当前位置:文档之家› 第八章-干燥(食品工程原理-笔记)

第八章-干燥(食品工程原理-笔记)

第八章-干燥(食品工程原理-笔记)
第八章-干燥(食品工程原理-笔记)

1.干燥:是利用热量使湿物料中水分等湿分被汽化去除,从而获得固体产品的操作。

2.去湿的方法——机械去湿法 化学去湿法 热能去湿法 ▲

3.含水量

(1)湿基含水量.(w ).(无量纲)——

) m — 湿物料的质量,kg ;

m w — 湿物料中所含水的质量,kg ;

m s — 湿物料中所含有绝对干燥物料的质量,kg

w 是习惯上常用的表示组分含量的方法,如未加说明,物料含水量即指湿基含水量。 (2)干基含水量.(x ).(无量纲)——

两种含水量的换算关系

▲4.水分活度.(a w ) — 一般把湿物料表面附近的水蒸汽压p 与同温度下纯水的饱和蒸汽压p 0之比作为湿物料水分活度a w 的定义: a w 的大小与食品中的含水量、所含各种溶质的类型和浓度以及食品的结构和物理特性都有关系。

▲5.吸湿和解湿

(1)当a w >Φ 时 [Φ的定义式Φ=p v /p s ] p >p v 即湿物料表面附近水蒸汽压p 大于是空气中的水蒸气分压p v ,水分将从物料向湿空气中传递,这种过程称为物料的解湿。解湿使物料含水量x 不断减少,这即是干燥过程。

(2)当a w <Φ时, p <p v ,水分将不断从湿空气向物料传递,这种过程称为物料的吸湿。吸湿使物料含水量x 不断增加。

(3)当a w =Φ时,p=p v ,物料既不解湿,也不吸湿,两者相对于湿空气讲,此时物料的含水量x 称为平衡含水量x e 。 ▲6.物料中水分的分类

(1)按物料与水分的结合方式分类—化学结合水 物理化学结合水 机械结合水 (2)按水分去除的难易程度分类—结合水分 非结合水分 (3)按水分能否用于干燥的方法除去分类

自由水分—物料中的水分能被干燥除去的部分。

平衡水分—平衡水分代表物料在一定空气状态下的干燥的极限。 7.湿空气热力学

湿空气通常指干空气和水蒸气的混合物。

(1)湿密度:湿空气中所含水蒸气的质量m V 与湿空气体积V 之比,称为其湿密度ρV ▲(2)v p s 之比,称为湿空气的相

对湿度φ: 对绝对干燥的空气,相对湿度φ=0; 对饱和空气,相对湿度φ=1。

由于p s p v 一定时,相对湿度φ随温度升高而减小。

▲(3)湿度(湿含量,湿度比或绝对湿度).(H ).(kg v /kg d )—单位质量干空气中所含水蒸气的质量

湿空气中水蒸气的质量与干空气质量之比

湿空气饱和时的湿度(H s

相对湿度:可以说明湿空气偏离饱和空气的程度,能用于判定该湿空气能否作为干燥介质,φ值与越小,则吸湿能力越大。绝对湿度:是湿空气含水量的绝对值,不能用于分辨湿空气的吸湿能力。

▲8.湿空气的比热(C H ) —在常压下,将湿空气中1kg 绝干空气及相应Hkg 水汽的温度升高

(或降低)1o C 所需要吸收(或放出)的热量,称为比热,又称为 湿热 说明:湿空气的比热只是湿度的函数。 湿空气的比容(V H ) — 以1kg 干空气作基准的是空气的体积,即在湿空气中,1kg 绝干气

体积和相应的Hkg 水气体积之和,亦称湿容积。

▲9.湿空气的温度

(1)干球温度:用一般温度计直接测得的湿空气的温度,称为湿空气的干球温度,它就是湿

空气的真实温度T 。

(2)湿球温度:普通温度计的感温部分包以常湿纱布,置于湿空气中达稳定后,此温度计显

示的温度称为湿空气的湿球温度,用符号T w 表示。不饱和空气的湿球温度T w 低于干球温度T 。

▲原理 [简答]

(3)露点(符号T d ):保持湿空气的压力和湿含量不变而使其冷却,达饱和状态时的温度,称湿

空气的露点温度。

露点是湿空气开始凝结的临界温度。

绝热饱和温度(T as ) 绝热饱和方程

v

v p p p H -=622

.0s

s

s p P p

H -=622

.0H c H 88.101.1

+=)

