当前位置:文档之家› 加热炉温度控制系统设计与仿真研究

加热炉温度控制系统设计与仿真研究

内蒙古科技大学

本科生毕业设计说明书(毕业论文)

题目:加热炉温度控制系统设计与

仿真研究

学生姓名:潘凯

学号:200440503222

专业:测控技术与仪器

班级:测控04-2班

指导教师:闫俊红

加热炉温度控制系统设计与仿真研究

摘要

在钢铁企业中,为了将钢坯加热到轧制所规定的工艺要求,必然地要求对加热炉内的温度进行有效的控制,使之保持在某一特定的范围内。而温度的维持又要求燃料在炉内稳定地燃烧。加热炉燃烧过程是受随机因素干扰的,具有大惯性、纯滞后的非线性过程。

本设计针对加热炉燃烧控制系统,主要介绍的控制方案有单回路控制系统、串级比值控制系统、单交叉限幅控制系统、双交叉限幅控制系统,并对每一种控制方案进行了理论分析。运用MATLAB软件对温度控制系统进行了较为全面的仿真和性能分析。通过分析比较可以得出结论,双交叉限幅对加热炉温度的控制优于其它的控制方案。双交叉限幅的炉温控制系统使煤气流量和空气流量相互限制,既防止了燃烧中冒黑烟,也防止了空气过剩,达到控制加热炉温度,提高煤气燃烧率,避免环境污染等目的。

关键词:加热炉;单交叉限幅控制;双交叉限幅控制;MATLAB仿真

Temperature Control of Heating Furnace System Design and

Simulink Study

Abstract

In the enterprises where producing iron and steel, in order to heat up billet to the technological requirements of rolling, the temperature inside the furnace must be controlled effectively so that it remains in a specific range. Maintaining the temperature needs the stable burning of fuel inside the furnace. Furnace combustion process is a non-linear process which is subject to the random interference, great inertia and the pure time delay.

The design for the furnace combustion control system is mainly on the control of a single-loop control programme, the ratio of cascade control system, control system limiting unilateral, bilateral limiting control system, and analyses each of the control programme on theory. Using MATLAB software makes a more comprehensive simulation and performance analysis on the temperature control system. Through analysis and comparison we can conclude that bilateral limiting control system is superior to others in the furnace temperature control. The temperature control system of bilateral limiting control system makes gas flow and air flow restrict on each other, which not only prevent the burning of black smoke, but also prevent the excess air, to reach the purposes of controlling the furnace temperature, enhancing the rate of combustion gas and avoiding pollution and others.

Key words: furnace; single-limiting control; bilateral-limiting control; MA TLAB Simulation

目录

摘要......................................................................................................................................... I Abstract ......................................................................................................................................II 第一章绪论 (1)

1.1 概述 (1)

1.2 国内现状 (2)

1.3 本设计的研究内容 (2)

第二章加热炉工艺简介 (3)

2.1 加热炉的组成 (3)

2.2 加热炉的温度加热方式 (3)

2.3 加热炉工艺流程 (3)

2.4 加热炉温度控制要求 (5)

2.4.1 燃烧系统 (6)

2.4.2 炉膛负压 (7)

2.5 空燃比 (8)

第三章加热炉的温度控制系统 (10)

3.1 单闭环控制系统 (11)

3.2 炉膛负压控制系统 (12)

3.3 串级比值燃烧控制系统 (13)

3.4 单交叉限幅燃烧控制系统 (15)

3.4.1 单交叉限幅燃烧控制系统工作原理 (15)

3.4.2 单交叉限幅燃烧控制系统特点 (17)

3.5 双交叉限幅燃烧控制系统 (17)

3.5.1 双交叉限幅燃烧控制原理图 (17)

3.5.2 双交叉限幅燃烧控制系统的工作原理 (18)

3.5.3 双交叉限幅燃烧控制特点 (20)

第四章加热炉温度控制系统仿真 (23)

4.1 对象模型的建立 (23)

4.2 系统各装置数学模型的建立 (24)

4.3 仿真软件简介 (26)

4.4 加热炉炉温控制系统仿真结果分析 (27)

4.4.1 炉温单回路控制仿真 (27)

4.4.2 燃料空气串级比值控制仿真 (31)

4.4.3 单交叉限幅控制仿真 (34)

4.4.4 双交叉限幅控制仿真 (36)

4.5 总结 (38)

第五章系统的检测变送装置及正反作用 (39)

5.1 检测变送 (39)

5.1.1 差压式流量计 (39)

5.1.2 热电偶 (39)

5.2 系统仪表正反作用的确定 (40)

参考文献 (41)

致谢 (42)

第一章绪论

1.1 概述

加热炉是热轧生产过程的重要热工设备,其能耗占到钢铁工业总能耗的25%。它的主要作用是提高钢坯的塑性,降低变形抗力,以满足轧制工艺的要求。其温度控制性能直接影响到加热炉的能耗和最终钢材产品质量、钢坯成材率、轧制设备寿命以及整个轧线的有效作业率。

钢坯在轧前进行加热,是钢坯在热加工过程中一个必须的环节。对轧钢加热炉而言,加热的主要目的就是提高钢坯的塑性,降低变形抗力。

钢坯加热应满足下列要求:

(1)加热温度应严格控制在规定的温度范围,防止产生加热缺陷。钢坯加热应当保证在轧制全部过程都具有足够的可塑性,满足生产要求,但并非说钢坯加热温度越高越好,而应有一定的限度,过高的加热温度可能产生废品和浪费能源。

(2)加热制度必须满足不同钢种、不同断面、不同形状的钢坯在具体条件下合理加热。

(3)钢坯加热温度应在长度、宽度和断面上均匀一致。

钢坯加热温度是指钢坯在加热炉内加热完毕出炉时的表面温度。确定钢坯加热温度不仅要根据钢种的性质而且还要考虑到加工的要求,以获得最佳的塑性,最小的变形抗力,从而有利于提高轧制的产量、质量、降低能耗和设备磨损。

锻造加热炉必须保证1250℃以上的炉温。这种炉在以发热量低于1300千焦/米3的煤气或发热量低于5000千焦/千克的煤为燃料时,将难于甚至不能达到需要炉温,这时可对煤气和空气进行预热。例如:煤气发热量为1200千焦/米3,仅能达到约1200℃的炉温,而将空气预热到400℃时,则可达到约1320℃的炉温。

加热炉的离炉烟气带走的热量约占供入炉内热量的50~60%。利用这部分热量预热空气和煤气是节约燃料的有效方法。燃料节约百分数与离炉烟气温度成正比,离炉烟气温度越高,则燃料节约百分数越大。例如:燃烧发生炉煤气的炉子,同样将空气预热到500℃,间断式加热炉的离炉烟气温度为1200℃,燃料节约达30%;连续式加热炉的离炉烟气温度为900℃,燃料节约则为23%。

