当前位置:文档之家› 上水箱液位与进水口流量串级控制实验实验报告

上水箱液位与进水口流量串级控制实验实验报告

上水箱液位与进水口流量串级控制实验实验报告
上水箱液位与进水口流量串级控制实验实验报告

《控制工程实验》实验报告

实验题目:上水箱液位与进水口流量串级控制实验

课程名称:《控制工程实验》

姓名:

学号:

专业:

年级:

院、所:

日期: 2019.04.18

实验三上水箱液位与进水口流量串级控制实验

一、实验目的

1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统的实现过程。

二、实验设备

1. 实验装置对象及控制柜 1套

2. 装有Step7、WinCC等软件的计算机 1台

3. CP5621专用网卡及MPI通讯线各1个

三、实验原理

本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。本实验系统结构图和方框图如图1所示。

四、实验内容与步骤

本实验选择选择上水箱和中水箱串联作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7全开,将中水箱出水阀门F1-10开度开到70%左右、下水箱出水阀门F1-11开度50%左右(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

图1 双容水箱液位串级控制系统

(a)结构图 (b)方框图

1.用 MPI 通讯电缆线将 S7-300PLC 连接到计算机 CP5621 专用网卡,并按照控制柜接线图连接实验系统。

2.接通总电源空气开关,合上单相,打开钥匙开关,给系统上电,将相应旋钮开关打至开,给 S7-300PLC 及电动调节阀上电。

3.打开 Step 7 软件,并打开“S7-300PLC”程序进行下载,然后将S7-300PLC 置于运行状态,然后运行 WinCC 组态环境,打开“S7-300PLC 控制系统”工程,然后进入 WinCC 运行环境,在主菜单中点击“实验十四、上水箱液位与进水口流量串级控制实验”,进入实验十四的监控界面。

4.在上位机监控界面中输出值设置为一个合适的值。

5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少主调节器的输出量,使下水箱的液位平衡于设定值,且中水箱液位也稳定于某一值(此值一般为3~5cm,以免超调过大,水箱断流或溢流)。

6.按经验法或动态特性参数法整定调节器参数,选择 PI 控制规律,并按整定后的 PI 参数进行调节器参数设置。

7.待液位稳定于给定值后,切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰:

(1)突增(或突减)设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面三种仅供参考)

(2)打开阀门F2-1、F2-4(或F2-5),用变频器支路以较小频率给中水箱(或下水箱)打水。(干扰作用在主对象或副对象)(3)将阀F1-5、F1-13开至适当开

度(改变负载);(4)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度;

以上几种干扰均要求扰动量为控制量的 5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面三种干扰方法仍稳定在原设定值),记录此时 PLC 的设定值、输出值和仪表参数,液位的响应过程曲线将如图 2 所示。

8.分别适量改变调节仪的 P 及 I 参数,重复步骤 7,用计算机记录不同参数时系统的阶跃响应曲线。

9.分别用 P、PD、PID 三种控制规律重复步骤 4~8,用计算机记录不同控制规律下系统的阶跃响应曲线。

图 2 上水箱液位响应曲线

五、实验结果

1.画出水箱液位串级控制系统的结构框图。

如图1(a)所示

2.用实验方法确定调节器的相关参数,并写出整定过程。

(1)确定比例系数Kp

先确定比例系数Kp时,首先去掉PID的积分项和微分项,可以令Ti=0、Td=0,使之成为纯比例调节。输入设定为系统允许输出最大值的60%~70%,比例系数Kp由0开始逐渐增大,直至系统出现振荡;再反过来,从此时的比例系数Kp 逐渐减小,直至系统振荡消失。记录此时的比例系数Kp,设定PID的比例系数Kp为当前值的70%~80%。

(2)确定积分时间常数Ti

比例系数Kp确定之后,设定一个较大的积分时间常数Ti,然后逐渐减小Ti,直至系统出现振荡,然后再反过来,逐渐增大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。

(3)确定微分时间常数Td

微分时间常数Td一般不用设定,为0即可,此时PID调节转换为PI调节。如果需要设定,则与确定Kp的方法相同,取不振荡时其值的30%。

(4)系统空载、带载联调

PID参数进行微调,直到满足性能要求。

3.根据扰动分别作用于主、副对象时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能。

在阶跃扰动下,当比例系数较大时,系统的静态误差也较大,这是因为比例系数会加大幅值;在加入微分环节后,系统的动态误差明显减小,但调节时间却延长,这是因为微分具有超前的作用,可以增加系统的稳定度。