(H H c h T T as H

v as -?-

=

绝热饱和温度是表明湿空气绝热冷却所能达到的极限温度。 10.干燥静力学

(1)水分蒸发量和产品量

对上图所示的干燥过程作总物料衡算: 对绝干物料作物料衡算: 干燥的产品量: 水分蒸发量:

(2)干空气消耗量L

对进出干燥器的水分作衡算: 则

如果新鲜空气进入干燥器前先通过预热器加热,由于加热前后空气的湿度不变,以H 0表示燥过程所经历的途径无关。

湿空气的消耗量为:

W m m +=21()()221111w m w m m s -=-=211211w w m m --=2

2

111w w w m W --=W

x x m H H L s =-=-)()(21121

21221)(H H W H H x x m L s -=--=1

21H H l -=

021211H H H H l -=

-=)

1()1(01H L H L L +=+='

干燥系统的热量衡算

▲(1)耗热量

① 预热器的热量衡算:若忽略预热器的热损失,以1s 为基准,则有 ② 干燥器的热量衡算: ③ 干燥系统消耗的总热量:

湿物料的焓:

向系统输入的热量用于:加热空气、加物料、蒸发水分、热损失等四个方面。 ▲(2)干燥系统的热效率

定义: 蒸发水分所需的热量为:Q v =W △V h

△V h —水的汽化热(J/kg ),可取热空气

湿球温度对应之值。 11.干燥动力学

干燥机理—当固体物料的含水量超过其平衡含水量时与干燥介质接触,虽在开始时水分均匀地分布在物料中,但由于湿物料表面水分的汽化,遂形成物料内部与表面的湿度差,由于物料内部的水分借扩散作用向表面移动而在表面汽化,汽化的水分被介质及时带走,从而达到使固体物料干燥的目的。

▲(1)干燥速率式—单位时间内在单位面积上除去的汽化水分量,用符号u 表示,单位为

kg w /(m 2·s),常采用kg w /(m 2·h),其微分表达式为: )

(0

110h h L Q Lh Q Lh p p -==+L

D L D Q h h m h h L Q Q h m Lh Q h m Lh +-+-=++=++)''()(''12212222121L

D

p Q h h m h h L Q Q Q +-+-=+=)''()(12202θθθ)('w s w s Wc c Wc c h +=+=1

1220211220212202)()()()()''()(θθθθθθw L s w L s s L

D p Wc Q c m h h L Wc Q c c m h h L Q h h m h h L Q Q Q -+-+-=-+-+-=+-+-=+=%

100?=量向干燥系统输入的总热蒸发水分所需的热量

η()%10001?-?=?=?==h h l h q h Q h W Q Q v v V V η。

或—干燥时间,——干燥面积,——蒸发水分量,—h s t m A Kg W Adt

dW u ;;2=

Adt

dx m u dx m dW Adt dW u s s -=

???

?

??-==

▲干燥速率曲线——表示物料干燥速率u 与物料含水量x 关系的曲线,称为干燥速率曲线。

干燥速率曲线主要以C 点为界分为两部分。BC 段,干燥速率保持u 0不变,称为恒速干燥阶段。CE 段,随着干燥进行即x 的降低,干燥速率u 不断下降,知道x 降至平衡含水量x e 时,干燥速率为零,此段成为降速干燥阶段。

恒速干燥阶段:在此阶段,整个物料表面都有充分的非结合水分,物料表面的蒸汽压与同温度下水的蒸汽压相同。所以在恒定干燥条件下,物料表面与空气间的传热和传质过程与测定湿球温度的情况类似。此时物料内部水分扩散速率大于表面水分汽化速率,故属于表面汽化控制阶段。空气传给物料的热量等于水分汽化所需的热量,物料表面的温度始终保持为空气的湿球温度。该阶段干燥速率的大小,主要取决于空气的性质,而与湿物料性质关系很小。 由于此阶段热空气对物料的对流传热量等于物料水分汽化吸热,可有:

干燥临界点:由恒速干燥阶段到降速干燥阶段的转折点C ,成为干燥过程的临界点。干燥速率的转折标志干燥机理的转折,临界点是干燥由表面汽化控制到内部扩散控制的转折点,是物料由去除非结合水到去除结合水的转折点。物料干燥达临界点C 时的物料含水量x c ,成为临界含水量。临界含水量x c 不仅因物料性质不同而异,也因外界干燥条件有关。同一物料,如干燥速率加快,则x c 增大。在一定干燥速率下,料层愈厚,xc 愈大。干燥时翻动物料,会使xc 降低。