1.2 国内现状

我国从80年代初开始进入加热炉计算机控制系统研究阶段。就国内来说,我国钢铁企业现有轧钢炉窖近千座,其中加热炉700多座。目前,国内大多数加热炉的计算机控制水平很低,虽然引进了一些先进的控制系统和设备,但绝大部分加热炉计算机控制系统仍然处在计算机过程控制的水平上,甚至还有少数加热炉由人工操作,其加热质量和能耗与国外同行相比相距甚远。在理论研究方面,近年来,国内对加热炉数学模型的研究越来越活跃起来,我国的科学工作者进行了大量的卓有成效的研究工作,取得了一些研究成果。有很多学者,对钢坯升温的数学模型进行了研究,还有学者将燃料消耗与钢温联系起来,构成燃料消耗最低的真实目标函数,从而可以运用最优升温曲线。

1.3 本设计的研究内容

本设计源于三段式推钢侧出加热炉,燃料采用高炉焦炉混合煤气。在参照相关理论的基础之上,设计了该加热炉控制系统,包括加热炉内的加热炉串级比值控制、单交叉限幅、双交叉限幅燃烧控制,很好地抑制了处于副环(煤气热值和压力的波动、生产率的改变及炉内参数的变化等)的干扰因素对加热炉运行的影响;提高了炉温控制的快速性,实现了加热炉燃烧过程的控制。

本人在阅读了大量的文献资料的基础上,对加热炉相关工艺进行了深入的了解,分析了加热炉控制系统的难点。在现有几种燃烧控制方法的基础上,提出了双边限幅控制,使系统性能得到了极大的改善。运用MATLAB软件对温度控制系统进行了较为全面的仿真和性能分析。

第二章加热炉工艺简介

2.1 加热炉的组成

加热炉由以下几个基本部分构成:炉膛与炉衬、装出料设备、燃料系统、供风系统、排烟系统、冷却系统、电子计算机控制系统、余热利用装置、检测及调节装置等。

2.2 加热炉的温度加热方式

加热炉的温度加热方式大体分为:一段式加热方式、两段式加热方式、三段式及多段式加热方式。

三段式加热方式是比较完善的加热制度,它是把钢坯放在三个温度条件不同的区域内加热,依次是:预热段、加热段、均热段。钢坯首先在低温区域进行预热,这时加热速度比较慢,温度应力小,不会造成危险。当钢坯温度超过500℃~600℃以后,进入塑性范围,这时就可以快速加热,直到表面温度快速升高到出炉所要求的温度。加热期结束时,钢坯断面上还有较大的温差,需要进入均热期进行均热,此时钢坯表面温度不再升高,而使中心温度逐渐上升,缩小断面上的温度差。

2.3 加热炉工艺流程

加热炉的作用是将钢坯加热到轧制工艺要求的温度[1],在此温度下进行轧制既能保证燃料的合理利用又能使轧制力在正常范围内。下图为加热炉结构简图:

图2.1加热炉结构简图

加热炉为三段式加热炉,沿炉长方向分为预热段、II加热段、I加热段和均热段,如上图所示。预热段主要是依靠炉内尾气余热来预热装炉钢坯,从而提高燃料的利用率。为了把钢坯加热到目标温度,加热炉以高炉焦炉混合煤气为燃料,分成五个控制区域对加热炉的燃烧过程和炉温进行控制,即II 加热段上区,并将I 加热段和均热段各分成上、下两个区域,每个区域单独控制,分别设置有热电偶温度传感器,空气流量控制器、煤气流量控制器,对每段的炉温以及燃烧状况进行实时监控,各控制器的设定值可用手动方式,亦可根据不同规格、材质的钢坯自动设定,预热段内由于没有设置烧嘴而不参与控制。

三段式加热炉的供热点一般设在均热段端部和侧部,加热段上方和下方的端部和侧部。两面加热可消除坯料沿厚度方向的温度差,这对提高产品质量是有利的。为了使加热均匀,每一个段上的燃烧嘴越密集越好。

加热炉难以用严格的数学表达式描述它的特性,是具有大惯性、大滞后和严重非线性等特性的对象。其结构复杂,受许多干扰因素的影响,燃料的发热值及残氧又很难在线准确测量,因此一般线性调节器不能满足对象及工艺控制的要求。

在加热炉工作时,钢坯被整齐排列在加热炉内,并在推钢机的推动下不断地从炉尾推入炉膛,首先进入预热段,预热段主要是依靠加热段和均热段排出的高温烟气来缓慢加热装炉钢坯,从而提高燃料的利用率。这样钢坯开始升温不大,温度应力小,不会造成裂纹和断裂;钢坯运行到加热二段时,钢坯的中心温度已

超过500℃,进入塑性范围,此时快速加热钢坯使钢坯表面温度迅速升高到出炉温度;在均热段钢坯表面温度不再升高,断面温差逐步减小。这样,钢坯经过预热、加热、均热三个过程,就被加热成温度适宜、温差较小、可供轧制的热坯。此时钢坯被出钢机构推上滚道,由滚道传送给轧机进行轧制,如图(2.1)所示。根据加热工艺要求,一般每块钢坯在炉内大约停留 2 小时,但具体钢种以及生产要求不同,该时间有差异。

加热炉排烟方式为向上排烟,在炉内燃烧生成的烟气由炉尾总排烟管经地上烟道通到厂外烟囱,再排入大气中。为了提高热利用率,在烟道内安装有带保护管组的金属管状换热器,用来回收部分高温烟气所带走的热量,冷空气通过该处预热再分别进入各加热区域,其间空气的预热温度大约为450℃。在烟道装有一套转动阀门,用来对炉膛压力进行自动调节和控制。同时还要对加热炉上方的汽包水位进行控制,以保证支撑钢坯的炉筋管中的水流量,防止烧坏炉筋管。

为了将钢坯加热到轧制所规定的工艺要求,必然地要求对加热炉内的温度进行有效的控制使之保持在某一特定的范围内,出钢温度过高既不必要且又导致钢坯过多烧损和能源浪费,甚至造成粘钢的严重事故。过低则会使轧机轧制困难而影响到最终产品质量和轧机的使用寿命(或维护周期),而温度的维持又要求燃料在炉内稳定地燃烧。另外,不同种类的钢坯对炉内的气氛有不同的要求(这里气氛主要是指氧化气氛和还原气氛,具体要求视加热工艺要求而定),如果氧化气氛过重,会使被加热金属表面生成较厚的氧化皮,不仅浪费材料而且给除鳞带来困难,严重的还会影响产品表面质量。如果还原气氛过重,不仅白白浪费大量燃料,同时还污染了空气。