4.分析主、副调节器采用不同 PID 参数时对系统性能产生的影响

Ti:为了消除稳态误差,在控制器中必须引入“积分项”,积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样即便误差很小,积分项也会随着时间的增加而增大,他推动控制器的输出增大使稳态误差进一步减小,知道为零,由于积分项的存在会使调节时间增大。因此,PI控制器可使系统在进入稳太后无稳态误差。

Kp:放大误差的幅值。快速抵消T扰的影响,使系统上升时间降低,如果仅有比例环节,系统会存在稳态误差。

Td:自动控制系统在克服误差的调解过程中可能会出现振荡甚至失稳,在控制器中仅引入“比例P”往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,他能预测误差的变化趋势。这样具有比例加微分的控制器,就能够提前十抑制误差的的控制作用等于零,甚至为负值,从而避免了被控量的严重失调。所以对有较大惯性或滞后的被控对象,PD控制器能改善系统在调解过程的动态特性。

六、思考题

1.试述串级控制系统为什么对主扰动(二次扰动)具有很强的抗扰能力?如果副对象的时间常数与主对象的时间常数大小接近时,二次扰动对主控制量的影响是否仍很小,为什么?

答:在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰而且又能改善过程特性。副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提升。如果副对象的时间常数与主对象的时间常数大小接近时。视有可能发生共振现象。使得副环的工作频车处于谐振频率,其相角接近180°,从而使得副环的增益为负。形成正反馈,出现共振现象,二次扰动对主控变的影响将会很大。

2.当一次扰动作用于主对象时,试问由于副回路的存在,系统的动态性能比单回路系统的动态性能有何改进?

答:改进在于:副被控交检测到扰动的影响,并通过副回路的定值控制作用,从而调节操纵变量,使得副被控变量恢复到副设定值,也使得扰动对主被控量的影响减少,副调节器具有“粗调”的作用,主调节器具有“细调”的作用.从而使系统更快趋于稳定,调整时间缩短。并且比较准确的恢复到开始的设定值。

3.串级控制系统投运前需要作好那些准备工作?主、副调节器的正反作用方向如何确定?

答:串级控制系统投运前需要作好以下准备工作:

主副控制器的参数整走好,设好主回路的设定值,同时设置好实验装置各个开关的初始状态。

主、副调节器的正反作用方向设定方法如下。

(1)根据安全运行准则,选择控制阀(执行器)的气开和气关类型;

(2)根据工艺条件确定副被控对的转性。操纵变量增加时。副被控变量增加时,系数为正,反之为负;

(3)根据负反馈准则,确定测控制器的正反作用;

(4)根据工艺条件确定主被控对象的精性。操纵变量增加时,副被控变量增加时,系数为正,反之为负;

(5)根据负反馈准则,确定主控制器的正反作用.

4.为什么本实验中的副调节器为比例(P)调节器?

答:由于副控回路的出要求能快速、准确地现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而喜调节器可采用P调节器

5.改变副调节器的比例度,对串级控制系统的动态和抗扰动性能有何影响,试从理论上给予说明。

答:在一定范围内,副控制器P参数增大,副回路出最大动态偏差增大,振荡和恢复周期更短,振荡更剧烈,使得副控制器的输出更加有利于及时跟踪主控制器的输出,及时调节执行器的输出,从而使得申级控制系统更加有利于及时克服进入副环扰功的影响,提高控制系统的品质,提高抗干扰能力,但P如果过大,会使得副控制器的输出余差增大,导致副控制器根难真实反映主控制器辅出的精确性。

6.评述串级控制系统比单回路控制系统的控制质量高的原因?

答:(1)能够迅速客观进入副扰动;

(2)自适应能力强;

(3)能够更加精确控制操纵变量的流量;

(4)改善广义对象特性,提高工作效率;

(5)可实现更灵活的操作方式。

实验三上中水箱液位串级控制系统实验

实验三上中水箱液位串级控制系统实验 一、实验目的 1、了解复杂过程控制系统的构成。 2、掌握复杂过程控制一—串级控制方法。 3.掌握串级控制参数整定方法。 二、实验类型 综合型 三、实验装置 1、过程控制实验装置见图3-1,其中使用:电磁阀、上下水箱及液位变送器、水泵系统等。 2、控制仪表一套,以及通信线路。 3、计算机一台。 图3-1 系统示意图 四、实验原理 上下水箱双容液位串级控制的方块原理图如图3-2,本实验将下水箱液位控制在设定高度。串级回路是由内反馈组成的双环控制系统,属于复杂控制范畴。

