烷>苯>四氯化碳>二硫化碳>环己烷>己烷>煤油(最小)。 甲酰胺 分子式HCONH 2 ,透明油状液体,略有氨臭,具有吸湿性,可燃。能与水和乙醇混溶,微溶于苯、三氯甲烷和乙醚。相对密度1.133(20/4℃)。沸点210℃。熔点2.55℃。闪点175℃。折射率nD(25℃)1.4468。燃点>500℃。粘度(20℃)2.926mPa?s。 毒性本品低毒。对皮肤和粘膜有暂时刺激性。小鼠经口LD50大于1000mg/kg。 乙腈;甲基氰 结构式CH 3 CN。分子量41.05。无色透明液体,有醚的气味。相对密度(20℃/4℃)1. 7822,凝固点-43.8℃,沸点81.6℃、闪点5.6℃。折射率1.3441.粘度(20℃)0.35mPa?s,表面张力(20℃)19.10×10-3N/m,临界温度274.7℃,临界压力4.83MPa。能与水、甲醇、醋酸甲酯、醋酸乙酯、丙酮、乙醚、氯仿、四氯化碳、氯乙烯以及各种不饱和烃相混溶。与水形成共沸混合物。易燃,爆炸极限3.0%-16%(vol)。有毒人LD503800mg/kg。空气中最高容许浓度3mg/m3。贮存阴凉、通风、干燥的库房内,远离火种、热源,防止日光直射。 甲醇 结构式为CH 3 OH,分子量32.04。无色澄清易挥发液体,相对密度(20℃ /4℃)0.7914,凝固点-97.49℃,沸点64.5℃.闪点(开口)16℃,燃点470℃,折射率1.3285,表面张力22.55×10-3N/m,蒸气压(20 ℃)12.265kPa,蒸气相对密度1.11,粘度(20℃)0.5945mP a?s,溶解度参数δ=14.8,能与水、乙醇、乙醚、丙酮、苯、氯仿等有机溶剂混溶,甲醇对金属特别是黄铜有轻微的腐蚀性。易燃,燃烧时有无光的谈蓝色火焰。蒸气能与空气形成爆炸混合物.爆炸极限6.0%-36.5%(vol)。纯品略带乙醇味,粗品刺鼻难闻。有毒。饮用7-8g可导致失明,饮用30-100g就会死亡。空气中甲酵蒸气最高容许浓度5mg/m3。 乙醇 结构式为C 2H 5 OH,分子量46.07。无色透明液体,有酒的醉香气味,也有刺激性 的辛辣昧。工业乙醇含量为95%,相对密度(20℃/4℃)0.793。凝固点-114℃,沸点78.32℃,闪点(开口)16℃,燃点390-430 ℃.折射率1.3614,粘度(20℃)1.41mPa?s,表面张力(20℃)22.27×10-3N/m,比热容 (20 ℃)2.42kJ/(kgK),蒸气压(20 ℃)5.732kPa,溶解度参数δ=12.7。溶于苯、甲苯。与水、甲醇、乙醚、醋酸、氯仿任意比例混溶。能溶解许多有机化合物和若干无机化合物。与铬酸、次氯酸钙、过氧化氢、硝酸、硝酸铂、过氮酸盐及氧化剂反应剧烈,爆炸极限4.3%-19.0%(vol)。具有吸湿性,与水形成共沸混合物。微毒,有麻醉性,饮入乙醇中毒剂量75-80g。致死剂量为250-500g。空气中最高容许浓度1880mg/m3。

什么是液体的表面张力

什么是液体的表面张力 在研究物体的浮沉条件时,有个同学无意中发现了一个有趣的现象:把一塑料尺子竖放(或侧放)在水面时,发现尺子迅速下沉了;而当他把尺子平放在水面时,即可发现尺子漂在水面上。 竖放(或侧放)尺子在水面上时,尺子下沉,是由于尺子所受的浮力小于它自身的重力而引起的;那又为什么在平放尺子时,它却是漂浮在水面上,若按物体的浮沉条件,物体漂浮时浮力可是等于重力的呀。这两者岂不自相矛盾了吗?问题症结在哪里呢? 在高中物理教材第一册“固体和液体的性质”一章中,有一个小实验:要求学生用棉纸把缝衣针垫起放在水面上,当棉纸被水浸湿下沉后,观察现象并说明原因,很多同学认为缝衣针浮在水面是由于液体表面张力作用的原因,以为针受重力、浮力和液体表面张力三者相平衡而使针能漂在水表面上。 那么就让我们先来认识一下液体表面张力吧。 什么是液体的表面张力呢? 液体表面附近的分子由平衡位置向外运动时,因为外部空气和蒸气分子对它的斥力很小。不起显著作用。它只受到内部分子的吸引力,因此使它恢复到平衡位置的作用力就没有在液体内部时大,使得表面层里的分子振动的振幅要比液

体内部分子的振幅大,一些动能大的分予就可能冲出吸力范围,成为蒸气分子,结果形成表面层里的分子分布比液体内部的分子分布稀疏,分子之间的距离就比较大(rr0)、正是由于液面分子分布较内部稀疏,分子间距rr0,分子间引力占优势而产生了液体表面张力,由此可知,液体表面的张力实质是分子间相互作用的合力,它指向液体内部,可见托起硬币的力不可能是液体表面张力。那么让我们再来看看浮力吧。 先让我们先做一个实验:在一盛有水的烧杯的水面平放一张滤纸,把一枚面值一角的硬币平放在滤纸上,待滤纸被浸湿而下沉后,发现硬币仍漂在水面上。注意观察硬币周围会发现水面向下凹陷,而硬币并未浸入水中,只是漂在水表面上。由此可见,此时硬币并未受到浮力作用。那是什么力与重力相平衡而使硬币漂在水面上呢? 由上一实验现象可知,水面向下凹陷,发生了形变,从而产生了一个与形变方向相反的弹力——支持力,这就如在一个吹气的气球上放上一个物体,由于物体的重力而使气球形变(向下凹陷),而产生了竖直向上的支持力一样。是这个与重力大小相等、方向相反的支持力使硬币漂在水表面上。(上面几个实验中的塑料尺子、缝衣针漂在水面上与此相同)