降速干燥阶段:当物料含水量降至临界含水量X c 以后,干燥速率随含水量减少而降低。这是由于水分由物料内部向物料表面迁移的速率低于湿物料表面水分气化的速率,在物料表面出现干燥区域,表温逐渐升高,随着干燥的进行,干燥区域逐渐增大,而干燥速率的计算是以总表面积为基准的,所以干燥速率下降。此为速降干燥阶段的第一部分,称为不饱和表面干燥。最后物料表面的水分完全气化,水分的汽化面由物料表面移向内部。随着干燥的进行,水分的气化面继续内移,直至物料的含水量降至平衡含水量x e 时,干燥停止。 在降速阶段,干燥速率主要取决于水分在物料内部的迁移速率,这时外界空气条件不是影响

▲(2)干燥时间 恒速干燥阶段的干燥时间t 1

降速干燥阶段的干燥时间t 2

干燥速率曲线中,连接CE 段成直线,即干燥速率与物料中的自由水分含量(x-x e )成正比

干燥的总时间t ()h

u Adt

h dW T T q v v w ?=??=-=0α()w v v T T h h q u -?=?=α0()

c s s s x x Au m

t dx A u m dt Adt dx m u -=?-=?-=10

1010()e c e s x x u k CE k x x k Adt dx m u -=????

??-=-=00线的斜率—比例系数,为—e e c s x x x x Ak m t --=22ln 2

1t t t +=????

??--+--=

e e c e c c

s

x x x x x x x x Ak m t 21ln

12.干燥设备

▲喷雾干燥—用雾化器将料液分散成雾滴,

与热空气等干燥介质直接接触,使水分迅速

蒸发的干燥方法。

▲喷雾干燥流程

料液由料液槽,经过滤器2由料泵3送到雾

化器8,被分散成无数细小雾滴。作为干燥

介质的空气经空气过滤器4由风机5经加热

器6加热,送到干燥塔10内。热空气经过

空气分布器7,均匀地与雾化器喷出的雾滴

相遇,经过热、质交换,雾滴迅速被干燥成

产品进入塔底。已被降温增湿的空气经旋风

分离器9等回收夹带的细微产品粒子后,由

排风机排入大气中。

冷冻干燥

冷冻干燥又称冷冻升华干燥或真空冷冻干燥,简称冻干。它是将湿物料降温冻结,然后在真空条件下使物料中的水分由固态冰直接升华为水蒸气而排除,达到脱水干燥的目的。冻干制品具有优异的特性。可用于生物标本的制作,以及生物制品和药品的干燥。

冷冻干燥过程:物料的预冻升华干燥解吸干燥

食品工程原理练习题

传热练习题 1、 某加热器外面包了一层厚度为300mm 的绝缘材料,该材料的热导率为0.16W/(m ·℃),已测得该绝缘层外缘温度为30℃,距加热器外壁250mm 处为75℃,试求加热器外壁面的温度为多少? 2、 用套管换热器将果汁从80℃冷却到30℃,果汁比热为3.18kJ/kg ℃,流量为240kg/h 。冷却水与果汁呈逆流进入换热器,进口和出口温度分别为10℃和20℃,若传热系数为450W/m 2℃,计算换热面积和冷却水用量。 3、在一内管为Φ25mm×2.5mm 的套管式换热器中,用水冷却苯,冷却水在管程流动,入口温度为290K ,对流传热系数为850W/(m 2·K),壳程中流量为1.25kg/s 的苯与冷却水逆流换热,苯的进、出口温度分别为350K 、300K ,苯的对流传热系数为1700 W/(m 2·K),已知管壁的热导率为45 W/(m·K),苯的比热容为c p =1.9 kJ/(kg·℃),密度为ρ=880kg/m 3。忽略污垢热阻。试求:在水温不超过320K 的最少冷却水用量下,所需总管长为多少(以外表面积计)? 4、 在一单程列管式换热器中,用130℃的饱和水蒸汽将36000kg/h 的乙醇水溶液从25℃加热到75℃。列管换热器由90根Ф25mm×2.5mm ,长3m 的钢管管束组成。乙醇水溶液走管程,饱和水蒸汽走壳程。已知钢的热导率为45W/(m·℃),乙醇水溶液在定性温度下的密度为880kg/m 3,粘度为1.2×10-3Pa·s ,比热为4.02kJ/(kg·℃),热导率(即导热系数)为0.42W/(m·℃),水蒸汽的冷凝时的对流传热系数为104W/(m 2·℃),忽略污垢层热阻及热损失。试问此换热器是否能完成任务(即换热器传热量能否满足将乙醇水溶液从25℃加热到75℃)? 已知:管内对流传热系数关联式为4.08.0Pr Re )/(023.0d λα=,λμ/Pr p C =。 干燥练习题 5、 某物料在连续理想干燥器中进行干燥。物料处理量为3600kg/h, 物料含水量由20%降到5%(均为湿基)。空气初始温度为20℃,湿度为0.005kg/kg 绝干气,空气进干燥器时温度为100℃, 出干燥器时温度为40℃。试求:(1)空气消耗量;(2)预热器传热量。 6、 在某干燥器中干燥砂糖晶体,处理量为100kg/h ,要求将湿基含水量由40%减至5%。干燥介质为干球温度20℃,相对湿度15%的空气,经预热器加热