在实验中使用了两个调节器作为主副调节器。将上水箱的液位信号输出作为主调节器输入,主调节器的输出作为副调节器的输入,在串级控制系统中,两个调节器任务不同,因此要选择调节器的不同调节规律进行控制,副调节器主要任务是快速动作,迅速抵制进入副回路的扰动,至于副回路的调节不要求一定是无静差。主调节器的任务是准确保持下水箱液位在设定值,因此,主调节器采用PI 调节器也可考虑采用PID 调节器。 图3-2 串级控制框图 PID 算法的两种类型 ①、位置型控制 []00 )1()()()()(u n e n e T T i e T T n e K n u n i D I P +? ??? ??--+ + =∑= ②、增量型控制 [][])2()1(2)()()1()()1()()(-+--++--=--=?n e n e n e T T K n e T T K n e n e K n u n u n u D P I P P 串级控制系统的参数整定 ①、两步整定法 第一步整定副回路的副控制器;第二步整定主回路的主控制器。

过程控制系统实验报告材料(最新版)

实验一、单容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)

动态时,则有 Q1-Q2=dv/dt (2) 式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为 dV=Adh ,即dV/dt=Adh/dt (3) A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4) 基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt 即 ARsdh/dt+h=KQ1 或写作 H(s)K/Q1(s)=K/(TS+1) (5) 式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。 式(5)就是单容水箱的传递函数。 对上式取拉氏反变换得 (6) 当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当 t=T 时,则有 h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数 T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得 的传递函数为: 四、实验内容与步骤 1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。 2.接通总电源和相关的仪表电源,并启动磁力驱动泵。

单容水箱液位组态控制实验报告

4 单容水箱液位组态控制实验报告 学院:自动化学院 班级: 学号: 姓名:

单容水箱液位组态 一.实验目的: 1.熟悉单容水箱液位调节阀PID 控制系统工作原理 2.熟悉单用户项目组态过程 3.掌握WINCC 画面组态设计方法 4.掌握WINCC 过程值归档的组态过程 5.掌握WINCC 消息系统的组态过程 6.掌握WINCC 报表系统的组态过程 二:单容水箱实验原理 1、实验结构介绍 水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。被调量为水位H 。分析水位在调节阀开度扰动下的动态特性。 直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。) 调整水箱出口到一定的开度。 突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。 通过物料平衡推导出的公式: μμk Q H k Q i O ==, 那么 )(1H k k F dt dH -=μμ, 其中,F 是水槽横截面积。在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dt dH RC =+。 公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 0 2=就是水阻。 给定值 图4-1单容水箱液位数学模型的测定实验

如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: )1()(0+=TS S KR S G 。 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。 2、控制系统接线表 测量或控制量 测量或控制量标号 使用PLC 端口 使用ADAM 端口 下水箱液位 LT103 AI0 AI0 调节阀 FV101 AO0 AO0 3参考结果 单容水箱水位阶跃响应曲线,如图4-2所示: 图4-2 单容水箱液位飞升特性 此时液位测量高度184.5 mm ,实际高度184.5 mm -3.5 mm =181 mm 。实际开口面积5.5x49.5=272.25 mm2。此时负载阀开度系数: s m x H Q k /1068.6/5.24max -==。 水槽横截面积:0.206m2。 那么得到非线性微分方程为(标准量纲):: H H dt dH 24003.000138.0206.0/)668000.0000284.0(/-=-=

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

双容水箱液位串级控制系统DCS实训报告毕业论文

DCS实训报告双容水箱液位串级控制系统

一、实训目的 (1)、熟悉集散控制系统(DCS)的组成。 (2)、掌握MACS组态软件的使用方法。 (3)、培养灵活组态的能力。 (4)、掌握系统组态与装置调试的技能。 二、实训内容及要求 以THSA-1型生产过程自动化技术综合实训装置为工业对象。完成中水箱和下水箱串级液位控制系统的组态。 要求:设计液位串级控制系统,并用MACS组态软件完成组态。 包括:(1)、数据库组态。 (2)、设备组态。 (3)、算法组态。 (4)、画面组态。 (5)、在实验装置上进行系统调试。 三、工程分析 THSA-1型生产过程自动化技术综合实训装置中水箱和下水箱串级液位控制系统需要2个输入测量信号,1个输出控制信号。 因此,该系统包括: (1)、该系统有2个AI点LT1、LT2,1个AO点LV1。 (2)、该系统需要1个模拟量输入模块FM148用于采集中水箱液位信号LT1和下水箱液位信号LT2;1个模拟量输出模块

