当前位置:文档之家› 切除空载变压器过电压研究

切除空载变压器过电压研究

切除空载变压器过电压研究
切除空载变压器过电压研究

变压器的空载试验和短路试验等各类知识点

变压器的空载试验和短路试验 变压器的空载试验指的是通过变压器的空载运行来测定变压器的空载电流和空载损耗。一般说来,空载试验可以在变压器的任何一侧进行。通常将额定频率的正弦电压加在低压线圈上而高压侧开路。为了测出空载电流和空载损耗随电压变化的曲线,外施电压要能在一定范围内进行调节。 变压器空载时,铁芯中主磁通的大小是由绕组端电压决定的,当变压器施加额定电压时,铁芯中的主磁通达到了变压器额定工作时的数值,这时铁芯中的功率损耗也达到了变压器额定工作下的数值,因此变压器空载时输入功率可以认为全部是变压器的铁损。一般电力变压器在额定电压时,空载损耗约为额定容量的0.1%~1%。 变压器的短路试验通常是将高压线圈接至电源,而将低压线圈直接短接。由于一般电力变压器的短路阻抗很小,为了避免过大的短路电流损坏变压器的线圈,短路试验应在降低电压的条件下进行。用自耦变压器调节外旋电压,使电流在0.1~1.3倍额定电流范围变化。原边电流达到额定值时,变压器的铜损相当于额定负载时的铜损,因外施电压较低,铁芯中的工作磁通比额定工作状态小得多,铁损可以忽略不计,所以短路试验的全部输入功率基本上都消耗在变压器绕组上,短路试验可测出铜损。通常电力变压器在额定电流下的短路损耗约为额定容量的0.4%~4%,其数值随变压器容量的增大而下降。 变压器空载试验和负载试验的目的和意义 变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示,即: 进行空载试验的目的是:测量变压器的空载损耗和空载电流;验证变压器铁心的设计计算、工艺制造是否满足技术条件和标准的要求;检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。

2.1变压器的空载运行

1、根据变压器内部磁场的实际分布和所起的作用不同,通常把磁通分为主磁通和漏磁通,前者在铁芯内闭合,起传递能量作用,后者主要通过变压器油等闭合,起漏抗压降作用。 2、变压器空载电流由空载电流有功分量和空载电流无功分量两部分组成,前者用来供铁耗,后者用来漏抗压降。 3、变压器励磁电流的大小受电源电压、电源频率、一次绕组匝数、铁芯材质和铁芯几何尺寸等因素的影响。 4、变压器等效电路中的是对应于主磁通的电抗,是表示铁损等效的电阻。 5、变压器的漏抗,铁耗,今在一次施加很小的直流电压,二次开路,此时0,0。 6、一台已制成的变压器,在忽略漏阻抗压降的条件下,其主磁通的大小主要取决于电源电压 和频率,与铁心材质和几何尺寸无关(填有关、无关)。

7、建立同样的磁场,变压器的铁心截面越小,空载电流;一次绕组匝数越多,空载电流,铁心材质越好,空载电流。 8、变压器一次绕组匝数减少,额定电压下,将使铁心饱和程度,空载电流, 铁耗,二次空载电压,励磁电抗。 9、变压器一次绕组匝数、铁心截面一定,当电源电压及频率均减半,则铁心磁密,空载电流。 10、变压器空载运行时一次绕组空载电流很小的原因是。 (A)原绕组匝数多电阻大; (B)原绕组漏抗很大; (C)变压器的励磁阻抗很大。 11、一台的单相变压器空载运行,一次侧接220V 时铁心主磁通为,二次侧接110V时铁心主磁通为,则。(A);

(B); (C)。 12、变压器其他条件不变,若一次侧匝数增加10%,及的大小将。 (A)增加到原来的1.1倍,不变,增大; (B)增加到原来的1.1倍,不变,减少; (C)增加到原来的1.21倍,不变,增大; (D)增加到原来的1.21倍,不变,减少; 13、某三相电力变压器,下面数据中有一个是励磁电流的倍数,它应该是。 (A)28.87A; (B)50A; (C)2A; (D)10A。