常用溶剂参数表

常用溶剂参数表 产品溶剂系列首页> 产品溶剂系列

个体溶剂: (A)芳香族溶剂(A r o m a t i c S o l v e n t s) 甲苯(T O L U E N E) 油漆、清漆、黏合剂及油墨制造业及天那水配方用之稀释剂;树脂溶剂;化学及制药工业用之溶剂;尤以萃取及脱脂两工 序最为适用。另也为化学合成用之原料。 二甲苯(X Y L E N E) 脂肪、蜡、沥青及各天然与人工合成树脂之溶剂。也为油漆、清漆及亮漆制造用之溶剂及稀释剂。也用于油墨及粘合剂制 造业,也是杀虫药制剂最常用之溶剂。亦是化工合成用之中 间体。分异构级和溶剂级,涂料常用溶剂级,异构级比溶剂 级一般情况要贵一点。粗二甲苯臭、便宜。 三甲苯(S-100) 慢干漆油,树脂溶剂及高级印刷油配方用。粗三甲苯臭、便宜。 四甲苯(S-150) 慢干漆油,焗漆,杀虫药溶剂。 物理数据: 溶劑餾程℃比重15℃芳香族化相對揮發速閃

/15℃合物含量 (%)度(乙酸丁酯 =100) 點 ℃ 甲苯 110.3-110.90.87299.91537二甲 苯 138–1400.87199.77027 三甲 苯 165–1730.875981943 四甲 苯 190–2070.89599466 页顶 (B)酮类(K E T O N E S) 丙酮(A c e t o n e) 电子零件清洗剂,树脂溶剂,粘合剂,油漆,清漆和天拿水用溶剂;皮革及羊毛脱脂。 丁酮(M E K) 硝化纤维素及其衍生物、丙烯酸树脂、乙烯基树脂、苯酚树脂、环氧树脂、醇酸树脂等低沸点溶剂。普遍用于油漆制造及天拿水配方,并用于磁带涂层以溶解聚氨脂树脂及乙桸基脂,也用于人造皮革之表面处理。

(整理)实验讲义-液体表面张力-.9.

液体表面张力系数的测量 表面现象广泛见诸于钢铁生产,焊接,印刷,复合材料的制备等过程中。液体表面张力系数是表征液体性质的一个重要参数。测量液体表面张力系数有多种方法,如最大泡压法,毛细管法,拉脱法。 许多现象表明液体表面具有收缩到尽可能小的趋势,这是液体分子间存在相互作用力的宏观表现。从微观角度看,液体表面具有厚度为分子吸引力有效半径的表面层,处于表面层内的分子比液体内部的分子少了一部分能与之吸引的分子,因此出现了一个指向液体内部的吸引力,使得这些分子具有向液体内部收缩的趋势。而从能度看,任何内部分子欲进入表面层就要克服这个吸引力而做功。显见,表面层有着比液体内部更大的势能(表面能),且液体表面积越大,表面能也越大。而任何体系总以势能最小的状态最为稳定,所以液体要处于稳定状态,液面就必须缩小,以使其表面能尽可能小,宏观上就表现为液体表面层内的表面张力。 我们想象在液体表面画一条直线,表面张力就表现为线段两边的液面以一定的拉力α相互作用,而力的方向与线段垂直,力的大小与该段直线的长度L成正比,即f L =(1) a 其中,比例系数α称为液体的表面张力系数,单位为N/m。当液体表面与其蒸汽或空气相接触时,表面张力仅与液体本身的性质及其温度有关。一般情况下,密度小、容易蒸发的液体,其α较小;而熔融金属的α则很大。对于同种液体,温度越高,其α越小。当液体与固体相接触时,不仅取决于液体自身的内聚力,而且取决于液体分子与其接触的固体分子之间的吸引力(称为附着力)。当这个附着力大于内聚力时,液体就会沿固体表面扩展,这种现象称为润湿。当这个附着力小于内聚力时,液体就不会在固体表面扩展,称为不润湿。润湿与不润湿取决于液体、固体的性质,如纯水能完全润湿干净的玻璃,但不能润湿石蜡;水银不能润湿玻璃,却能润湿干净的铜、铁等。润

液体表面张力的测量预习报告

液体表面张力系数的测量实验 液体沿表面总是存在着使液面紧张且向液体内收缩的力称为表面张力。液体的许多现象,如毛细管现象、湿润现象、泡沫的形成等,都与表面张力有关。表面张力系数是液体表面的重要力学性质:对于不同种类的液体,其表面张力不同,而对于同一种液体,其表面张力系数随着温度及其所含杂志的改变而增大或减小。这些性质广泛应用于工业生产中,如浮法选矿、液体的传输技术、化工生产线的设计等等都要对液体的表面张力进行研究。 测定液体表面张力系数的方法很多。常用的有拉脱法和毛细管升高法。本次实验介绍用拉脱法测定液体表面张力系数。 一、实验目的 1.用砝码对硅压阻力敏传感器进行定标,计算该传感器的灵敏度,学习传感器的定标方法; 2.观察拉脱法测量表面张力的过程,并用物理学基本概念进行分析,加深对物理规律的认识; 3.测量纯水和其它液体(如:甘油)的表面张力系数。 二、实验仪器 实验仪器主要由液体表面张力系数测量实验仪主机以及实验装置以及镊子、砝码组成。应用电脑采集测量时需要壹根串口转USB 连接线、电脑和采集软件,仪器装置见下图。 三、实验原理 一个金属环固定在传感器上,将该环浸没于液体中,并渐渐拉起圆环,当它从液面拉脱瞬间传感器受到的拉力差值f 为 απ)(21D D f += (1) 式中: 1D 、2D 分别为圆环外径和内径,α为液体表面张力系数,g 为重力加速度,所以液体表面张力系数为:

)](/[21D D f +=πα (2) 实验中,液体表面张力可以由下式得到: B U U f /)(21-= (3) B 为力敏传感器灵敏度,单位V/N 。1U ,2U 分别为即将拉断水柱时数字电压表读数以及拉 断时数字电压表的读数。 四、实验步骤 1.连接硅压阻力敏传感器,并开机预热15~20分钟。测量吊环内外直径,然后清洗玻璃器皿(盛装待测液体)和吊环,给实验装置加水(注意加水量不可过多,可以参考装置外壁加水刻度线); 2.将吊环挂在力敏传感器的钩上,将力敏传感器转至水容器外部,这样取放砝码比较方便。待吊环晃动较小时,对仪器进行调零,然后用镊子安放砝码对传感器进行定标,取放砝码时应尽量轻; 3.将待测液体倒入玻璃器皿后,再将盛有待测液体的玻璃器皿小心地放入空的塑料容器,并一起放入实验圆筒内;将力敏传感器转至容器内,并轻轻挂上吊环,可以轻触吊环,让其晃动 说明:之所以不将测量液体直接倒入塑料容器内进行测量,是防止某些待测液体与塑料容器发生化学反应而影响测量结果。 4.关闭橡皮球阀门,反复挤压橡皮球使装置内部液体液面上升,当吊环下沿部分均浸入待测液体中时,及时松开橡皮球的阀门,这时液面缓慢下降,观察环浸入液体中及从液体中拉起时的物理过程和现象。特别应注意吊环即将拉断液柱前一瞬间数字电压表读数值为U 1,拉断后数字电压表读数为U 2。记下这两个数值。 5.用计算机采集时,在环接触液面开始下降时点开始采集按钮,可以通过软件实时采集传感器输出电压值的变化过程,通过鼠标移动测量拉脱瞬间的电压值以及拉断后的电压值,计算测量液体的表面张力,并与手动测量的结果进行比较。 五、注意事项 1.实验前,吊环须严格处理干净:可用NaOH 溶液洗净油污或杂质后,用纯水冲洗干净,并用热吹风烘干;

华科物理实验液体表面张力实验报告

液体表面张力系数的测量 许多涉及液体的物理现象都与液体的表面性质有关,液体表面的主要性质就是表面张力。例如液体与固体接触时的浸润与不浸润现象、毛细现象、液体泡沫的形成等,工业生产中使用的浮选技术,动植物体内液体的运动,土壤中水的运动等都是液体表面张力的表现。 液体表面在宏观上就好像一张绷紧的橡皮膜,存在沿着表面并使表面趋于收缩的应力,这种力称为表面张力,用表面张力系数σ来描述。因此,对液体表面张力系数的测定,可以为分析液体表面的分子分布及结构提供帮助。 液体的表面张力系数σ与液体的性质、杂质情况、温度等有关。当液面与其蒸汽相接触时,表面张力仅与液体性质及温度有关。一般来讲,密度小,易挥发液体σ小;温度愈高, σ愈小。测量液体表面张力系数有多种方法,如拉脱法,毛细管法,平板法,最大泡压法等。本实验是用拉脱法和毛细管法测定液体的表面张力系数。 【实验目的】 1.用拉脱法测量室温下液体(水)的表面张力系数; 2. 用毛细管法测量室温下液体(水)的表面张力系数; 3.学习力敏传感器的使用和定标。 【实验原理】 一、拉脱法 测量一个已知周长L 的金属片从待测液体表面脱离时需要的力,求得该液体表面张力系数的实验方法称为拉脱法.若金属片为环状吊片时,考虑一级近似,可以认为脱离力为表面张力系数乘上脱离表面的周长,即 122()F L D D σσπ=?=?+ (1) 式中,F 为脱离力,D 1,D 2分别为圆环的外径和内径, σ为液体的表面张力系数.脱离力的测量应该为即将脱离液面测力计的读数F 1减去吊环本身的重力mg 。吊环本身的重力即为脱离后测力计的读数F 2。所以表面张力系数为: ) ()(2121211D D F F D D mg F +-=+-=ππσ (2) 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥,当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正此,即 ΔΔU K F = (3) 式中,?U F 为外力的大小,K 为硅压阻式力敏传感器的灵敏度,?U 为传感器输出电压

表面张力的测定实验报告分析

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:溶液表面张力的测定 (1)实验目的 1、掌握最大气泡法测定表面张力的原理和技术 2、通过对不同浓度正丁醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解 3、学习使用Matlab 处理实验数据 (2) 实验原理 1、 表面自由能:从热力学观点看,液体表面缩小是一个自发过程,这是使体系总的自由能减小的过程。如欲使液体产生新的表面A ?,则需要对其做功。功的大小应与A ?成正比:-W=σA ? 2、 溶液的表面吸附:根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比 溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。Gibbs 用热力学的方法推导出它们间的关系式 T c RT c )(??- =Γσ (1)当00,溶质能减少溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附,此类物质叫表面活性物质。(2)当0>??? ????T c σ时,Γ<0,溶质能增加溶剂的表面张力,溶 液表面层的浓度小于内部的浓度,称为负吸附,此类物质叫非表面活性物质。由 T c RT c )(??- =Γσ 可知:通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 3、 饱和吸附与溶质分子的横截面积:吸附量Γ浓度c 之间的关系,有Langmuir 等温方程 式表示:c K c K ·1·+Γ=Γ ∞