2.4 加热炉温度控制要求

燃料的种类很多,分类方法也不尽相同。一般按存在状态来分,有固体燃料、液体燃料和气体燃料三种。随着我国冶金工业设备的日趋完善,技术的逐渐提高和石油工业的全面发展,目前国内大、中型冶金企业的轧钢加热炉已极少使用固体燃料,绝大部分轧钢厂是使用气体或液体燃料。

加热炉常用的气体燃料有天然气、高炉煤气、焦炉煤气、发生炉煤气等。常用的液体燃料主要是重油。

本设计所用加热炉燃料为高炉与焦炉煤气的混合煤气。高炉煤气是高炉炼铁

的副产品,它主要由可燃成分CO 、H 2、CH 4和不可燃成分N 2、CO 2组成。由于

含有大量不可燃成分,约占气体体积的60%~70%,所以发热量比较低,通常只有

3350~4200KJ/M 3。高炉煤气由于发热量较低,燃烧温度也低,约1470 ℃,在加

热炉上单独使用困难,往往是与焦炉煤气混合使用。焦炉煤气是炼焦生产的副产

品,它的燃料成份组成是:H 2含量一般超过50%,CH 4含量一般超过25%,其余

是少量的CO 、N 2、CO 2、H 2S 等。由于焦炉煤气的主要可燃成分是高发热量的

H 2和CH 4,所以焦炉煤气的发热量较高,为16000~18800 KJ/M 3。

如果高炉煤气与焦炉煤气的发热量分别为Q 高与Q 焦,要配成发热量为Q 混的

混合煤气,可以用下式计算:

设焦炉煤气在混合煤气中的体积分数为x,则高炉煤气的体积分数为(1-x ),

那么

高焦混)(Q x xQ Q -+=1 (2.1)

整理上式得: 高焦高

混Q Q Q Q x --= (2.2)

采用高炉、焦炉混合煤气不仅合理利用了燃料,而且改善了火焰的性能,它既

克服了焦炉煤气火焰上飘的缺点,同时也可以利用焦炉煤气中碳氢化合物分解产

生的碳粒,在燃烧时可以增强火焰的辐射能力。

2.4.1 燃烧系统

燃烧系统的曲线描述图如下[12]:

图2.2 燃烧系统的曲线描述

上图表示了空气过剩率与燃烧效率及污染之间的关系,可以看出,燃烧系统的质量跟空气过剩率有很大的关系。同时,空气过剩率还可以用空气和燃气的配比,即空燃比来描述。理论空燃比A0为单位体积或质量的燃料完全燃烧所需的空气量,为一个常数。实际空燃比A=实际空气量/煤气量,设μ为剩余空气系数, μ=实际空气量/理论空气量,A /μ= A0,则实际空燃比与空气剩余系数成正比。从上图可看出当μ<1和1≤μ<1.02分别为空气不足燃烧区域和超低空气过剩燃烧区域,在这两个燃烧区中,会有不完全燃烧现象,这样的热损失就比较大,而且从环境污染角度看,由于不完全燃烧,将会产生大量的黑烟,污染大气。但是如果处于高过剩空气燃烧区,即当μ>1.10时,由于过多的过剩空气,不但使出钢时钢坯表面的氧化铁皮增多,影响钢加热质量,而且使烟气中带走了大量的热量,使燃烧系统热效率过低,同时会使氮硫氧化物增加,对环保不利。因此,在实际燃烧系统中,空气过剩率设定在过剩空气燃烧区1.02≤μ≤1.1是最佳的燃烧方案。

2.4.2炉膛负压

炉膛压力对出钢质量有很大影响,只有炉膛压力适当,才能保证燃烧的效果当均热段的炉膛压力过高时,炉膛内的热气从炉膛口往外喷,会造成很大一部分热

损失。均热段的炉膛压力也不能过低,尤其是当出现负炉压时,冷空气通过炉门、

炉衬裂缝以及其它开口进入炉内,这些漏入的冷空气不仅会降低炉膛温度,而且

由于其必须被加热到炉温后才能排除,这样造成了燃烧系统的额外负担并浪费大

量燃料,且给炉膛温度控制系统带来很大的麻烦,是绝对不允许的。可见,这两

种情况对炉内热工过程均不利。从工艺设计上,烟道口的排烟阀功能是用来调节

炉膛压力的,因此,我们要求,在正常生产时,烟道阀门的开度大小适当。而在

炉内压力发生波动时,根据炉膛压力检测结果,改变炉压调节器的输出,即通过

烟道阀门开度的大小,改变排烟量来获得稳定的炉膛压力,从而使炉膛压力稳定

在设定值上,以维持炉内微正压。

对于炉膛压力,送风总管压力以及汽包水位的控制,由于被控对象单一,所以

采用单回路 PID 控制就能达到较好的效果。

2.5 空燃比

燃烧过程是燃料的氧化过程,当燃料燃烧时,燃烧产物连同其他可能存在的蒸

汽都被提高到火焰温度,火焰温度的高低取决于燃料是否完全燃烧,是否发出最

大的热效率,故需要空气过量。同时,从安全角度考虑,空气不足也会使燃料在

炉子中聚集起来,而一点燃就可能发生爆炸,因此,燃烧过程一般都是在空气过

量的情况下进行的。

为了使燃料充分燃烧,必须供给足够的空气,即保证一定的剩余空气系数μ或

空燃比r [6]。它们的定义分别为: f

a F A F 0==理论空气量实际空气量μ (2.3) max max

f f a a

F F F F r = (2.4)

可知空燃比r 与剩余空气系数μ的关系为: μβ=?==max

max 00max max

a f f a f f a a

F F A F A F F F F F r (2.5)

0A 为单位体积或质量的燃料完全燃烧所需要的理论空气量

a F 和max a F 分别为空气流量的测量值和最大值

f F 和max f F 分别为燃料流量的测量值和最大值

为理论空气修正系数

第三章加热炉的温度控制系统

加热炉的温度控制一共分为五部分,每一部分单独设置一个串级系统来实现炉膛温度的自动控制。在系统中,炉温控制器为主控制器,它的输出作为副控制器即燃烧控制器的设定值,通过燃烧控制器去决定煤气阀门和空气阀门的开度。而煤气压力波动等变化剧烈的扰动包含在副回路当中,利用副回路的优良动态性能来抑制这些扰动对炉膛温度的影响。在稳定状态下,炉温控制器和燃烧控制器的输出都处于相对稳定值,煤气、空气阀门的开度也保持不变。当稳定状态被破坏时,炉温控制和燃烧控制的串级控制开始作用。对于加热炉温度的影响主要有以下两种干扰:

1.煤气压力波动。当煤气压力发生波动时,流量会相应发生变化。在初始阶段,由于煤气流量的变化不会马上影响到炉温,因此,炉温控制器的输出暂时不变,即煤气流量的设定值不变。由于误差的产生,煤气流量控制器发生作用,经过副回路的调节作用,会大大削弱它对炉温的影响,而此时炉温控制器开始工作,不断改变副控制器的设定值,在主控制器和副控制器的共同作用下,炉温将很快恢复到设定值。

2.炉温变化。当炉温降低时,温度控制器开始动作,控制输出量增大,即煤气流量设定值增大,而此时煤气实际流量没有变化,煤气流量控制器输出增大,阀门增大开度,炉温逐渐升高,直到重新恢复设定值。可见,串级控制系统对于加热炉这样具有大惯性、多扰动等特点的过程,是一种很好的解决方案。

对于定空燃比(燃料热值一定)的燃烧控制系统,概括起来主要有以下几种炉温控制方式:

(1)单回路控制

单回路控制是最简单的控制方式,通过炉温的变化直接调节煤气流量。

(2)串级控制

串级控制中,空气和煤气并行,温度回路的输出值作为煤气、空气回路的设定值。

(3)单交叉限幅控制

单交叉限幅控制可以保证在动态过程中,空气量比燃料量富裕,不会产生冒黑烟现象,但由于对空气量的上限没有限制,因此排烟热损失较大。

(4)双交叉限幅控制

双交叉限幅控制的特点是当热负荷增加时,空气量设定值先增加,煤气量设定值后增加,防止冒黑烟;当热负荷降低时,煤气量设定值先降低,空气量设定值后降低,减少烟气热损失;当空气回路出现故障时,煤气自动切断,避免危险。双交叉算法在动态调节时能够获得合理的空燃比,但响应速度慢。

双叉限幅控制的特点是在单交叉的基础上增加一个最大选择器和一个最小选择器,其目的是保证当炉温低于设定值,需要增加燃料流量时空气先行;而当炉温高于设定值,需要减少燃料流量时燃料先行,以防止冒黑烟。该方法己经广泛应用于工业燃烧控制中,它能在动态过程中保证空燃比在规定范围内,从而使燃烧过程最佳,节约能量,减少环境污染。

3.1 单闭环控制系统

加热炉单回路温度控制系统框图如下[2]:

图3.1 单回路控制系统方框图

采用此系统,在平衡状态下如果炉温突然上升,那么此回路将控制煤气阀和空气阀关小,使温度降回给定值,同样如果炉温突然下降,回路又会控制煤气阀和空气阀开大,使温度回升至给定值。这个控制方案只是针对煤气和空气的压力稳定的情况,当煤气压力变大时在阀门开度不变的情况下会导致煤气流量的增大,从而导致总热值的上升,影响炉温。而由于炉温控制的大惯性,要过很长的时间,炉温检测装置才会有反应。

PID调节器将来自变送器的测量值与给定值相比较后产生的偏差进行比例、积分、微分(PID)运算,并输出统一标准信号,去控制执行机构的动作,以实现对温度、压力、流量、液位及其他工艺变量的自动控制。

所谓PID 控制,就是利用比例、积分和微分三者配合对测量参数的偏差进行运算确定输出量,对被控对象进行控制的方法。当P、I、D 三个参数达到最佳系数组合,PID 的控制效果很好。

控制器参数整定的方法很多,归结起来可以分为两大类[7]:一类是理论计算方法,另一类是工程整定方法。本设计主要利用工程整定方法进行控制器参数整定,工程整定方法有临界比例度法、衰减曲线法和反应曲线法。

(1)临界比例度法在系统闭环情况下,将控制器的积分时间放到最大,微分时间放到最小,比例度放到100%,然后使比例度由大往小逐步改变,直到过渡过程出现不衰减的等幅振荡为止。此时的比例度叫临界比例度,临界振荡的周期则称临界周期。

(2)衰减曲线法此法与临界比例度法有些类似。不同的是让过渡过程最终呈现4:1衰减振荡为止。此时的比例度(δs)和振荡周期(T s)即是我们需要的。因此,在纯比例情况下,系统不会出现等幅振荡,临界比例度法就无法应用,而衰减曲线法在此种情况下也同样能用。因此衰减曲线法应用较为广泛,本设计也将使用该方法对系统进行整定。对系统进行整定,用衰减曲线法4:1衰减振荡时,控制器参数经验公式如图:

表3.1 控制器参数经验公式

P PI PID

δs

1.2δs

0.8δs

δ%

0.5Ts

0.3Ts

-

T i/min

控制器类型

控制器参数

T D/min

-

-

0.1Ts 3.2 炉膛负压控制系统

图3.2炉膛负压控制系统

在炉膛负压控制系统中,PID控制器通过对烟道阀开度大小的控制,从而达到了控制炉膛压力的目的。

送风总管压力也采用单回路PID控制系统,使烧嘴喷出的煤气和空气有一定的速度。供风压力必须和当前煤气压力相匹配,以提高阀门调节的灵敏度。若煤气压力过低,必须相应降低供风压力,使得空气阀门和煤气阀门调节行程大致相同,否则,空气压力过高,空气阀门的微小动作都会导致剩余空气过多。反之,若煤气压力过高,也要相应提高供风压力,使得流量的调节更为准确,以免在调节过程中出现黑烟。

3.3 串级比值燃烧控制系统

为了保证燃料与空气有一定的配比关系,最常用的方案之一是串级比值燃烧控制系统,其原理是空气流量和煤气流量的设定值成简单的比值关系。

1

2

图3.3 串级比值控制系统

加热炉燃烧过程中,正常情况下,煤气和空气应该有一定的比例。焦炉煤气的空燃比大约在4:1左右,高炉煤气的空燃比大约在1.05:1左右,转炉煤气的空燃比大约在1.1:1左右,如果煤气过量,会浪费能源,同时产生冒黑烟现象,产生环境污染;如果空气过量,不仅温度上不去,而且为了加热多余空气,加热炉

的热负荷会变大,同样也会浪费能源,剩余的热空气随烟气排入大气,会产生大量的NO2、SO2等气体污染环境。

在钢铁生产中用到煤气的地方很多,煤气阀前压力难以稳定,为了克服阀前压力波动,把温度和煤气构成串级控制回路,煤气和空气构成比值控制系统,因此引入加热炉串级比值燃烧控制系统。如图3.3所示。在该图中,加热炉温度控制主调节器的输出直接作为燃料流量副调节器的给定值,同时经过空燃比运算器r运算后,作为空气流量副调节器的给定值。通过调整r,可以改变空气和燃料的配比关系。加热炉的燃料燃烧过程中,不仅要保证稳态情况的剩余空气系数一定,更重要的是在加热炉负荷发生变化的动态情况下,保证剩余空气系数仍保持在合理的范围内。