变压器的空载试验和短路试验主要注意问题

变压器的空载试验和短路试验主要注意哪些问题? 一、变压器空载试验和负载试验的目的和意义 变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示,即: 进行空载试验的目的是:测量变压器的空载损耗和空载电流;验证变压器铁心的设计计算、工艺制造是否满足技术条件和标准的要求;检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。 变压器的短路试验就是将变压器的一组线圈短路,在另一线圈加上额定频率的交流电压使变压器线圈内的电流为额定值,此时所测得的损耗为短路损耗,所加的电压为短路电压,短路电压是以被加电压线圈的额定电压百分数表示的: 此时求得的阻抗为短路阻抗,同样以被加压线圈的额定阻抗百分数表示: 变压器的短路电压百分数和短路阻抗百分数是相等的,并且其有功分量和无功分量也对应相等。 进行负载试验的目的是:计算和确定变压器有无可能与其它变压器并联运行;计算和试验变压器短路时的热稳定和动稳定;计算变压器的效率;计算变压器二次侧电压由于负载改变而产生的变化。 二、变压器空载和负载试验的接线和试验方法 对于单相变压器,可采用图1所示的接线进行空载试验。对于三相变压器,可采用图2和图3所示的两瓦特表法进行空载试验。图2为直接测量法,适用于额定电压和电流较小,用电压表和电流表即可直接进行测量的变压器。当变压器额定电压和电流较大时,必须借助电压互感器和电流互感器进行间接测量,此时采用图3接线方式。

变压器的原理与空载运行

变压器的原理和空载运行 变压器空载运行指变压器一次绕组接额定频率、额定电压的交流电源,二次绕组开路的运行状态。 一、变压器的空载运行 1.理想变压器的空载运行 空载电流还建立空载磁动势产生交变的磁通; 铁心磁导率远大 于空气磁导率,绝大部分磁通沿铁心闭合,同时交链一、二次绕组,称为主磁通Φ。另外有很少一部分磁通只交链一次绕组,主要沿非铁磁材料闭合,称为一次绕组的漏磁通 空载运行时,一次绕组所接电源为额定频率、额定电压的正弦交流电,根据电磁感应定律,一次绕组的感应电动势为变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理:当一次侧绕组上加上电压ú1时,流过电流í1,在铁芯中就产生交变磁通?1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势é1, é2,感应电势式E=4.44fN?m 式中:E--感应电势有效值 f--频率 N--匝数?m--主磁通最大值.不计一次、二次绕组的电阻和铁耗,其间耦合系数 K=1 的变压器称之为理想变压器描述理想变压器的电动势平衡方程式为 e1(t) = -N1 d φ/dt e2(t) = -N2 d φ/dt 若一次、二次绕组的电压、电动势的瞬时值均按正弦规律变化,则有不计铁心损失,根据能量守恒原理可得由此得出一次、二次绕组电压和电流有效值的关系 K=N1/N2,称为匝比(亦称电压比)。

2.实际变压器的空载运行 空载运行时,空载电流i0产生励磁磁势F0,F0建立主磁通Φ,而交变磁通在原绕组内感应电势e1,单独产生磁通的电流为磁化电流 i0w,i0w与电势E1之间的夹角是90°,故i0w是一个纯粹的无功电流。铁心中的磁通不变,一定存在损耗,为了供给损耗,励磁电流中除了用来产生磁通的无功电流外,还应包括一个有功电流i0r,即im=i0w+i0r,其向量关系如图。-E1=imRm+jimXm=imZm,Xm是主磁通Φ引起的电抗,为励磁电抗。

变压器空载损耗计算

变压器空载损耗计算 简介:负载曲线的平均负载系数越高,为达到损耗电能越小,要选用损耗比越小的变压器;负载曲线的平均负载系数越低,为达到损耗电能越小,要选用损耗比越大的变压器。将负载曲线的平均负载系数乘以一个大于1的倍数,通常可取 1-1.3,作为获得最佳效率的负载系数,然后按βb=(1/R)1/2计算变压器应具备的损耗比。 关键字:变压器 1、变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。 2、变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损耗ΔP=P0PC