液体表面张力系数的测定报告模板

液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。这种沿着表面的、收缩液面的力称之为表面张力。测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。此试验中采用了拉脱法。拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。这个力垂直于液面并指向液体内部。所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。 表面张力 f 与线段长度 L 成正比。即有: f = αL (1) 比例系数α称为液体表面张力系数,其单位为Nm-1。 将一表面洁净的长为 L、宽为 d 的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有 F = mg + f (2) 式中 F 为把金属片拉出液面时所用的力;mg 为金属片和带起的水膜的总重量; f 为表面张力。此时, f 与接触面的周围边界 2(L+ d ),代入(2)式中可得α = F ? mg2( L + d ) 本实验用金属圆环代替金属片,则有 α= F ? mg π (d1 + d2 ) 式中 d1、d2 分别为圆环的内外直径。

常用溶剂的表面张力及黏度电子版本

常用溶剂的表面张力 及黏度

溶剂表面张力(达厘/厘米)(mN/m)水72.7 乙二醇48.4 丙二醇36.0 邻二甲苯30.0

醋酸丁酯25.2 正丁醇24.6 石油溶剂油24.0 甲基异丁酮23.6 甲醇23.6 脑石油22.0 正辛烷21.8 脂肪烃石脑油19.9 正己烷18.4 涂料中典型聚合物和助剂的表面张力: 聚合物/表面张力(达因/厘米) 三聚氰胺树脂57.6 聚乙烯醇缩丁醛53.6 苯代三聚氰胺树脂52 聚乙二酸己二酰胺46.5 Epon 828 46 环氧树脂47 脲醛树脂45 聚酯三聚氰胺涂膜44.9 聚环氧乙烷二醇,Mw6000 42.9 聚苯乙烯42.6 聚氯乙烯41.9

聚甲基丙烯酸甲酯41 65%豆油醇酸38 聚醋酸乙烯酯36.5 聚甲基丙烯酸丁酯34.6 聚丙烯酸正丁酯33.7 Modaflow 32 聚四氟乙烯Mw 1,088 21.5 聚二甲基硅氧烷Mw 1,200 19.8 聚二甲基硅氧烷Mw162 15 乙醇22.27 丙醇23.8 异丙醇21.7 正丁醇24.6 硝基乙烷31.0 异丁醇23.0 环己酮34.5 丙酮23.7 二丙酮醇31.0 甲基丙酮23.97 乙二醇乙醚乙酸酯31.8 丁酮24.6 二氯甲烷28.12

甲基异丁基酮23.9 二甘醇乙醚31.8 醋酸正丙酯24.2 乙二醇乙醚28.2 醋酸异丙酯21.2 乙二醇丁醚27.4 醋酸丁酯25.09 苯28.18 醋酸异丁酯23.7 甲苯28.53 醋酸乙酯23.75 间二甲苯28.081 水-正丁醇(4.1 %。)34

液体表面张力研究报告范文

液体表面张力研究 报告

对液体表面张力系数测定实验的改进 (邓丹萍,王亚慧,杜庆玉) 指导老师:马国利 (滨州学院物理与电子科学系) 一.引言 液体表面张力仅存在于极薄的表面层内,是液体表面分子力作用的结果。测量液体表面张力的方法有很多,常见的有拉脱法、毛细血管法、液滴测量法和最大气泡压力法。拉脱法是指测量一个已知周长的金属片从待测液体表面脱离时需要的力,从而得到液体表面张力系数。现在实验室多用拉脱法测量液体表面张力。用拉脱法测量液体表面张力对仪器精度要求高。现用硅压阻式力敏传感张力测定仪,正好能满足测量液体表面张力的需要。 实验过程中若金属片为吊环片,可采用一级近似,能够认为脱离力为表面张力系数乘上脱离表面的周长,即: F=aπ(R1+R2) 其中F为拉脱力,R1和R2为圆环的内经和外径,a为液体表面张力系数。 由于每个力敏传感器的灵敏度有所不同,开始实验要对力敏传感器进行定标,然后经过定标过程中所记录的数据求出传感器的灵敏度k。 原来的实验过程中,首先在玻璃皿内放入被测液体并安放在

实验台上;其次用镊子将金属吊环片拉在传感器的小钩上,调节升降台,将液体升至靠近环片的下沿,观察环片下沿与待测液面是否平行,如果不平行,将金属片取下后,调节吊环上的细丝,使吊环与待测液面平行,然后调节容器下的升降台,使其渐渐上升,将吊环的下沿部分全部浸没与待测液体,然后反向调节升降台,使其液面渐渐下降,这时金属片与液面间形成一层环形液膜,使液面继续下降,测出环形液膜即将拉断前一瞬间数字电压表读数值U1和环形液膜即将拉断后一瞬间数字电压表读数值U2,ΔU= U1- U2,最后将所得数据代入相关公式,求出液体表面张力系数,并与标准值进行比较。 我认为原实验存在以下问题和不足,具体如下: 1. 对于液体表面张力系数的测量仪附件吊环水平调试仅凭感觉是否水平,而对于吊环水平的调节仅依赖于三根金属丝,这种方法既原始也不科学且没有判断依据。对实验造成较大误差。 2. 原有仪器利用人工控制升降台来改变液面高度,但在旋转过程中,由于手工升降的不稳定性,可能造成液面高度调节过程中水面波动,从而给实验结果造成误差。不但如此,实验过程中我们需要记录拉断前一瞬间数字电压表读数值U1和环形液膜即将拉断后一瞬间数字电压表读数值U2,那么我们使用人工手动调节就更不满足这一要求。 3.原有实验仪器只能测量当前室温下水的液体表面张力系数,然而在实际生活和科研中,研究同种液体在不同环境下表面