在串级比值燃烧控制系统中,煤气流量是主动量,空气流量是从动量。在稳定状态下,煤气流量和空气流量以一定的比值定量地进入加热炉中。当炉膛温度受干扰作用,燃烧负荷波动不大时,或工艺上需要升降负荷的时候,炉温控制器的输出一方面输出信号给煤气流量控制器,从而进行煤气流量的控制;另一方面经比值器后作为空气控制器的设定值。煤气和空气串级比值控制系统开始工作:当炉温升高时,在炉温控制器反作用下,其输出减小,即煤气流量设定值减小,同时,炉温控制器的输出经比值器给空气流量的设定值也减小,控制煤气调节阀开度减小;同样空气流量的测量值暂时也没有变化,经空气流量控制器使其输出也减小,相应地控制空气调节阀开度减小。

当炉温降低时,炉温控制器反作用下输出增大,即煤气流量设定值增大,同时,炉温控制器的输出经比值器给空气流量的设定值也增大。此时,煤气流量的测量值暂时没有变化,经煤气流量控制使其输出增大,控制煤气调节阀开度增大;同样空气流量的测量值暂时也没有变化,经空气流量控制器输出也增大,相应地控制空气调节阀开度增大。

综上,不论炉温升高还是降低,通过煤气流量和空气流量的串级比值控制系统的控制,可以实现较好的炉温控制。但是对于钢铁厂中的加热炉不仅煤气压力波动大,且燃料热值也在发生波动,在动态过程中,实际空燃比会产生很大的波动,空气过剩系数很容易进入黑烟区,因此,无法进行抑制,效果很差[12]。

在燃烧负荷发生急剧变化的情况下,由于控制空气流动管道与煤气流动管道特

性间的差异,各阀门的响应速度和系统的响应速度不同,会带来缺氧燃烧现象和

过氧燃烧现象的发生,此时若仍采用串级比值燃烧控制系统将无法保证燃料与空

气之间的最佳动态配比关系,因此,引入单交叉限幅燃烧控制系统。

3.4 单交叉限幅燃烧控制系统

3.4.1 单交叉限幅燃烧控制系统工作原理

图3.4单交叉限幅燃烧控制系统图

单交叉限幅燃烧控制系统是在串级比值燃烧控制系统的基础上增加了高值选

择器HS ,低值选择器LS ,正偏置+a 1(%)和负偏置-a 2(%),用来实现燃料和空气流

量之间的相互制约,防止剩余空气系数μ低于其给定值μs 以下的某一允许区间,

即μ≥(μs - a 1),并保证燃料流量F f 低于冒黑烟界限,以及空气流量F a 高于冒黑

烟界限。

单交叉限幅燃烧控制系统的工作原理如下:

在燃料流量调节回路中,炉温调节器TC 的输出信号A ,与根据空气流量测量

值F a 算出的所需燃料流量加上偏置a 1 (%)得到的信号B

r

F a B a ?+=)1001(1 (3.1) 相比较,由低值选择器LS 来选通A 、B 之一作为燃料流量调节器F f C 的给定

值S f 。在空气流量调节回路中,炉温调节器TC 的输出信号A ,与燃料流量测量

值F f 减去偏置a 2(%)得到的信号D

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

加热炉出口温度控制系统设计

吉林建筑大学城建学院课程设计报告 题目名称加热炉出口温度控制系统设计院(系)电气工程及其自动化 课程名称过程控制工程课程设计 班级电气13-1 学号 学生姓名 指导教师 起止日期2016.6.20-2016.7.1 成绩

目录 摘要 (Ⅰ) ABSTRACT (Ⅱ) 第1章绪论 (1) 1.1 设计目的 (1) 1.2 设计任务 (1) 1.3加热炉温度控制系统简介 (1) 1.4加热炉温度控制系统的发展 (2) 第2章对象模型建立 (4) 2.1 建立数学模型 (4) 2.2控制系统分析 (5) 第3章系统设备选型 (6) 3.1 测量变送器和传感器的选择 (6) 3.2执行器的选择 (6) 3.3控制器的选择 (6) 第4章控制器参数整定及Simulink仿真 (9) 4.1控制器参数整定 (9) 4.2Simulink仿真 (11) 结论 (12) 致谢 (13) 参考文献 (14)

摘要 随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。随着网络技术的发展和整个工厂完全实现两级自动化管理,在过程级上通过相应的终端了解任何一个设备或任何一个装置的控制情况以及生产情况。过程控制系统在加热炉系统中得到广泛的应用,它是加热炉控制系统的重要部分,是对以及控制系统的一个总领和扩充。现代加热炉的生产过程可以实现高度的过程控制,以保证在加热过程中温度的准确控制,这就为工业生产提供了有利条件。加热炉是工业生产中的一个重要装置,它的任务是把原料加热到一定温度,以保证下道工序的顺利进行。因此加热炉的温度控制起着举足轻重的作用。 关键词:加热炉;过程控制系统;温度控制

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

加热炉温度控制系统

目录 一、工艺介绍 (2) 二、功能的设计 (4) 三、实现的情况以及效果 (6)

一、工艺介绍 在钢厂中轧钢车间在对工件进行轧制前需要将工件加热到一定的温度,如图1表示其中一个加热段的温度控制系统。在图中采用了6台设有断偶报警的温度变送器、3台高值选择器、1台加法器、1台PID调节器和1台电器转换器组成系统。 利用阶跃响应便识的,以控制电流为输入、加热炉温度为输出的系统的传递函数为: 温度测量与变送器的传递函数为: 由于,因此,上式中可简化为: 在实际的设计控制系统时,首先采用了常规PID控制系统,但控制响应超调量较大,不能满足控制要求。

图1 对如图1所示的加热炉多点平均温度系统采用可变增益自适应纯滞后补偿进行仿真。 加入补偿环节后,PID调节器所控制的对象包括原来的对象和补偿环节两部分,于是等效对象的特性G(s)可以写成: 即补偿后的广义被控对象不在含有纯延迟环节,所以,采用纯滞后的对象特性比原来的对象容易控制的多。 但实际应用中发现,加热锅炉由于使用时间长短不同及处理工件数量不同,会引起特性变化,导致补偿模型精度降低,从而使纯滞后补偿特性变差,很难满足实际生产的稳定控制要求。