食品工程原理习题和答案完整版

食品工程原理习题和答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

食品工程原理 第一章 P31: 1. 2. 4. 8. 9. 10. 11. 第二章 P78: 【1】一食品冷藏室由内层为19mm厚的松木,中层为软木层,外层为51mm厚的混凝土所组成。内壁面温度为 ℃,混凝土外壁面温度为℃。松木、软木和混凝土的平均热导率分别为,3,W/(m·K),要求该冷藏室的热损失为15W/m2。求所需软木的厚度及松木和软木接触面处的温度。 解:三层平壁的导热。 1)所需软木的厚度2b?由:

【4】将粗碎的番茄通过内径为60mm的管子从20℃加热到75?℃。其流量为1300kg/h,管内壁面温度为105℃,求对流传热系数。 已知粗碎的番茄物性数据如下:ρ=1050kg/m3;cp=kJ/(kg·K); μ=mPa·s℃时),mPa·s(105?℃时);λ=W/(m·K)。 解:流体在管内被加热。管中流速: 5. 一带有桨式搅拌器的容器内装有温度为℃的料液。用夹套内的蒸汽加热。容器内径为m,搅拌器直径为m,转速为r/s,容器壁温为℃。料液的物性为: ρ=977?kg/m3 ;Cp=kJ/(kg·K);μ=100?mPa·s℃时),mPa·s℃时)料液热导 率)/。求料液对容器壁的对流传热系数。 解:该对流属于流体在搅拌槽内强制对流。 8. 10.在逆流换热器中,用初温为20?℃的水将kg/s的液体[比热容为 kJ/(kg·K)、密度为850kg/m3]由80℃冷却到30?℃。换热器的列管

直径为Φ25?mm×mm,水走管内。水侧和液体侧的对流传热系数分别为850W/(m2·K)和1?700W/(m2·K),污垢热阻可忽略。若水的出口温度不能高于50?℃,求水的流量和换热器的传热面积。 解:传热量为 12. 【14】某列管换热器的管程走冷却水,有机蒸汽在管外冷凝。在新使用时冷却水的进、出口温度分别为20?℃和30?℃。使用一段时间后,在冷却水进口温度与流量相同的条件下,冷却水出口温度降为26?℃。已知换热器的传热面积为m2,有机蒸汽的冷凝温度为80℃, 冷却水流量为kg/s,求污垢热阻。 解:无污垢时的传热量: 【16】有一套管换热器,内管为Φ19?mm×2mm,管长为2m,管内的水与环隙中的油逆流流动。油的流量为270kg/h,进口温度为100℃,水的流量为360kg/h,进口温度为10℃。若忽略热损失,且知以管外表面

第七章食品工程原理习题

第七章吸收与蒸馏复习题 一、名词解释 1 吸收 2 对流传质 3 扩散系数 4 气-液相平衡 5 最小回流比 6 全塔效率 7泡点回流 8 蒸馏 9 精馏 10 相对挥发度 11 回流比 二、填空 1 若溶质在气相中的分压大于其( ),就会发生( )过程。 2 某气体用水吸收时,在一定浓度范围内,其气-液平衡线和操作线均为直线,其平衡线的斜率可用()常数表示,而操作线的斜率可用()表示。 3 对接近常压的低浓度溶质的气液平衡系统,当总压增加时,亨利系数(),相平衡常数m(),溶解度系数H()。(增加、减少、不变)。 4 由于吸收过程气相中的溶质分压总()液相中溶质的平衡分压,