2020年常用溶剂的表面张力及黏度

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13

溶剂表面张力(达厘/厘米) (mN/m)

水72.7 乙二醇48.4 丙二醇36.0 邻二甲苯30.0 醋酸丁酯25.2 正丁醇24.6 石油溶剂油24.0 甲基异丁酮23.6 甲醇23.6 脑石油22.0 正辛烷21.8 脂肪烃石脑油19.9 正己烷18.4 涂料中典型聚合物和助剂的表面张力:聚合物/表面张力(达因/厘米) 三聚氰胺树脂57.6 聚乙烯醇缩丁醛53.6 苯代三聚氰胺树脂52 聚乙二酸己二酰胺46.5 Epon 828 46 环氧树脂47 脲醛树脂45 聚酯三聚氰胺涂膜44.9 聚环氧乙烷二醇,Mw6000 42.9 聚苯乙烯42.6 聚氯乙烯41.9 聚甲基丙烯酸甲酯41 65%豆油醇酸38 聚醋酸乙烯酯36.5 聚甲基丙烯酸丁酯34.6 聚丙烯酸正丁酯33.7 Modaflow 32 聚四氟乙烯Mw 1,088 21.5 聚二甲基硅氧烷Mw 1,200 19.8 聚二甲基硅氧烷Mw162 15 乙醇22.27 丙醇23.8 异丙醇21.7 正丁醇24.6 硝基乙烷31.0

异丁醇23.0 环己酮34.5 丙酮23.7 二丙酮醇31.0 甲基丙酮23.97 乙二醇乙醚乙酸酯31.8 丁酮24.6 二氯甲烷28.12 甲基异丁基酮23.9 二甘醇乙醚31.8 醋酸正丙酯24.2 乙二醇乙醚28.2 醋酸异丙酯21.2 乙二醇丁醚27.4 醋酸丁酯25.09 苯28.18 醋酸异丁酯23.7 甲苯28.53 醋酸乙酯23.75 间二甲苯28.081 水-正丁醇(4.1‰)34 作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13

晶体液体的表面张力

知识点1:液晶 像液体一样具有______性,而其光学性质与某些______相似,具有_______的物质叫 液晶。液晶是一种不同于固、液、气的物质形态,它在电子工业、航空工业、生物、医学 等领域内获得了广泛的应用。 典例1.关于液晶下列说法正确的是() A.液晶是液体和晶体的混合物 B.所有物质在一定条件下都能成为液晶 C.电子手表中的液晶在外加电压的影响下,能够发光 D.液晶分子在特定方向排列比较整齐,但不稳定 知识点2:液体的微观结构 液体和气体没有一定的形状,是______的;液体和固体具有一定的______,而气体的______可以变化千万倍;液体和固体都很难被_______,而气体可以很容易的被______。液体的这些性质表明液体与固体的微观结构类似,分子间距在________左右。 知识点3:液体的表面张力 1.实验探究: 实验现象表明,液体的表面层好像是绷紧的__________一样,具有_________的趋势。 2.理论分析: 与气体相接触的液体的表面层中,液体分子分布较液体内部_____,即分子间距大于r0,所以分子力表现为________力。 3.表面张力:液面各部分间存在的使液面______的相互吸引力,叫做表面张力。 典例2.关于液体的表面张力,下述说法哪个是错误的() A.表面张力是液面各部分间相互吸引的力,方向与液面相平行 B.表面张力是液面分子间作用力的宏观体现 C.表面层里分子距离比液体内部小些,分子间表现为引力 D.不论是水还是水银,表面张力都要使液面收缩 训练1.关于表面张力下列叙述中哪些是正确的() A.液体表面张力随温度升高而增大

常用溶剂的表面张力及黏度强烈推荐.强烈推荐.doc

溶剂表面张力 mn/m 黏度mpa s 密度g/ml 介电常数水溶解 度 g/100ml 挥发 速率 (乙 醚=1) 浓度 Ppm 正庚烷20.35(20℃)0.409 0.684 (20℃)1.924(25℃) 正十二烷25.44 1.508 0.7487 2.016 正十六烷0.77 环己烷24.33 0.94 0.7781 2.1 0.008 苯28.18 0.60 0.879 2.3 0.08 甲苯28.83 0.586 0.87 2.38 6.1 乙苯29.04 0.63 0.867 2.3 微溶 甲醇20.14(50℃) 0.597 0.7915 32.70 互溶 乙醇22.27 1.17 0.7893 24.55 互溶8.3 正丙醇23.78(50℃) 2.256 0.8053 20.33 互溶 正丁醇24.6 2.948 0.8100 17.5 微溶 正癸醇粘稠0.8297 不溶 环己醇34.4 0.962 15 3.6 50 松节油低,0.86-0.87 不溶 均三甲苯28.33 1.154 0.8637 2.279 0.002 茚(苯并 环戊二 烯) 0.9968 不溶 四氢化萘35.4 2.02 0.9702 2.733 不溶 二氯甲烷28.16 0.43 1.3255 9.14 微溶0.71 500 三氯甲烷27.14 0.56 1.489 4.9 微溶0.56 50 四氯甲烷26.77 0.97 1.594 2.238 微溶10 氯苯33.1 0.799 1.107 5.6493 不溶75 邻二氯苯26.84 1.324 1.3059 9.32 0.0134 慢50 二溴甲烷39.8 1000 2.4956 7.04 微溶7 500 苯甲醚0.9959 不溶 石油醚 酯 乳酸正丁 酯 30.6 3.18 0.9803 4 440 磷酸三丁 酯 0.9731 微溶 苯甲酸乙 酯 2.2 1.0468 0.05 苯甲酸异 丙酯 2.58 1.0092 0.01 水杨酸乙 酯 38.33 1.131 7.99 略溶