变压器空载时三相电压不平衡原因分析

变压器空载时三相电压不平衡原因分析 近年来欧阳海水电站因供电负荷不断增长,原来的两台变压器容量已不能满足需求,常过载运行。为了增加供电量,故将2号变压器容量由4MVA更换为6.3MVA,型号为GS9-6300/10,结线为y,d11。2号变压器安装前按规程规定进行了各项测试工作,测试结果正常。安装就位后又进行了必要的测试及耐压试验,都合格。于是进行冲击合闸试验,冲击合闸试验也未出现异常现象。但当检查变压器副边三相对地电压时,却发现中压不平衡,分别为Uao = 6.8kV,Ubo = 6.2kV,Uco = 5.9kV,线电压基本平衡。该变压器安装前是由一台4MVA的变压器供电,现已将该4MVA的变压器移至1号变压器位置,其母线电压是平衡的。新变压器空载时只带Ⅱ段母线及母线上一组电压互感器,由电压互感器TV测得相电压不平衡。为了查明原因,验证TV及表计完好,将2号变退出,由1号变(4MVA变压器)带I、II段母线测电压,I、II段母线三相电压都是平衡的,由此可以排除TV及表计问题。 将2号变停电退出进行,测试未发现问题,再投入空载运行,现象同前。为了查明原因和对用户负责,未送电,将上述情况告知厂家。厂家对该变压器进行了全面的测试,也未发现问题,得出结论该变压器无质量问题,合格。于是将该变压器又投入空载,检查副边电压,现象仍如前。究竟是什么原因产生这种现象的呢?对用户是否会有影响呢?厂家也不能肯定。而用户急着用电,不能久拖。最后与厂家、用户协商,投入该变压器运行。先投入一条长约4km的空载线路,测母线三相对地电压,分别为Uao = 6.6kV,Ubo = 6.3kV,Uco = 6.1kV。发现三相电压的偏差在变小,继而再投入其它线路,并且投入用户变压器,测用户变压器低压侧(400V侧)电压,看三相电压相差多少,能否使用,于是到用户变压器低压侧测电压,测得三相电压分别为Uao = 235V,Ubo = 234V,Uco = 234V,相电压、线电压都平衡。用户投入各类负荷运行正常。回来后,再测Ⅱ段母线电压,测得电压分别为Uao = 6.3kV,Ubo = 6.3kV,Uco = 6.3kV,三相电压完全平衡。由此进行了总结,得出结论:该变压器空载(只带母线)时三相对地电压不平衡,带上负荷后,电压完全平衡,用户可以放心使用。 经与厂家技术人员进行了分析,到底是什么原因引起这种现象呢?根据厂家人员介绍,厂家在设计制造这台变压器时,与以前的变压器结构上进行了改进,△侧接电源,副边侧接负载,中性点不接地未引出,电压调整抽头由侧从首端引出,在结构上与以前使用的1号、2号变压器有所不同。由于变压器原边与副边绕组、原副边绕组对地、相与相绕组之间都存在电容,又由于结构上的原因,导致三相绕组总的对地电容不相等。在空载只带母线电压互感器情况下,对地电容值主要取决于变压器对地电容,母线电压互感器相当于一个电感,组成的电路原理见图1。现以变压器负荷侧(副边侧)作为电源,变压器中性点为O,变压器对地电容及电压互感器组成的负载阻抗为Z,三相负载的中性点为O’,电路原理见图2,作电压向量图。由于Za、Zb、Zc不相等,故电源中性点O与负载中性点O’不重合,中性点电位发生偏移。电压向量图见图3,点O 与O’的偏移情况视三相负载阻抗Za、Zb、Zc不平衡情况而变化。O’点随着投入线路及负荷情况而变。当投入负荷后,变压器对地容抗远小于负载总阻抗,对电压偏移不产生影响。而设负荷为三相平衡负荷,故点O与点O’重合,三相电压平衡。这就出现了用户用电后,2号变压器(Ⅱ段母线)三相对地电压反而平衡的缘故。因此,可以肯定,Ⅱ段母线的用户可以放心使用,对电气设备不会有什么影响。

变压器运行特性分析

课程设计名称:电机与拖动课程设计 题目:变压器运行特性分析计算 专业: 班级: 姓名:

学号: 课程设计成绩评定表

变压器在我们的生活中无处不在,为了适应不同的使用目的和工作条件,现实生活中有很多种类型的变压器,常用的变压器有:电力变压器、特殊用途的电源变压器、测量用变压器、控制变压器,且这些类型的变压器在结构和性能上的差别也很大。虽然这些变压器有所不同,但是它们的基本原理是相同的。本设计通过对变压器的变换关系即电压变换、电流变换、阻抗变换,分析研究出变压器运行时的基本方程式,并通过相应的折算得出变压器的等值电路,从而完成对变压器空载,变压器负载运行,变压器空载合闸,变压器副边突然短路时的分析与计算。为了简化计算、减少计算量,本设计在相应的计算上使用MATLAB软件进行辅助。通过本设计的研究计算能对变压器的分析和计算方法有初步的了解,对变压器出现空载、负载运行、空载合闸、副边突然短路时的电压、电流变化有准确的认识。 关键词:变压器;基本方程式;折算;等值电路;MATLAB计算

1 变压器结构及其组成部分 (1) 1.1变压器的基本结构 (1) 1.1.1铁芯 (1) 1.1.2绕组 (1) 1.1.3油箱和冷却装置 (2) 1.1.4绝缘套管 (2) 1.1.5其他构件 (2) 1.2变压器的额定值 (2) 2变压器的变换关系 (4) 2.1电压变换 (4) 2.2电流变换 (4) 2.3阻抗变换 (5) 3变压器等值电路及其折算关系 (6) 4变压器空载时的分析与计算 (8) 5变压器负载运行时的分析与计算 (9) 6变压器副边突然短路时分析计算 (10) 7结论 (11) 8心得体会 (12) 参考文献 (13)

变压器空载试验

变压器空载试验、短路试验 变压器的空载试验指的是通过变压器的空载运行来测定变压器的空载电流和空载损耗。一般说来,空载试验可以在变压器的任何一侧进行。通常将额定频率的正弦电压加在低压线圈上而高压侧开路。为了测出空载电流和空载损耗随电压变化的曲线,外施电压要能在一定范围内进行调节。 变压器空载时,铁芯中主磁通的大小是由绕组端电压决定的,当变压器施加额定电压时,铁芯中的主磁通达到了变压器额定工作时的数值,这时铁芯中的功率损耗也达到了变压器额定工作下的数值,因此变压器空载时输入功率可以认为全部是变压器的铁损。一般电力变压器在额定电压时,空载损耗约为额定容量的0.1%~1%。 变压器的短路试验通常是将高压线圈接至电源,而将低压线圈直接短接。由于一般电力变压器的短路阻抗很小,为了避免过大的短路电流损坏变压器的线圈,短路试验应在降低电压的条件下进行。用自耦变压器调节外旋电压,使电流在0.1~1.3倍额定电流范围变化。原边电流达到额定值时,变压器的铜损相当于额定负载时的铜损,因外施电压较低,铁芯中的工作磁通比额定工作状态小得多,铁损可以忽略不计,所以短路试验的全部输入功率基本上都消耗在变压器绕组上,短路试验可测出铜损。通常电力变压器在额定电流下的短路损耗约为额定容量的0.4%~4%,其数值随变压器容量的增大而下降。 变压器空载试验和负载试验的目的和意义 变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过

程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示,即: 进行空载试验的目的是:测量变压器的空载损耗和空载电流;验证变压器铁心的设计计算、工艺制造是否满足技术条件和标准的要求;检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。 变压器的短路试验就是将变压器的一组线圈短路,在另一线圈加上额定频率的交流电压使变压器线圈内的电流为额定值,此时所测得的损耗为短路损耗,所加的电压为短路电压,短路电压是以被加电压线圈的额定电压百分数表示的: 此时求得的阻抗为短路阻抗,同样以被加压线圈的额定阻抗百分数表示: 变压器的短路电压百分数和短路阻抗百分数是相等的,并且其有功分量和无功分量也对应相等。 进行负载试验的目的是:计算和确定变压器有无可能与其它变压器并联运行;计算和试验变压器短路时的热稳定和动稳定;计算变压器的效率;计算变压器二次侧电压由于负载改变而产生的变化。 变压器空载和负载试验的接线和试验方法 对于单相变压器,可采用接线进行空载试验。对于三相变压器,可采