为改善调节效果,在控制线路中加入两个非线性单元——除法器与乘法器,构成如图所示的加热炉多点温度控制纯滞后自适应控制系统。 二、功能的设计 1、系统辨识 经辨识的被控对象模型为: 所以,带可变增益的自适应补偿控制结构框图如图

图2 加热炉多点温度控制纯滞后自适应补偿系统控制框图2、无调节器的开环系统稳定性分析 理想情况下,无调节器的开环传递函数为: 上式中所示广义被控对象的Bode图如下图所示。 图3

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

管式加热炉温度控制系统设计

过程控制系统课程设计报告书管式加热炉温度控制系统设计 学院:自动化 班级:15级自动化4班 指导老师:陈刚 组员: 重庆大学自动化学院 2019年1月

任务分配 过程控制系统课程设计——管式加热炉温度控制系统的设计

目录 任务分配 (2) 过程控制系统课程设计——管式加热炉温度控制系统的设计 (2) 1摘要 (4) 2模型简介 (4) 2.1背景 (4) 2.2模型假设 (4) 2.3系统扰动因素 (5) 3控制方案 (5) 3.1传统PID控制方法 (5) 3.2串级控制系统 (6) 3.3 方案选择 (7) 4串级控制器的设计 (7) 4.1主副控制器设计 (7) 4.1.1主、副回路的设计原则 (7) 4.1.2主、副调节器的选型 (7) 4.1.3主、副调节器调节规律的选择作用 (8) 4.2串级控制器的参数整定 (8) 5系统的仿真和改进 (9) 5.1串级控制系统仿真 (9) 5.2基于Smith预估计补偿器的串级控制系统 (11) 六.总结 (14) 七.参考文献 (15)

1摘要 当今世界,随着市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,作为工业自动化重要分支的过程控制的任务也愈来愈重,无论是在大规模的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起十分重要的作用。为了能将课程所学理论知识初步尝试应用于实践。 本设计针对管式加热炉系统的控制问题展开了研究。通过将实际加热炉模型化,通过实验法建立锅炉的数学模型。针对物料温度控制问题,在对比了简单的单回路PID控制方法、串级控制两种方法的优劣性后,选择了串级控制的方法控制物料温度。综合应用过程控制理论以及MATLAB仿真技术,通过经验模型及参数整定,得到系统响应曲线。通过反复实验,调整参数,使控制效果比较理想。 关键词:管式加热炉系统、串级控制、MATLAB仿真 2模型简介 2.1背景 管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。 2.2模型假设 管式加热炉的主要任务是把原质油或重油加热到一定的温度,保证下一道工序正常进行。假设有一个加热炉系统,系统参数设定为: 1.物料以恒定速度进入管道,流速为10L/s,管道直径为10cm,不考虑物料浓度变化、压力变化等其他条件。 2.物料在加热炉内的长度为L=5m,假定物料受热均匀,并在t=10s后上升至指定温度。 3.假定燃气混合浓度不变,物料温度上升只受燃料流量影响。 4.不考虑环境温度、燃料值等影响,主要考虑燃料流量的扰动。

电阻加热炉温度控制

电阻加热炉温度控制精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

微型计算机控制技术 课程设计 ----电阻加热炉温度控制 学院:信息工程学院 专业班级:自动化0703班 姓名:唐凯 学号:07001139

目录 一、摘要 二、总体方案设计 1、设计内容及要求 2、工艺要求 3、要求实现的系统基本功能 4、对象分析 5、系统功能设计 三、硬件的设计和实现 四、数字控制器的设计) 五、软件设计) 1、系统程序流程图 2、程序清单 六、完整的系统电路图 七、系统调试 八、设计总结 九、参考文献

一、摘要 温度是工业对象中主要的被控参数之一。特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID 控制或其他纯滞后补偿算法。 为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。 因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。 二、总体方案设计 设计任务 用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。 1、设计内容及要求 电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

加热炉出口温度与炉膛温度串级控制系统设计

第一章系统分析与控制方案的确立 1.系统分析 图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。 T1出口 支路1 炉膛 支路2 燃料 被加热物料 图1.1加热炉出口温度系统 由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。 2.串级控制系统的设计 加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。

图 1.2 加热炉出口温度串级控制系统结构图 串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设 定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的 过渡过程。由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如 图 1.3 所示。 图 1.3 加热炉出口温度串级控制系统结构方框图 (1) 主被控参数的选择 应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量 的参数。在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系 统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料 温度维持在某给定值上下。如果其调节欠妥当,会造成整个系统控制设计的失 败。 (2) 副被控制参数的选择 从整个系统来看,加热炉的炉膛温度虽然不是我们要控制的直接目标,但 是炉膛温度会很大程度上影响出口物料的温度,因此我们选择炉膛温度为副被 控参数。 (3) 控制器的选择 主控制器的选择:主被控变量是工艺操作的主要指标(温度),允许波动的 度 副控制器 调节阀 主控制器 主检测、变送仪表 副检测、变送仪表 炉膛 出口温度

某加热炉温度控制 过程控制

学号 天津城建大学 过程控制课程设计 设计说明书 某加热炉温度控制 起止日期:2014 年6 月23 日至2014 年6 月27 日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2014年6月27 日

天津城建大学 课程设计任务书 2013 -2014学年第2学期 控制与机械工程学院电气工程及其自动化专业班级13电气11班 姓名学号 课程设计名称:过程控制 设计题目:某加热炉温度控制 完成期限:自2014 年6 月23 日至2014 年 6 月27 日共1 周设计依据、要求及主要内容: 一、设计任务 某温度过程在阶跃扰动1/ ?=作用下,其温度变化的数据如下: q t h 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要求如下: p (1)根据实验数据选择一定的辨识方法建立对象的数学模型; (2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等);(3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。 二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路

三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日

温度控制系统设计

温度控制系统设计 目录 第一章系统方案论证错误!未指定书签。 总体方案设计错误!未指定书签。 温度传感系统错误!未指定书签。 温度控制系统及系统电源错误!未指定书签。 单片机处理系统(包括数字部分)及温控箱设计错误!未指定书签。 算法原理错误!未指定书签。 第二章重要电路设计错误!未指定书签。 温度采集错误!未指定书签。 温度控制错误!未指定书签。 第三章软件流程错误!未指定书签。 基本控制错误!未指定书签。 控制错误!未指定书签。 时间最优的控制流程图错误!未指定书签。 第四章系统功能及使用方法错误!未指定书签。 温度控制系统的功能错误!未指定书签。 温度控制系统的使用方法错误!未指定书签。 第五章系统测试及结果分析错误!未指定书签。 硬件测试错误!未指定书签。 软件调试错误!未指定书签。 第六章进一步讨论错误!未指定书签。 参考文献错误!未指定书签。 致谢错误!未指定书签。 摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。 关键词:温度控制系统控制单片机 : . : 引言: 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本文设计了以单片机为检测控制中心的温度控制系统。温度控制采用改进的数字控制算法,显示采用静态显示。该系统设计结构简单,按要求有以下功能: ()温度控制范围为°; ()有加热和制冷两种功能 ()指标要求: 超调量小于°;过渡时间小于;静差小于℃;温控精度℃ ()实时显示当前温度值,设定温度值,二者差值和控制量的值。 第一章系统方案论证 总体方案设计 薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送转换器采样、量化,量化后的数据送单片机做进一步处理;