液体表面张力

液体表面张力 Ⅰ定义凡作用于液体表面,使液体表面积缩小的力,称为液体表面张力。它产 生的原因是液体跟气体接触的表面存在一个薄层,叫做表面层,表面层里的分子比液体内部稀疏,分子间的距离比液体内部大一些,分子间的相互作用表现为引力。就象你要把弹簧拉开些,弹簧反而表现具有收缩的趋势;也像有无数张手紧紧握在一起似的。正是因为这种张力的存在,有些小昆虫才能无拘无束地在水面上行走自如。 Ⅱ影响因素 内因:无机液体的表面张力比有机液体的表面张力大的多; 水的表面张力72.8mN/m(20℃); 有机液体的表面张力都小于水; 含氮、氧等元素的有机液体的表面张力较大; 含F、Si的液体表面张力最小; 分子量大表面张力大; 水溶液:如果含有无机盐,表面张力比水大;含有有机物,表面张力比水小。 外因:温度升高表面张力减小; 压力和表面张力没有关系。 注:液体(0度以上时)表面张力最弱的是酒精。 Ⅲ测定方法 液体表面张力的测定方法分静力学法和动力学法。静力学法有毛细管上升法、du Noüy 环法、Wilhelmy 盘法、旋滴法、悬滴法、滴体积法、最大气泡压力法;动力学法有震荡射流法、毛细管波法。其中毛细管上升法和最大气泡压力法不能用来测液- 液界面张力。Wilhelmy 盘法, 最大气泡压力法, 震荡射流法, 毛细管波法可以用来测定动态表面张力。由于动力学法本身较复杂, 测试精度不高, 而先前的数据采集与处理手段都不够先进, 致使此类测定方法成功应用的实例很少。因此, 迄今为止, 实际生产中多采用静力学测定方法。 1.毛细管上升法 测定原理:

将一支毛细管插入液体中, 液体将沿毛细管上升, 升到一定高度后, 毛细管内外液体将达到平衡状态, 液体就不再上升了。此时, 液面对液体所施加的向上的拉力与液体向下的力相等。则表面张力 :γ=ρghr/(2cosθ) 式中γ为表面张力, r 为毛细管的半径, h 为毛细管中液面上升的高度, ρ为测量液体的密度, g 为当地的重力加速度, θ为液体与管壁的接触角。 2.Wilhelmy 盘法 用铂片、云母片或显微镜盖玻片挂在扭力天平或链式天平上, 测定当片的底边平行面刚好接触液面时的压力, 由此得表面张力, 公式为: 式中,W 总为薄片与液面拉脱时的最大拉力,W片为薄片的重力, l 为薄片的宽度, 薄片与液体的接触的周长近似为2l, φ为薄片与液体的接触角 3.悬滴法 悬滴法是根据在水平面上自然形成的液滴形状计算表面张力。在一定平面上, 液滴形状与液体表面张力和密度有直接关系。由Laplace公式, 描述在任意的一点 P 曲面内外压差为: 式中R1, R2 为液滴的主曲率半径; z 为以液滴顶点O 为原点, 液滴表面上P 的垂直坐标; P0 为顶点O 处的静压力。 定义:S= ds/de 式中de 为悬滴的最大直径, ds 为离顶点距离为de 处悬滴截面的直径 式中 b 为液滴顶点O 处的曲率半径。此式最早是由Andreas, Hauser 和Tucker[15]提出, 若相对应与悬滴的S 值得到的1/H 为已知, 即可求出表( 界) 面张力。应用Bashforth-Adams 法, 即可算出作为S 的函数的1/H 值。因为可采用定期摄影或测量ds/de 数值随时间的变化, 悬滴法可方便地用于测定表( 界) 面张力。 4.滴体积法 当一滴液体从毛细管滴头滴下时, 液滴的重力与液滴的表面张力以及滴头的大小有关。Tate首先提出了表示液滴重力(mg) 的简单关系式:mg=2πrγ,实验结果表明, 实际体积比按式( 7) 式计算的体积小得多。因此Harkins 就引入了校正因子, 则更精确的表面张力可以表示为:其中m 为液滴的质量, V 为液滴体积, f 为校正因子, 可查表得到[16, 23]。只要测出数滴液体的体积, 利用( 13) 式就可计算出该液体的表面张力。 5.最大气泡压力法