第二部分 变压器试题

第二章 变压器 一、填空: 1. ★★一台单相变压器额定电压为380V/220V ,额定频率为50HZ ,如果误将低压侧接到380V 上,则此时m Φ ,0I ,m Z ,Fe p 。(增加,减少或不变) 答:m Φ增大,0I 增大,m Z 减小,Fe p 增大。 2. ★一台额定频率为50Hz 的电力变压器接于60Hz ,电压为此变压器的6/5倍额定电压的电网上运行,此时变压器磁路饱和程度 ,励磁电流 ,励磁电抗 ,漏电抗 。 答:饱和程度不变,励磁电流不变,励磁电抗增大,漏电抗增大。 3. ★★三相变压器理想并联运行的条件是(1) , (2) ,(3) 。 答:(1)空载时并联的变压器之间无环流;(2)负载时能按照各台变压器的容量合理地分担负载;(3)负载时各变压器分担的电流应为同相。 4. ★如将变压器误接到等电压的直流电源上时,由于E= ,U= ,空 载电流将 ,空载损耗将 。 答:E 近似等于U ,U 等于IR ,空载电流很大,空载损耗很大。 5. ★变压器空载运行时功率因数很低,其原因为 。 答:激磁回路的无功损耗比有功损耗大很多,空载时主要由激磁回路消耗功率。 6. ★一台变压器,原设计的频率为50Hz ,现将它接到60Hz 的电网上运行,额定电压不变, 励磁电流将 ,铁耗将 。 答:减小,减小。 7. 变压器的副端是通过 对原端进行作用的。 答:磁动势平衡和电磁感应作用。 8. 引起变压器电压变化率变化的原因是 。 答:负载电流的变化。 9. ★如将额定电压为220/110V 的变压器的低压边误接到220V 电压,则激磁电流 将 ,变压器将 。 答:增大很多倍,烧毁。 10. ★★联接组号不同的变压器不能并联运行,是因为 。 答:若连接,将在变压器之间构成的回路中引起极大的环流,把变压器烧毁。 11. 变压器副边的额定电压指 。 答:原边为额定电压时副边的空载电压。 12. ★★通过 和 实验可求取变压器的参数。 答:空载和短路。 13. 变压器的结构参数包括 , , , , 。 答:激磁电阻,激磁电抗,绕组电阻,漏电抗,变比。 14. 既和原边绕组交链又和副边绕组交链的磁通为 ,仅和一侧绕组交链的磁通 为 。 答:主磁通,漏磁通。

变压器的空载损耗与空载电流以及短路损耗与短路阻抗的区别

变压器的空载损耗与空载电流以及短路损耗与短路 阻抗的区别 Prepared on 24 November 2020

变压器的空载损耗与空载电流以及短路损耗与短路阻抗的区别Po空载损耗,即指当以额定频率的额定电压施加于变压器一个绕组的端子上,其余各绕组开路时,变压器所吸收的有功功率,又称为铁损(忽略空载运行 状态下的施压绕组的电阻损耗)。其数值反映变压器空载时所消耗的能量,包括 磁滞损耗和涡流损耗,磁滞损耗与频率成正比,与最大磁通密度的磁滞系数的 次方成正比;涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正 比。变压器铁芯用硅钢片材料特性、厚度及叠片方式、工艺等直接影响Po数值 的大小,Po与参考温度无关。 Io空载电流,指当向变压器的一个绕组施加额定频率的额定电压时,其它 绕组开路,流经该绕组线路端子的电流,是变压器不带负载时从电网吸收的电流。对于三相变压器,是流经三相端子电流的算术平均值。其中,较小的有功 分量Io(r)用以补偿铁心的损耗,即空载损耗Po,其较大的无功分量Io(x)用于 励磁,以平衡铁芯的磁压降。 通常Io以额定电流的百分数表示:Io%=(Io/I N) *100= ~3% 空载损耗的大小和空载电流的大小没有固定的必然联系。对于同规格的同 一批次生产的两台变压器空载损耗可以基本相等,而空载电流可以相差很大, 从变压器的较度来讲,空载电流对变压器的可靠性基本没有影响,对运行成本 稍有增加,但非常小,但是空载电流大的变压器往往噪音比较大,因为变压器 铁心的接缝比较大,空载电流的大小主要取决于接缝的大小和变压器的材质好坏。空载损耗主要取决于材质和设计时的磁通密度。

相关主题
文本预览
相关文档 最新文档