课程设计(论文)-基于PLC的电加热炉温度控制系统设计

第一章绪论 1.1选题背景及意义 加热炉是利用电能来产生蒸汽或热水的装置。因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。而传统的加热炉普遍采用继电器控制。由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。 在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。 1.2国内外研究现状及发展趋势 一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。与欧美、日本,德国等先进国家相比,其差距较大。目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。对于一些过程复杂的,时变温度系统的场合往往束手无策。而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。并且普遍采用自适应控制、模糊控制及计算机技术。 近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及

加热炉温度控制系统设计

过程控制系统课程设计 设计题目加热炉温度控制系统 学生姓名 专业班级自动化 学号 指导老师 2010年12月31日 目录 第1章设计的目的和意义 (2) 第2章控制系统工艺流程及控制要求 (2) 2.1 生产工艺介绍

2.2 控制要求 第3章总体设计方案 (3) 3.1 系统控制方案 3.2 系统结构和控制流程图 第4章控制系统设计 (5) 4.1 系统控制参数确定 4.2 PID调节器设计 第5章控制仪表的选型和配置 (7) 5.1 检测元件 5.2 变送器 5.3 调节器 5.4 执行器 第6章系统控制接线图 (13) 第7章元件清单 (13) 第8章收获和体会 (14) 参考文献 第1章设计的目的和意义 电加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定

性已成为产品质量的决定性因素。对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 这里,给出了一种简单的温度控制系统的实现方案。 第2章控制系统工艺流程及控制要求 2.1 生产工艺介绍 加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。物料被加热后,温度达到生产要求后,进入下一个工艺环节。 加热炉设备主要工艺流程图如图2-1所示。

基于单片机的温度控制系统设计

湖南科技大学潇湘学院 毕业设计(论文) 题目单片机温度控制系统 作者 系部信息与电气工程系 专业电气工程及其自动化 学号 指导教师 二〇一年月日

湖南科技大学学院 毕业设计(论文)任务书 信息与电气工程系电气工程及其自动化教研室 教研室主任:(签名)年月日 学生姓名: 学号: 专业: 电气工程及其自动化 1 设计(论文)题目及专题:单片机温度控制系统 2 学生设计(论文)时间:自年月日开始至年月日止 3 设计(论文)所用资源和参考资料: (1)单片机温度控制系统流程图(2)单片机程序设计基础 (3) protel se 99软件(4) 单片机使用接口技术 (5) 单片机程序设计基础(6)网上有关技术资料 4 设计(论文)应完成的主要内容: (1) 基于单片机温度控制系统的发展及应用 (2) 单片机温度控制系统设计包含的基本内容 (3) 单片机温度控制系统技术 (4) 单片机温度控制系统实现 (5) 全文总结 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: (1) 程序。要求:编译通过,基本能运行。 (2) 毕业论文。要求:正确,规范,通顺。 (3) 可供发表的研究论文(可选)。要求:规范,新意 均需提交电子版和纸质版。 6 发题时间:年月日 指导教师:(签名) 学生:(签名)

湖南科技大学学院 毕业设计(论文)指导人评语 指导人:(签名) 年月日指导人评定成绩:

湖南科技大学学院 毕业设计(论文)评阅人评语 评阅人:(签名) 年月日评阅人评定成绩:

湖南科技大学学院 毕业设计(论文)答辩记录 日期: 学生:学号:班级: 题目: 提交毕业设计(论文)答辩委员会下列材料: 1 设计(论文)说明书共页 2 设计(论文)图纸共页 3 指导人、评阅人评语共页 毕业设计(论文)答辩委员会评语: 答辩委员会主任:(签名) 委员:(签名) (签名) (签名) (签名)答辩成绩: 总评成绩:

单片(加热炉温度控制器)机

本科生课程设计(论文)辽宁工业大学 单片机原理及接口技术课程设计(论文)题目:加热炉温度控制器设计 院(系):电气工程学院 专业班级:电气092 学号: 090303040 学生姓名: 指导教师:(签字) 起止时间:2012.06.24-2012.07.06

课程设计(论文)任务及评语 院(系):电气工程学院 教研室: 电气工程及其自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 学生姓名 专业班级 电气092 课程设计(论文)题目 加热炉温度控制器设计 课程设计(论文)任务 高温加热炉利用煤气加热,通过传感器测量温度,四相5V 、1A 步进电机调节阀门来调节进气量。温度控制范围0~1800℃。 设计任务: 1. CPU 最小系统设计(包括CPU 选择,晶振电路,复位电路) 2. 温度传感器及接口电路设计 3. 步进电机驱动电路设计 4. 程序流程图设计及程序清单编写 技术参数: 1.温度控制范围:0-1800℃ 2.工作电源220V 设计要求: 1、分析系统功能,尽可能降低成本,选择合适的单片机、AD 转换器、输出电路等; 2、应用专业绘图软件绘制硬件电路图和软件流程图; 3、按规定格式,撰写、打印设计说明书一份,其中程序开发要有详细的软件设计说明,详细阐述系统的工作过程,字数应在4000字以上。 进度计划 第1天 查阅收集资料 第2天 总体设计方案的确定 第3-4天 CPU 最小系统设计 第5天 温度传感器及接口电路设计 第6天 步进电机驱动电路设计 第7天 程序流程图设计 第8天 软件编写与调试 第9天 设计说明书完成 第10天 答辩 指导教师评语及成绩 平时: 论文质量: 答辩: 总成绩: 指导教师签字: 年 月 日