FM151用于控制电动控制阀的开度LV1。并且FM148的设备号为2号,FM151的设备号为3号。 (3)、LT1按2号设备的第1通道,LT2按2号设备的第2通道。LV1按3号设备的第1通道。 (4)、系统配备1个现场控制站10站,1台服务器兼操作员站。 四、实训步骤 1、工程的建立 (1)、打开:开始macsv组态软件数据库总控。(2)、选择工程/新建工程,新建工程并输入工程名;Demo。(3)、点击“确定”按钮,然后在空白处选择“demo”工程。工程信息如下图所示: (4)、选择“编辑>域组号组态”,选择组号为1,将刚创建的工程“demo”从“未分组的域”移到右边“改组所包含的域”里,点击“确认”按钮。然后,在数据库总控组态软件窗口会出现当前工程名、当前域号、该域分组号、系统总点数。 (5)、数据库组态。

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

杭电《过程控制系统》实验报告

实验时间:5月25号 序号: 杭州电子科技大学 自动化学院实验报告 课程名称:自动化仪表与过程控制 实验名称:一阶单容上水箱对象特性测试实验 实验名称:上水箱液位PID整定实验 实验名称:上水箱下水箱液位串级控制实验 指导教师:尚群立 学生姓名:俞超栋 学生学号:09061821

实验一、一阶单容上水箱对象特性测试实验一.实验目的 (1)熟悉单容水箱的数学模型及其阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。二.实验设备 AE2000型过程控制实验装置,PC机,DCS控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: Q2 图1-1、单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 图解法是确定模型参数的一种实用方法。不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀

h1( t ) h1(∞ ) 0.63h1(∞) 0 T V 2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为: 当t=T 时,则有: h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e -t/T ) 当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入 式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。当由实验求得图1-2所示的 阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T ,该时间常数T 也可以通过坐标原点对响应曲线 图 1-2、 阶跃响应曲线

实验四 串级控制系统

实验四 加热炉温度串级控制系统 (实验地点:程控实验室,崇实楼407) 一、实验目的 1、熟悉串级控制系统的结构与特点。 2、掌握串级控制系统临界比例度参数整定方法。 3、研究一次、二次阶跃扰动对系统被控量的影响。 二、实验设备 1、MATLAB 软件, 2、PC 机 三、实验原理 工业加热炉温度串级控制系统如图4-1所示,以加热炉出口温度为主控参数,以炉膛温度为副参数构成串级控制系统。 图4-1 加热炉温度串级控制系统工艺流程图 图4-1中,主、副对象,即加热炉出口温度和炉膛温度特性传递函数分别为 主对象:;)130)(130()(18001++=-s s e s G s 副对象:2 1802)1)(110()(++=-s s e s G s 主控制器的传递函数为PI 或PID ,副控制器的传递函数为P 。对PI 控制器有 221111)(),/(, 1 11)(c c I c I I c I c c K s G T K K s K K s T K s G ==+=???? ? ?+= 采用串级控制设计主、副PID 控制器参数,并给出整定后系统的阶跃响应曲线和阶跃扰动响应曲线,说明不同控制方案控制效果的区别。 四、实验过程 串级控制系统的设计需要反复调整调节器参数进行实验,利用MATLAB 中的Simulink 进行仿真,可以方便、快捷地确定出调节器的参数。 1.建立加热炉温度串级控制系统的Simulink 模型 (图4-2) 在MATLAB 环境中建立Simulink 模型如下:)(01s G 为主被控对象,)(02s G 为副被控对象,Step 为系统的输入,c 为系统的输出,q1为一次阶跃扰动,q2为二次阶跃扰动,可以用示波器观察输出波形。PID1为主控制器,双击PID 控制器可设置参数:(PID 模块在

计算机过程控制实验报告

计算机过程控制实验报告

实验1 单容水箱液位数学模型的测定实验 1、试验方案: 水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。被调量为水位H 。分析水位在调节阀开度扰动下的动态特性。 直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。) 调整水箱出口到一定的开度。 突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。 通过物料平衡推导出的公式: μμk Q H k Q i O ==, 那么 )(1 H k k F dt dH -=μμ, 其中,F 是水槽横截面积。在一定液位下,考虑稳态起算点,公式可以转换成 μμR k H dt dH RC =+。 公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 0 2= 就是水阻。 如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: ) 1()(0 += TS S KR S G 。 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。 2、实验步骤: 1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有 一定开度,其余阀门关闭。 2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪 输出端连到电动调节阀(FV101)控制信号端。 3) 打开A3000-CS 电源,调节阀通电。打开A3000-FS 电源。 4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。 给定值 图1 单容水箱液位数学模型的测定实验