表面张力知识

基本概念 一、粘度 液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,粘度又分为动力黏度与运动黏度度。 1.黏度简介 将流动着的液体看作许多相互平行移动的液层, 各层速度不同,形成速度梯度(dv/dx),这是流动的基本特征.(见图) 由于速度梯度的存在,流动较慢的液层阻滞较快液层的流动,因此.液体产生运动阻力.为使液层维持一定的速度梯度运动,必须对液层施加一个与阻力相反的反向力. 在单位液层面积上施加的这种力,称为切应力τ(N/m2).切变速率(D) D=d v /d x (S-1) 切应力与切变速率是表征体系流变性质的两个基本参数牛顿以图4-1的模式来定义流体的粘度。两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度,即:τ= ηdv/dx =ηD(牛顿公式)其中η与材料性质有关,我们称为“粘度”。 2.黏度定义 将两块面积为1m2的板浸于液体中,两板距离为1米,若加1N的切应力,使两板之间的相对速率为1m/s,则此液体的粘度为1Pa.s。牛顿流体:符合牛顿公式的流体。粘度只与温度有关,与切变速率无关,τ与D为正比关系。非牛顿流体:不符合牛顿公式τ/D=f(D),以ηa表示一定(τ/D)下的粘度,称表观粘度。 又称黏性系数、剪切粘度或动力粘度。流体的一种物理属性,用以衡量流体的粘性,对于牛顿流体,可用牛顿粘性定律定义之: 式中μ为流体的黏度;τyx为剪切应力;ux为速度分量;x、y 为坐标轴;dux/dy为剪切应变率。流体的粘度μ与其密度ρ的比值称为运动粘度,以v表示。 粘度随温度的不同而有显著变化,但通常随压力的不同发生的变化较小。液体粘度随着温度升高而减小,气体粘度则随温度升高而增大。对于溶液,常用相对粘度μr表示溶液粘度μ和溶剂粘度μ之比,即:相对粘度与浓度C的关系可表示为: μr=1+【μ】C+K′【μ】C+… 式中【μ】为溶液的特性粘度, K′为系数。【μ】、K′均与浓度无关。 不同流体的粘度差别很大。在压强为101.325kPa、温度为20℃的条件下,空气、水和甘油的动力粘度和运动粘度为: 空气μ=17.9×10Pa〃s,v=14.8×10m/s 水μ=1.01×10Pa〃s,v=1.01×10m/s 甘油μ=1.499Pa〃s,v=1.19×10m/s 由于粘度的作用,使物体在流体中运动时受到摩擦阻力和压差阻力,造成机械能的损耗(见流动阻力)。 各种流体的粘度数据,主要由实验测得。常用的粘度计有毛细管

液体表面张力实验报告

液体表面张力系数的测定 [实验目的] 1、了解液体表面张力性质以及表面张力系数的含义和影响因素。 2、理解拉脱法测量液体表面张力系数的基本原理,了解测量方法。 3、了解用液体界面张力仪定标测量微小力的思想和方法。 4、了解液体界面张力仪的调节使用方法和校准方法。 5、熟悉实验的具体内容。 6、拟定出合理的实验数据记录表格。 [实验原理] 表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。作用于液面单位长度上的表面张力称为液体的表面张力系数,用来度量表面张力的大小。表面张力系数不仅与液体的种类有关,而且还与温度、纯度、表面上方的气体成分等有关。物质液体状态的许多性质都与液体的表面张力相关,如毛细现象、浸润现象等。因此,测量液体表面张力系数对于科学研究和实际应用都具有重要意义。测定液体表面张力系数的常用方法有:拉脱法,液滴测重法和毛细管升高法等。拉脱法是一种直接测定法,通过物体的弹性形变(拉伸或扭转)来度量力的大小,如扭力天平法、焦力称法等。 实验中采用拉脱法测量水与空气界面的表面张力系数。通过实验可以重点学习如下内容:(1)实验方法:测量液体表面张力系数的拉脱法。(2)测量方法:用液体界面张力仪定标测量微小力的方法。(3)数据处理方法:质量标准曲线的绘制方法。(4)仪器调整使用方法:液体界面张力仪的调整使用方法。 [实验内容] 1、整液体界面张力仪水平和零点,达到待测状态。 2、准液体界面张力仪。 (1)金属环上放一块小纸片,仪器调零。包括两个方面的调节:第一,调节刻度盘蜗轮,使零刻度线与游标零线重合,即读数为零;第二,调节调零微调蜗轮,使吊杆臂上的指针与平面反射镜的红线重合。 (2)在小纸片上放质量0.0005kg的砝码,测量金属环单位长度的受力F,即调节刻度盘蜗轮使指针与红线重合时刻度盘的读数。 (3)计算理论值F0=mg/π(d1+d2)。 (4)比较测量值F与理论值F0,如果二者相等,说明校准准确;若不相等,调节两个吊杆臂,保证两臂的长度等值缩短或伸长,使刻度盘上的读数F与理论值F0相等。重复测量几次,直至二者一致为止。 3、测量绘制质量标准曲线。 (1)仪器校准后,放置不同质量m的砝码,记录刻度盘的读数f。 (2)以m为横坐标f为纵坐标绘制质量标准曲线。

水的表面张力测定及影响因素的分析

水的表面张力测定及影响因素的分析 实验目的: 1.掌握表面张力仪的使用方法 2.分析影响水表面张力的因素 实验原理: 白金板法 当感测白金板浸入到被测液体后,白金板周围就会受到表面张力的作用,液体的表面张力会将白金板尽量地往下拉.当液体表面张力及其他相关的力与平衡力达到均衡时,感测白金板就会停止向液体内部浸入.这时候,仪器的平衡感应器就会测量浸入深度,并将它转化为液体的表面张力值.具体测试过程中,白金板法的测试步骤为:(1)将白金板浸入液体内;(2)在浸入状态下,由感应器感测平衡值;(3)将感应到的平衡值转化为表面张力值,并显示出来. 表面张力平衡值 1) 感测白金板的表面张力将远大于液体的表面张力,以便于液体有效润湿白金板及在板上爬升; 2) 液体会在白金板周围形成一个角度的弧形液面; 3) 表面的分子力发生作用,并将白金板往下拉. P = mg + Lγ cosθ –shρg 平衡力= 白金板的重力+ 表面张力总和- 白金板受到的浮力 (向上) (向下) (向上) m : 白金板的重量,g : 重力(9.8N/ Kg) ,L : 白金板的周长,γ: 液体的表面张力 θ: 液体与白金板间的接触角,s : 白金板横切面面积,h : 白金板浸入的深度 ρ: 液体的密度 仪器和试剂 BZY-1型表面张力仪,蒸馏水,NaCl,十二烷基硫酸钠 表面张力仪操作步骤 一、仪器方面 1.测试前应确保主机已经预热30分钟,即在正式测试前先将主机打开30分钟,等表面张