管式加热炉温度控制与分析

管式加热炉温度-温度串级控制系统 1设计意义及要求 1.1设计意义 管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。 1.2设计要求 1)本课程设计题目为加热炉温度-温度串级控制系统设计,课程设计时间为2周;学生对选定的设计题目所涉及的生产工艺和控制原理进行介绍,针对具体设计选择相应的控制参数、被控参数以及过程检测控制仪表,并画出控制流程图及控制系统方框图。 2)课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括: ① 目录; ② 摘要; ③ 生产工艺和控制原理介绍; ④ 控制参数和被控参数选择; ⑤ 控制仪表及技术参数; ⑥ 控制流程图及控制系统方框图; ⑦ 总结与展望;(设计过程的总结,还有没有改进和完善的地方); ⑧ 课程设计的心得体会(至少500字); ⑨ 参考文献(不少于5篇); ⑩ 其它必要内容等。 2方案论证 2.1方案选择 管式加热炉加热炉的工作原理如图1所示。要加热的冷物料从左端的管口流入管式加热炉,而燃料从右端的管口流入管式加热炉的燃烧部分,以供热。经加热的物料从右上端的管口流出,物料出口温度1()t θ为被控参数。 图1 管式加热炉工作原理图 分析管式加热炉的工作过程可知,物料出口温度1()t θ受进入管式加热炉的物料初始温度,物料进入的流量(即物料入口的压强),进入管式加热炉的燃料的流量(也即燃料入口压强),燃料的燃烧值等因素的影响。其中物料进入的流量(即物料入口的压强)和进入管式加热炉的燃料的流量(也即燃料入口压强)是影响物料出口温度1()t θ的主要因素。如果采用单回路控制系统,根据操作量的选取原则,我们可以在物料入口处装上一个调节阀,以控制物料进入的流量;对于进入管式加热炉的燃料的流量,可以使它保持某一恒定值。或在燃料的入口处安装一个调节阀,以控制进入管式加热炉的燃料的流量;对于进入管式加热炉的物料的流量,则可以使它保持某一恒定值。而调节阀的开度大小由安装在物料出口处的温度传感器输出的大小间接控制。它虽然结构简单,实现方便;但不符合生产工艺的要求。因为如果将物料的进入流量进行限定后,则日生产总量也被限定。这显然不符合实际的工业生产情况。在此基础上进行一点改进——不对另一个量进行限制。基于对燃料进入量进行控制的管式加热炉单回路温度控制系统原理图如图2 所示。 图2 管式加热炉单回路温度控制系统原理图 如图2所示的单回路温度控制系统初看起来是可行的。而且它的结构简单,所需的器材少,投入小。也符合工业设 物料出口温度1 ()t θ 1T C 物料入口 燃料 物料出口温度1()t θ

温度控制系统设计方案

温度控制系统设计方案 1引言 温度是工业过程控制中主要的被控参数之一,在冶金、化工、建材、食品、石油等工业中,工艺过程所要求的温度的控制效果直接影响着产品的质量。对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测温方法以及对温度的控制方法也将不同,随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。越来越显示出其优越性。 随着集成电路技术的发展,单片微型计算机的功能不断增强,许多高性能的新型机种不断涌现出来。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中广泛应用的器件,在温度控制系统中,单片机更是起到了不可替代的核心作用。在工业生产中,如用于热处理的加热炉、用于融化金属的坩锅电阻炉等,都用到了电阻加热的原理。 鉴于单片机技术应用的广泛性和优越性,温度控制的重要性,因而设计一种较为理想的温度控制系统是非常有价值的。本文就是根据这一思想来展开的。 1.1 系统设计的目的和任务 1.1.1 系统设计的目的 通过本次毕业设计,主要想达到以下目的: 1. 增进对单片机的感性认识,加深对单片机理论方面的理解。 2. 掌握单片机的内部功能模块的应用,如定时器/计数器、中断、片内外存贮器、I/O口等。 3. 了解和掌握单片机应用系统的软硬件设计过程、方法及实现,为以后工作中设计和实现单片机应用系统打下基础。 4. 熟悉闭环控制系统的组成原理及单片机PID算法的实现方法。 1.1.2 系统设计的任务 1.查阅资料,弄清楚所要解决的问题的思路,确定设计方案。 2.系统硬件电路设计。 3.系统相关软件设计。 4.仿真实现温度参数设定、转换、显示等功能。 5.依据对象模型设计控制器参数, 6.系统调试与分析;并依据调试结果予以完善。 1.2毕业设计论文安排 1.论证系统设计方案,设计系统原理图。

加热炉出口温度控制系统的设计

二○一六~二○一七学年第一学期 信息科学与工程学院课程设计报告书 课程名称: 班级: 学号: 姓名: 指导教师: 二○一六年十月

1. 设计题目 加热炉出口温度控制系统的设计 2. 设计任务 图1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。 被加热物料 图1 加热炉出口温度系统 但是,由于炉子时间常数大,而且扰动的因素多,单回路反馈控制系统不能满足工艺对炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。 3. 设计要求 1)绘制加热炉出口温度单回路反馈控制系统结构框图。 2)以加热炉出口温度为主变量,选择滞后较小的炉膛温度的副变量,构成炉出口温度对炉膛温度的串级控制系统,要求绘制该串级控制系统结构图。 3)假设主对象的传递函数为) 2)(1(1)(01++=s s s G ,副对象的传递函数为) 1(1)(02+=s s G ,主、副控制器的传递函数分别为s K s G c c 21)(11+=,22)(c c K s G =,1)()(21==s G s G m m ,请确定主、副控制器的参数(要求写出详细的参数估算过程)。 4)利用simulink 实现单回路系统仿真和串级系统仿真,分别给出系统输出响应曲线。

一.单回路反馈控制系统的设计 单回路反馈控制系统结构框图 原料出口温度T受进入管式加热炉原料的初始温度和进入流量和燃烧值的影响。在原料流量一定的情况下,在燃料入口处安装一个调节阀,控制进入管式加热炉的燃料流量,调节阀的开度大小由原料出口温度值控制,构成管式加热炉的燃料流量,调节阀的开度大小由原料出口温度值控制,构成管式加热炉出口温度单回路反馈控制系统。 二.串级控制系统的设计 单回路控制系统的控制效果较差,很难达到满意的效果。采用串级控制系统,以加热炉出口温度为主变量,选择滞后较小的炉膛温度的副变量,构成炉出口温度对炉膛温度的串级控制系统。 串级控制系统回路的结构框图

加热炉温度控制系统..

第1章绪论 1.1 综述 在人类的生活环境中,温度扮演着极其重要的角色。温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。 在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。 1.2 加热炉温度控制系统的研究现状 随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。单片机温度控制系统是数控系统的一个简单应用,在冶金、化工、建材、机械、食品、石油等各类工业中,广泛使用于加热炉、热处理炉、反应炉等。 温度是工业对象中的一个重要的被控参数。由于炉子的种类不同,因而所使用的燃料和加热方法也不同,例如煤气、天然气、油、电等;由于工艺不同,所需要的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,控制温度的精度也不同,因而对数据采集的精度和所采用的控制算法也不同。 传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。不仅如此,传统的控制方式不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于它主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效

相关主题
文本预览
相关文档 最新文档