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

水箱液位串级控制实验

第六节水箱液位串级控制实验 一、实验目的 1. 熟悉串级控制系统的结构与特点 2. 掌握串级控制系统的投运与参数的整定方法 3. 研究阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根 3. 万用表1只 三、实验原理 图6-1 液位串级控制系统的结构图 图6-2 液位串级控制系统的方框图 本实验为水箱液位的串级控制系统,它是由主、副两个回路组成。

每一个回路中都有一个属于自己的调节器和控制对象,即主回路中的调节器称主调节器,控制对象为下水箱,作为系统的被控对象,下水箱的液位为系统的主控制量。副回路中的调节器称副调节器,控制对象为中水箱,又称副对象,它的输出是一个辅助的控制变量。 本系统控制的目的不仅使系统的输出响应具有良好的动态性能,且在稳态时,系统的被控制量等于给定值,实现无差调节。当有扰动出现于副回路时,由于主对象的时间常数大于副对象的时间常数,因而当被控制量(下水箱的液位)未作出反映时,副回路已作出快速响应,及时地消除了扰动对被控制量的影响。此外,如果扰动作用于主对象,由于副回路的存在,使副对象的时间常数大大减小,从而加快了系统的响应速度,改善了动态性能。图6-1为实验系统的结构图,图6-2为相应控制系统的方框图。 四、实验容与步骤 1.按图6-1要求,完成实验系统的接线。 2.接通总电源和相关仪表的电源。 3.打开阀F1-1、F1-2、F1-7、F1-10、F1-11,且使阀F1-10的开度略大于F1-11。 4.按经验数据预先设置好副调节器的比例度。 5.调节主调节器的比例度,使系统的输出响应出现4:1的衰减度,记下此时的比例度δS和周期TS。据此,按经验表查得PI的参数对主调节器进行参数整定。 6.手动操作主调节器的输出,以控制电动调节阀支路给中水箱送水的大小,等中、下水箱的液位相对稳定,且下水箱的液位趋于给定值时,把主调节器切换为自动。

过程控制实验报告

东南大学自动化学院 实验报告 课程名称:过程控制实验 实验名称:水箱液位控制系统 院(系):自动化专业:自动化姓名:学号: 实验室:实验组别: 同组人员: 实验时间: 评定成绩:审阅教师:

目录 一、系统概论 (3) 二、对象的认识 (4) 三、执行机构 (14) 四、单回路调节系统 (15) 五、串级调节系统Ⅰ (18) 六、串级调节系统Ⅱ (19) 七、前馈控制 (21) 八、软件平台的开发 (21)

一、系统概论 1.1实验设备 图1.1 实验设备正面图图1.2 实验设备背面图 本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。 1.1.2 铭牌 ·加热控制器: 功率1500w,电源220V(单相输入) ·泵: Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V, IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B ·全自动微型家用增压器: 型号15WZ-10,单相电容运转马达 最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V, 电流0.36A,频率50Hz,电容3.5μF,功率80w,绝缘等级 E ·LWY-C型涡轮流量计: 口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V, 标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器 YMC303P-1-A-3 RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100 量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC

串级控制系统

过程控制 实验报告实验名称:串级控制班级: 姓名: 学号:

实验二 串级控制系统 一、实验目的 1) 通过本实验,了解串级控制系统的基本结构以及主、副回路的性能特点。 2) 掌握串级控制系统的设计思想和主、副回路控制器的参数整定方法。 二、 实验原理 串级控制系统由两个或两个以上的控制器、相应数量的检测变送器和一个执行器组成。控制器相串联,副控制器的输入由主控制器的输出设定。主回路是恒值控制系统,对主控制器的输出而言,副回路是随动系统,对二次扰动而言,副回路是恒值控制系统。 串级控制的主要优点可概括如下: 1) 由于副回路的存在,改善了对象的部分特性,使系统的工作频率提高,加快了调节过程。 2) 由于副回路的存在,串级控制系统对二次扰动具有较强的克服能力。 3) 串级控制系统提高了克服一次扰动的能力和回路参数变化的自适应能力。 串级控制系统副回路的设计原则: 1) 副回路应尽量包含生产过程中主要的、变化剧烈、频繁和幅度大的扰动。在可能的情况下力求包含尽可能多的扰动。 2) 当对象具有较大纯滞后时,在设计时应使副回路尽量少包括或不包括纯滞后。 3) 当对象具有非线性环节时,在设计时应使非线性环节于副环之中。 4) 副回路设计时应考虑主、副对象时间常数的匹配,以防共振。 5) 所设计的副回路需考虑到方案的经济性和工艺的合理性。 串级控制系统常用的控制器参数整定方法有逐步逼近法、两步法、一步法等。 ? 逐步逼近法 1) 在主回路断开的情况下,求取副控制器的整定参数; 2) 将副控制器的参数设置在所求的数值上,使串级控制系统主回路闭合,以求取主调节器的整定参数值; 3) 将主调节器参数设置在所求值上,再次整定副控制器的参数值。 4) 如控制品质未达到指标,返回2)继续。 三、实验内容 某系统的主、副对象传递函数分别为: 122 11 (),()301(101)(1)P P G s G s s s s = = +++