力仪测量系统稳定后即可使用。 2.设定修正值,低粘度为5.0. 3.使用前将吊钩、白金板挂好,按“去皮”归零。 4.每次测定前确保白金板和玻璃皿干净。 在通常情况下用流水清洗再用酒精灯烧白金板,当整个板微红时(20-30s),挂好待用。 5.第一次使用或者使用一段时间可对表面张力仪进行校正: (1)将吊钩和白金板挂好 (2)去“皮重”操作,显示为0.0 (3)按校正,显示“CAL”挂上400mN的标准砝码 (4)10秒钟左右出现“400.0”,听到“嘟”的声音后校正结束。 6.在样品皿中加入测量的液体,将样品放于样品台上。 7.按去皮键,清零处理 8.手动灯暗,自动灯亮,调成自动状态,按上升。 9.测试停止,显示表面张力值。 10.按向下,样品台逐渐下降,白金板脱离样品后,按“停止”键。 11.重复进行测试。 实验步骤 1.溶剂的准备: 配制一定浓度的Nacl溶液和十二烷基硫酸钠溶液 2.分别测定水,NaCl溶液,SDS溶液的表面张力 思考题 1.液体具有表面张力的原因是什么? 2.根据所测表面张力的大小,分析产生的原因。

最新常用溶剂的性质

常用溶剂的性质

常用溶剂的性质 常用溶剂的性质 常用溶剂的极性顺序:水(最大) >甲酰胺>乙腈>甲醇>乙醇>丙醇>丙酮>二氧六环>四氢呋喃>甲乙酮>正丁醇>乙酸乙酯>乙醚>异丙醚>二氯甲烷>氯仿>溴乙烷>苯>四氯化碳>二硫化碳>环己烷>己烷>煤油(最小)。 甲酰胺 分子式HCONH2,透明油状液体,略有氨臭,具有吸湿性,可燃。能与水和乙醇混溶,微溶于苯、三氯甲烷和乙醚。相对密度1.133(20/4℃)。沸点210℃。熔点2.55℃。闪点175℃。折射率nD(25℃)1.4468。燃点>500℃。粘度(20℃)2.926mPa?s。 毒性本品低毒。对皮肤和粘膜有暂时刺激性。小鼠经口LD50大于 1000mg/kg。 乙腈;甲基氰 结构式CH3CN。分子量41.05。无色透明液体,有醚的气味。相对密度(20℃ /4℃)1. 7822,凝固点-43.8℃,沸点81.6℃、闪点5.6℃。折射率 1.3441.粘度(20℃)0.35mPa?s,表面张力(20℃)19.10×10-3N/m,临界温度274.7℃,临界压力4.83MPa。能与水、甲醇、醋酸甲酯、醋酸乙酯、丙酮、乙醚、氯仿、四氯化碳、氯乙烯以及各种不饱和烃相混溶。与水形成共沸混合物。易燃,爆炸极限3.0%-16%(vol)。有毒人LD503800mg/kg。空气中最高容许浓度3mg/m3。贮存阴凉、通风、干燥的库房内,远离火种、热源,防止日光直射。

甲醇 结构式为CH3OH,分子量32.04。无色澄清易挥发液体,相对密度(20℃ /4℃)0.7914,凝固点-97.49℃,沸点64.5℃.闪点(开口)16℃,燃点470℃,折射率1.3285,表面张力22.55×10-3N/m,蒸气压(20 ℃)12.265kPa,蒸气相对密度1.11,粘度(20℃)0.5945mPa?s,溶解度参数δ=14.8,能与水、乙醇、乙醚、丙酮、苯、氯仿等有机溶剂混溶,甲醇对金属特别是黄铜有轻微的腐蚀性。易燃,燃烧时有无光的谈蓝色火焰。蒸气能与空气形成爆炸混合物.爆炸极限6.0%-36.5%(vol)。纯品略带乙醇味,粗品刺鼻难闻。有毒。饮用7-8g可导致失明,饮用30-100g就会死亡。空气中甲酵蒸气最高容许浓度5mg/m3。 乙醇 结构式为C2H5OH,分子量46.07。无色透明液体,有酒的醉香气味,也有刺激性的辛辣昧。工业乙醇含量为95%,相对密度(20℃/4℃)0.793。凝固点-114℃,沸点78.32℃,闪点(开口)16℃,燃点390-430 ℃.折射率1.3614,粘度(20℃)1.41mPa?s,表面张力(20℃)22.27×10-3N/m,比热容 (20 ℃)2.42kJ/(kgK),蒸气压(20 ℃)5.732kPa,溶解度参数δ=12.7。溶于苯、甲苯。与水、甲醇、乙醚、醋酸、氯仿任意比例混溶。能溶解许多有机化合物和若干无机化合物。与铬酸、次氯酸钙、过氧化氢、硝酸、硝酸铂、过氮酸盐及氧化剂反应剧烈,爆炸极限4.3%-19.0%(vol)。具有吸湿性,与水形成共沸混合物。微毒,有麻醉性,饮入乙醇中毒剂量75-80g。致死剂量为250-500g。空气中最高容许浓度1880mg/m3。

相关主题
文本预览
相关文档 最新文档