所以吸收操作线总是在平衡线的()。增加吸收剂用量,操作线的斜率(),则操作线向()平衡线的方向偏移,吸收过程推动力(y-ye)()。 5 在气体流量,气相进出口组成和液相进口组成不变时,若减少吸收剂用量,则传质推动力将(),操作线将()平衡线。 6 用Δp为推动力的气膜传质速率方程有两种,以传质分系数表达的传质速率方程为(),以总传质系数表达的传质速率方程为()。7在精馏操作中,加料板以上的管段称为( ),加料板以下的管段称为( ) 8( )进料时精馏段汽相摩尔流量与提溜段相等。 9精馏操作中塔板上汽液接触状态主要有( )、( )和( )。其中以( )接触的传质阻力最小。 10精馏装置主要包括( ),( )和( )。 11工业生产中的操作回流比一般是最小回流比的( )倍。 12按蒸馏操作方法不同,蒸馏可分为( )、( )、和( )三大类。 三、选择 1 采用填料塔进行气体吸收,当操作线和平衡线相交(或相切)时,( )。 A. 塔底吸收液浓度最高; B. 吸收剂用量最少; C. 吸收速率最高 2 若气相溶质分压大于其液相平衡分压,就会发生( )过程。 A. 吸收; B. 解吸; C. 平衡 3 总压不太高时,一定温度下气、液两相的平衡关系服从( )。

食品工程原理期末复习单项选择题

食品工程原理期末复习 单项选择题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

单项选择题:(从每小题的四个备选答案中,选出一个正确答案,并将正确答案的号码写在题干后面的括号内) 1、一个标准大气压,以mmHg为单位是( B ) (A) 761 (B) 760 (C) (D) 9、一个标准大气压,以mH2O柱为单位是( B ) (A) (B) (C) (D) 2、表示流体流动形态类型可用雷诺数来表示,当流体流动属于层流时,雷诺数为( D ) (A) Re ≤ 1500 (B) Re ≤ 1600 (C) Re ≤ 1800 (D) Re ≤ 2000 10、表示流体流动形态类型可用雷诺数来表示,当流体流动属于湍流时,雷诺数为( C ) (A) Re >3500 (B) Re >3800 (C) Re >4000 (D) Re >4200 16、一个标准大气压,以cm2为单位是( B ) (A) (B) (C) (D) 25、一个标准大气压,以Pa为单位应为( B ) (A) ×104 (B) ×105 (C) ×106 (D) ×105 3、流体内部流动时产生的摩擦力,对流体的流动有阻碍的作用,称为流体的 ( D ) (A) 比热 (B) 密度 (C) 压力 (D) 粘性 5、流体流过任一截面时,需要对流体作相应的功,才能克服该截面处的流体压力,所 需的功,称为( C ) (A) 位能 (B) 动能 (C) 静压能 (D) 外加能量 6、流体流动时,上游截面与下游截面的总能量差为( D ) (A) 外加能量减动能 (B) 外加能量减静压能 (C) 外加能量减位能 (D) 外加能量减能量损失 7、输送流体过程中,当距离较短时,直管阻力可以( C ) (A) 加倍计算(B) 减半计算(C) 忽略不计(D) 按原值计算 8、泵在正常工作时,实际的安装高度要比允许值减去( B ) (A) 0.3m (B) 0.5-1m(C) 1-1.5m(D) 2m 12、流体流动时,由于摩擦阻力的存在。能量不断减少,为了保证流体的输送需要( D ) (A) 增加位能 (B) 提高动能 (C) 增大静压能 (D) 外加能量 13、利用柏努利方程计算流体输送问题时,需要正确选择计算的基准面,截面一般与 流动方向(C) (A) 平行(B) 倾斜(C) 垂直(D) 相交 14、输送流体时,在管道的局部位置,如突扩,三通,闸门等处所产生的阻力称为( B) (A) 直管阻力(B) 局部阻力(C) 管件阻力(D) 输送阻力 15、泵在正常工作时,泵的允许安装高度随着流量的增加而( B ) (A) 增加(B) 下降(C) 不变(D) 需要调整 17、离心泵启动时,泵内应充满输送的液体,否则会发生( A ) (A) 气缚 (B) 汽蚀 (C) 气阻 (D) 气化 19、流体内部的压强,以绝对零压为起点计算的是( C ) (A) 真空度 (B) 表压 (C) 真实压强 (D) 流体内部的静压 20、流体流动时,如果不计摩擦损失,任一截面上的机械能总量为( D ) (A) 动能加位能 (B) 动能加静压能 (C) 位能加静压能 (D) 总能量为常量 21、利用柏努利方程计算流体输送问题时,要正确的选择合理的边界条件,对宽广水 面的流体流动速度,应选择(C) (A) U = 1 (B) 0 < u < 1 (C) u = 0 (D) u < 0 22、输送流体时,泵给予单位质量流体的能量为( C ) (A) 升扬高度(B) 位压头 (C) 扬程(D) 动压头 23、往复式泵的分类是依据不同的(A) (A) 活塞(B) 连杆(C) 曲柄(D)汽缸 26、离心泵的实际安装高度,应该小于允许安装高度,否则将产生( B ) (A) 气缚 (B) 汽蚀 (C) 气阻 (D) ) 气化