上水箱液位与进水流量串级控制系统

摘要 随着现代工业生产过程向着大型、连续方向发展,对控制系统的控制品质提出了日益增长的要求。在这种情况下,传统的单回路液位控制已经难以满足一些复杂的控制要求,水箱液位控制系统由于控制过程特性呈现大滞后、外界环境的扰动较大,要保持水箱液位最后都保持设定值,用简单的单闭环反馈控制不能实现很好的控制效果,所以采用串级闭环反馈系统。 本设计采用水箱液位和注水流量串级控制,设计系统主要由水箱、管道、三相磁力泵、水压传感器、涡轮流量计、变频器、可编程控制器及其输入输出通道电路等构成。系统中由液位PID控制器的设定值端口设置液位给定值,水压力传感器检测液位。涡轮流量计测流量,变频器调节水泵的转速,采用PID算法得出变频器输出值,实现流量的控制。流量控制是内环,液位控制是外环。 系统电源由接触器和按钮控制,系统电源接通后PLC进行必要的自检和初始化,控制器接收到系统启动按钮动作信号后,通过接触器接通电机电源,启动动力系统工作,开始两个闭环系统的调节控制。 关键词:PLC控制;变频器;PID控制;Wincc组件;上位机

目录 1 过程控制系统简介 (1) 1.1 过程控制介绍 (1) 1.2 串级控制系统的组成 (1) 1.2.1 硬件介绍 (1) 1.3 电源控制台 (3) 1.4 总线控制柜 (3) 1.5 软件介绍 (4) 1.6 系统总貌图 (4) 2 串级控制系统简介 (5) 2.1 液位串级控制系统介绍 (5) 2.2 串级控制系统的概述 (5) 2.3 串级控制系统的工作过程 (5) 2.4 系统特点及分析 (6) 2.5 串级控制系统的整定方法 (6) 2.6 主、副回路中包含的扰动数量、时间常数的匹配 (7) 2.7 PID控制工作原理 (7) 3 上水箱液位与进水流量串级控制系统 (9) 3.1 实验设备 (9) 3.2 液位-流量串级控制系统的结构框图 (9) 3.3 系统工作原理 (9) 3.4 控制系统流程图 (10) 3.5 实验过程 (11) 3.6 实验结果分析 (13)

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

单容水箱实验报告

单容液位定值控制系统 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 THPCAT-2型现场总线过程控制对象系统实验装置、AT-1智能仪表挂件一个、RS485/232转换器一个、RS485通讯线一根、计算机一台、万用表一个、软管若干。 三、实验原理 图3-6 中水箱单容液位定值控制系统 (a)结构图 (b)方框图 本实验系统结构图和方框图如图3-6所示。被控量为上小水箱(也可采用上大水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT1检测到的上小水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 四、实验内容与步骤 本实验选择上小水箱作为被测对象(也可选择上大水箱或下水箱)。以上小水箱为例叙述实验步骤如下: 1. 实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-3、F1-4、F1-6全开,将上小水箱出水阀门F1-10开至适当开度(30%~80%),其余阀门均关闭。 2. 管路连接:将工频泵出水口和支路1进水口连接起来;将支路1出水口和上小水箱

进水口连接起来;将上小水箱出水口和储水箱进水口连接起来。 3. 采用智能仪表控制: 1)将“AT-1智能调节仪控制”挂件挂到网孔板上,并将挂件的通讯线插头通过RS485通讯线与RS485/232转换器连接到计算机串口1。 2)强电连线:单相I电源L、N端对应接到AT-1挂件电源输入L、N端。 3)弱电连线:上小水箱液位LT1的1-5V+、-端对应接到智能调节仪I的1-5V电压输入1、2端;智能调节I输出7、5对应接到电动调节阀控控制输入+ 、-端。 4)管路、阀门、接线检查无误后接通总电源开关,打开24V电源开关、电动调节阀开关、单相I开关。 5)检查智能调节仪基本参数设置:ctrl=1, dip=1,Sn=33, DIL=0,DIH=50,OPL=0,OPH=100,run=0。 6)打开上位机MCGS组态环境,打开“THPCAT-2智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验六、单容水箱液位定值控制实验”,进入“实验六”的监控界面。 7)先将仪表设置为手动状态,将磁力泵开关打到“手动”位置,磁力驱动泵上电打水,适当增加或减小仪表输出值,使水箱液位平衡在设定值。 8)按本章第一节中的经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。 9)待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰: a.突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面两种仅供参考)。 b.将电动调节阀的旁路F1-5(同电磁阀)开至适当开度,将电磁阀开关打至“手动”位置。 c.适当改变上小水箱出水阀F1-10开度(改变负载)。 以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面两种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3-7所示。 图3-7 单容水箱液位的阶跃响应曲线 10)分别适量改变调节仪的P及I参数,重复步骤9,用计算机记录不同参数时系统的阶跃响应曲线。

《过程控制系统》实验报告

《过程控制系统》实验报告 学院:电气学院 专业:自动化 班级:1505 姓名及学号:任杰311508070822 日期:2018.6.3

实验一、单容水箱特性测试 一、 实验目的 1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。 二、 实验设备 1. THJ-FCS 型高级过程控制系统实验装置。 2. 计算机及相关软件。 3. 万用电表一只。 三、 实验原理 图1 单容水箱特性测试结构图 由图 2-1 可知,对象的被控制量为水箱的液位 h ,控制量(输入量)是流入水箱中的流量 Q 1,手动阀 V 1 和 V 2 的开度都为定值,Q 2 为水箱中流出的流量。根据物料平衡关系,在平衡状态时02010=-Q Q (式2-1),动态时,则有dt dV Q Q = -21,(式2-2)式中 V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与 h 的关

系为Adh dV =,即dt dh A dt dV =(式2-3),A 为水箱的底面积。把式(2-3)代入式(2-2)得dt dh A Q Q =-21(式2-4)基于S R h Q =2,S R 为阀2V 的液阻,(式2-4)可改写为dt dh A R h Q S =-1,1KQ h dt dh AR S =+或()()1s 1+=Ts K s Q H (式2-5)式中s AR T =它与水箱的底面积A 和2V 的S R 有关,(式2-5)为单容水箱的传递函数。若令()S R S Q 01=,常数=0R ,则式2-5可表示为()T S KR S R K S R T S T K S H 11/000+-=?+= 对上式取拉氏反变换得()()T t e KR t h /01--=(式2-6),当∞→t 时()0KR h =∞,因而有()0/R h K ∞==输出稳态值/阶跃输入,当T t =时,()() ()∞==-=-h KR e KR T h 632.0632.01010,式2-6表示一阶惯性响应曲线是一单调上升的指数函数如下图2-2所示 当由实验求得图 2-2 所示的阶跃响应曲线后,该曲线上升到稳态值的 63%所对应的时间,就是水箱的时间常数 T 。该时间常数 T 也可以通过 坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是 时间常数 T ,由响应曲线求得 K 和 T 后,就能求得单容水箱的传递函 数如式(2-5)所示。 如果对象的阶跃响应曲线为图 2-3,则在此曲线的拐点 D 处作一切线,它与时间轴交于 B 点,与响应稳态值的渐近线交于 A 点。图中OB 即为对象的滞后时间

水箱实验报告

课程设计报告(仿真技术项目驱动设计报告) 学院:电气工程与自动化学院 题目:仿真技术项目驱动 专业班级:自动化123班 学号: 21 学生姓名:谢斌 指导老师:杨国亮老师 日期:2014年6月5日星期四