食品工程原理 第五章 习题解答

第五章习题解答 1. 什么样的溶液适合进行蒸发? 答:在蒸发操作中被蒸发的溶液可以是水溶液,也可以是其他溶剂的溶液。只要是在蒸发过程中溶质不发生汽化的溶液都可以。 2. 什么叫蒸发?为什么蒸发通常在沸点下进行? 答:使含有不挥发溶质的溶液沸腾汽化并移出蒸汽,从而使溶液中溶质浓度提高的单元操作称为蒸发。在蒸发操作过程中物料通常处于相变状态,故蒸发通常在沸点下进行。 3. 什么叫真空蒸发?有何特点? 答:真空蒸发又称减压蒸发,是在低于大气压力下进行蒸发操作的蒸发处理方法。将二次蒸汽经过冷凝器后排出,这时蒸发器内的二次蒸汽即可形成负压。操作时为密闭设备,生产效率高,操作条件好。 真空蒸发的特点在于: ①操作压力降低使溶液的沸点下降,有利于处理热敏性物料,且可利用低压强的蒸汽或废蒸汽作为热源; ②对相同压强的加热蒸汽而言,溶液的沸点随所处的压强减小而降低,可以提高传热总温度差;但与此同时,溶液的浓度加大,使总传热系数下降; ③真空蒸发系统要求有造成减压的装置,使系统的投资费和操作费提高。 4. 与传热过程相比,蒸发过程有哪些特点? 答:①传热性质为壁面两侧流体均有相变的恒温传热过程。 ②有些溶液在蒸发过程中有晶体析出、易结垢或产生泡沫、高温下易分解或聚合;溶液的浓度在蒸发过程中逐渐增大、腐蚀性逐渐增强。二次蒸汽易挟带泡沫。 ③在相同的操作压强下,溶液的沸点要比纯溶剂的沸点高,且一般随浓度的增大而升高,从而造成有效传热温差减小。 ④减少加热蒸汽的使用量及再利用二次蒸汽的冷凝热、冷凝水的显热是蒸发操作过程中应考虑的节能问题。 5. 单效蒸发中,蒸发水量、生蒸气用量如何计算? 答:蒸发器单位时间内从溶液中蒸发出的水分质量,可用热负荷来表示。也可作物料衡算求得。 在蒸发操作中,加热蒸汽冷凝所放出的热量消耗于将溶液加热至沸点、将水分蒸发成蒸汽及向周围散失的热量。蒸汽的消耗量可通过热量衡算来确定。 6. 何谓温度差损失?温度差损失有几种? 答:溶液的沸点温度t往往高于二次蒸汽的温度T’,将溶液的沸点温度t与二次蒸汽的温度T'之间的差值,称为温度差损失。 蒸发操作时,造成温度差损失的原因有:因蒸汽压下降引起的温度差损失'?、因蒸发器中液柱静压强而引起的温度差损失''?和因管路流体阻力引起的温度差