摘要 我们生活在信息与科技高速发展的信息时代,高科技产品的更新的换代也是越来越快。作为21世纪的大学生,我们身处这样的环境中,就必须使自己能够适应这个社会所需。自动化作为处在科技前沿的专业,我们学生就要打好基础,跟上时代的步伐。 仿真技术是一门利用物理模型或数学模型模拟实际环境进行科学实验的技术,它具有经济、可靠、实用、灵活和可多次重复使用的优点,目前已被广泛地应用于几乎所有的科学技术领域,成为分析、综合各种复杂系统的一种强有力的工具和手段。 在工业自动化领域,控制系统的分析、设计和系统的分析、设计和系统调试、改造,大量应用仿真技术。例如,在设计前期,利用仿真技术论证方案,进行经济技术比较,优选合理方案;在设计阶段,仿真技术可帮助设计人员优选系统合理结构,优化系统参数,以期获得系统最优品质和性能;在调试阶段,利用仿真技术分析系统响应与参数关系,指导调试工作,可以迅速完成调试任务;在运行阶段,利用仿真技术可以在不影响生产的条件下分析系统的工作状态,预防事故发生,寻求改进薄弱环节,以提高系统的性能和运行效率。 为了让同学们在实践中学习,同学们自己制作GUI设计,并从中深入了解和理解计算机仿真技术与CAD。从而为进一步实现人机对话,测量以及控制这些自动化的基本控制做基础。从理论到实践,让同学们更好的理解计算机仿真技术与CAD,增长同学的实践和设计能力。所以我们迫切需要一场制作GUI界面的实战训练 关键字: 自动化;计算机仿真技术与CAD;实践;GUI界面;能力

北京化工大学过程控制工程串级控制系统实验报告

实验名称:串级控制实验 班级:自控 实验设备编号: 2 实验日期:年月 同组人: 年月日

实验名称:串级控制系统 实验的目的:正确认识串级控制系统,理解和熟练串级控制系统的特点和操作要求。 实验的要求:正确理解串级控制系统的特点,结合本实验装置的情况,构建一个以下水箱液位H2为主被控参数,上水箱液位H1为副被控参数,进水流量为控制手段的液位-液位串级控制系统。 实验过程的主要步骤: 1、构建串级控制系统,在软件中组态。 2、对串级控制系统进行正确的设置,确保系统的连接方式正确,正反作用正确。 3、系统启动后将调节阀CV101,CV102的开度设置在50%,80%左右。 4、待系统达到稳定,按照先副后主的顺序将串级控制系统投入自动,投运过程无扰动串级控制系统参数整定,使用一步法 1、系统流程图: 系统方框图:

串级控制系统因为具有主副两个控制回路,从传递方式来看,是串联的进行工作,主回路的输出是通过副回路起作用;按照回路闭合向来看,副回路被包括在主回路中,可以看成一个具有一定跟踪能力的控制环节,它以主回路的输出作为跟踪目标。由于副回路的存在,分担了系统中的部分容量滞后和部分干扰的镇定作用,使系统的整体放大倍数、静态控制精度、系统抗干扰能力和工作频率等指标都提高到一个新的高度。 2、为了主变量的稳定,主控制器必须具有积分作用;副环是一个随动系统,它的给定值随主控制器输出的变化而变化为了能快速跟踪,一般只需采取比例式。 主副控制器的正反作用确定应遵循先副后主的原则。为了使副回路构成一个稳定的系统,副环内所有放大倍数各环节放大倍数的乘积应是负号;主控制器的正反作用也是根据主环内各个环节的乘积为负来确定,一般,主变送器为正,副回路为正,主控制器的正反作用只取决于主对象放大倍数的符号。 投运时要按照先副后主的顺序进行,先投运副回路,再投运主回路。无扰动投运的步骤:(1)、主副控制器均放于手动位置。主控制器放于内给定,副控制器放于外给定;将主副控制器正反作用开关置于正确位置;主副控制器参数放于预定数值。 (2)、用副控制器的手操器进行手操作。 (3)、当遥控使主变量接近或等于给定值而副变量也较平稳时,调节主控制器的手操旋钮,使副控制器的偏差表指示为零,这时副控制器的自动电流将跟踪等于手动电流,于是可将副控制器切入自动。由于切换前控制器的自动电流等于手动电流,自动电流信号等于手动电流信号就意味着切换时刻不会造成控制阀阀位变化,因此切换是无扰动的。 (4)、当副环切入自动后控制稳定,主变量接近或等于给定值时,调整主控制器的内给定旋钮,使主控制器偏差表指示为零。此时主控制器的自动输出电流跟踪等于手动输出电流,于是可将主控制器切入自动。至此,系统则处于串级工作状态,而切换是无扰动的。 3、串级系统的参数整定: 与单回路的情况相同,串级控制系统也是在控制系统器投入自动后,通常并不能保证控

相关主题
文本预览
相关文档 最新文档