食品工程原理(赵思明编)思考题与习题参考答案

思考题与习题参考答案 绪论 一、填空 1、经济核算 2、物料衡算、经济核算、能量核算、物系的平衡关系、传递速率 3、液体输送、离心沉降、混合、热交换、蒸发、喷雾干燥 二、简答 1、在食品工程原理中,将这些用于食品生产工艺过程所共有的基本物理操作过程成为单元操作。例如,奶粉的加工从原料乳的验收开始,需要经过预热杀菌、调配、真空浓缩、过滤、喷雾干燥等过程;再如,酱油的加工,也包含大豆的浸泡、加热、杀菌、过滤等工序,这两种产品的原料、产品形式、加工工艺都有较大的不同,但却包含了流体的输送、物质的分离、加热等相同的物理操作过程。 2、“三传理论”即动量传递、热量传递和质量传递。 (1)动量传递理论。随着对单元操作的不断深入研究,人们认识到流体流动是一种动量传递现象,也就是流体在流动过程中,其内部发生动量传递。所以凡是遵循流体流动基本规律的单元操作都可以用动量传递理论去研究。 (2)热量传递理论。物体在加热或者冷却的过程中都伴随着热量的传递。凡是遵循传热基本规律的单元操作都可以用热量传递的理论去研究。 (3)质量传递理论。两相间物质的传递过程即为质量传递。凡是遵循传质基本规律的单元操作都可以用质量传递的理论去研究。 例如,啤酒的灭菌(热量传递),麦芽的制备(动量传递,热量传递,质量传递)等。 三传理论是单元操作的理论基础,单元操作是三传理论具体应用。 3、单元操作中常用的基本概念有物料衡算、能量衡算、物系的平衡关系、传递速率和经济核算。 物料衡算遵循质量守恒定律,是指对于一个生产加工过程,输入的物料总量必定等于输出的物料总质量与积累物料质量之和。能量衡算的依据是能量守恒定律,进入过程的热量等于离开的热量和热量损失之和。平衡状态是自然界中广泛存在的现象。平衡关系可用来判断过程能否进行,以及进行的方向和能达到的限度。过程的传递速率是决定化工设备的重要因素,传递速率增大时,设备尺寸可以减小。为生产定量的某种产品所需要的设备,根据设备的型式和材料的不同,可以有若干设计方案。对同一台设备,所选用的操作参数不同,会影响到设备费与操作费。因此,要用经济核算确定最经济的设计方案。 4、流体流动过程包括流体输送、搅拌、沉降、过滤等。传热过程包括热交换、蒸发等。 传质过程包括吸收、蒸馏、萃取、吸附、干燥等。 5、(略) 三、计算 1、质量分数20%;摩尔分数1.30%;摩尔浓度0.62mol/L

食品工程原理习题

第一章 流体力学 【1-1】 椰子油流过一内径为20mm 的水平管道,其上装有一收缩管,将管径逐渐收缩至 12mm ,如果从未收缩管段和收缩至最小处之间测得的压力差为800Pa ,试求椰子油的流量。 【1-2】 牛奶以2×10- 3m 3/s 的流量流过内径等于27mm 的不锈钢管,牛奶的粘度为2.12×10-3Pa.s ,密度为1030kg/m 3,试确定管内流动是层流还是紊流。 【1-3】 用泵输送大豆油,流量为1.5×10-4m 3/s ,管道内径为10mm ,已知大豆油的粘度为 40×10- 3Pa.s ,密度为940kg/m 3。试求从管道一端至相距27m 的另一端之间的压力降。 【1-4】试求稀奶油以6m/s 的速度流过管道时,因摩擦而引起的压力降。管道直径 mm ,长100m ,为水力光滑的不锈钢管。已知稀奶油的密度为1000kg/m 5238.×φ3,粘度为12×10- 3Pa.s 。 【1-7】某离心泵安装在高于井内水面 5.5m 的地面上,吸水量为40m 3/h 。吸水管尺寸为 mm ,包括管路入口阻力的吸水管路上的总能量损失为4.5J/kg 。试求泵入口处的真空度。(当地大气压为1.0133×104114×φ5Pa ) 【1-8】用离心泵将密度为1200kg/m 3的水溶液由敞开贮槽A 送至高位槽B 。已知离心泵吸入 管路上各种流动阻力之和 J/kg 、压出管路的∑=10s ,f L ∑=30D ,f L J/kg 。两槽液面维持恒定,其间垂直距离为20m 。每小时溶液的输送量为30m 3。若离心泵效率为0.65, 求泵的轴功率。 【1-9】每小时将10m 3常温的水用泵从开口贮槽送至开口高位槽。管路直径为mm , 全系统直管长度为100m ,其上装有一个全开闸阀、一个全开截止阀、三个标准弯头、两个阻力可以不计的活接头。两槽液面恒定,其间垂直距离为20m 。取管壁粗糙度为0.25mm 、水的密度为1000kg/m 357×φ3、粘度为1×10-3Pa.s 。试求泵的效率为70%时的轴功率。 【1-10】用泵将开口贮槽内密度为1060kg/m 3、粘度为1.1×10- 3Pa.s 的溶液在稳定流动状态下送到蒸发器内,蒸发空间真空表读数为40kPa 。溶液输送量为18m 3/h 。进蒸发器水平管中心线高于贮槽液面20m ,管路直径357×φmm ,不包括管路进、出口的能量损失,直管和管件当量长度之和为50m 。取管壁粗糙度为0.02mm 。试求泵的轴功率(泵的效率为65%)。 【1-14】拟用一台3B57型离心泵以60m 3/h 的流量输送常温的清水,已查得在此流量下的允 许吸上真空H s =5.6m ,已知吸入管内径为75mm ,吸入管段的压头损失估计为0.5m 。

食品工程原理重点知识讲解

食品工程原理复习 第一章 流体力学基础 1.单元操作与三传理论的概念及关系。 不同食品的生产过程应用各种物理加工过程,根据他们的操作原理,可以归结为数个应用广泛的基本操作过程,如流体输送、搅拌、沉降、过滤、热交换、制冷、蒸发、结晶、吸收、蒸馏、粉 碎、乳化萃取、吸附、干燥 等。这些基本的物理过程称为 单元 操作 动量传递:流体流动时,其内部发生动量传递,故流体流动过程也称为动量传递过程。凡是遵循流体流动基本规律的单元操作, 均可用动量传递的理论去研究。 热量传递 : 物体被加热或冷却的过程也称为物体的传热过程。凡 是遵循传热基本规律的单元操作,均可用热量传递的理论去研究。 质量传递 : 两相间物质的传递过程即为质量传递。凡是遵循传质 基本规律的单元操作,均可用质量传递的理论去研究。 单元操作与三传的关系 “三传理论”是单元操作的理论基础,单元操作是“三传理论” 的具体应用。 同时,“三传理论”和单元操作也是食品工程技术的理论和实践 基础 2.粘度的概念及牛顿内摩擦(粘性)定律。牛顿黏性定律的数学表达式是y u d d μτ±= ,服从此定律的流体称为牛顿流体。 μ比例系数,其值随流体的不同而异,流体的黏性愈大,其值愈 大。所以称为粘滞系数或动力粘度,简称为粘度 3.理想流体的概念及意义。 理想流体的粘度为零,不存在内摩擦力。理想流体的假设,为工 程研究带来方便。 4.热力体系:指某一由周围边界所限定的空间内的所有物质。边

界可以是真实的,也可以是虚拟的。边界所限定空间的外部称为 外界。 5.稳定流动:各截面上流体的有关参数(如流速、物性、压强) 仅随位置而变化,不随时间而变。 6.流体在两截面间的管道内流动时, 其流动方向是从总能量大的截面流向总能量小的截面。 7.1kg理想流体在管道内作稳定流动而又没有外功加入时,其柏努利方程式的物理意义是其总机械能守恒,不同形式的机械能可以相互转换。 8. 实际流体与理想流体的主要区别在于实际流体具有黏性,实际流体柏努利方程与理想流体柏努利方程的主要区别在于实际流体柏努利方程中有阻力损失项。 柏努利方程的三种表达式 p1/ρ+gz1+u12/2 = p2/ρ+gz2+u22/2 p1/ρg+z1+u12/2g = p2/ρg+z2+u22/2g p1+ρgz1+ρu12/2 = p2 +ρgz2+ρu22/2 9.管中稳定流动连续性方程:在连续稳定的不可压缩流体的流动中,流体流速与管道的截面积成反比。截面积愈大之处流速愈小,反之亦然。对于

中国农大食品工程原理 第8章 (6) 液体吸附与离子交换

第8章液体吸附与离子交换 吸附与离子交换都是相间传质过程,物质传递方向是由液相到固相。 1 液体吸附 1.1 吸附作用和吸附剂 1.1.1 吸附作用 利用多孔固体颗粒选择性地吸附流体中的一个或几个组分,从而使流体混合物得以分离的单元操作。 分离的依据:各组分的吸附力不同。 吸附剂:具有吸附作用的物质; 吸附质:被吸附的组分。 固相具有吸附能力的根本原因是固体表面分子处在一个不平衡力场中,也既是表面力在起作用。 物理吸附:吸附剂与吸附质之间的作用力仅为分子间引力的吸附; 化学吸附:吸附剂与吸附质之间的作用力为化学键力的吸附。 物理吸附的特点: ①放热过程;②吸附无选择性;③吸附速度快,易达平衡;④可以是多分子层吸附; ⑤可逆过程,解吸容易。 化学吸附的特点: ①放热过程;②吸附有选择性;③吸附速度慢,不易达平衡;④单分子层吸附; ⑤解吸困难。 1.1.2 吸附剂及其性能 吸附剂的来源: ①天然矿产: 活性白土、漂白土、硅藻土、凹凸棒等; ②人工制品:活性炭、硅胶、活性氧化铝、分子筛、吸附树脂等。 食品工业中常用的吸附剂有: (1)活性炭 包括粉末活性炭和颗粒活性炭两种。 (2)活性白土 (3)硅胶 包括球形、无定形、粉末状及加工成型四种。 (4)膨润土 (5)分子筛 (6)吸附树脂 食品工业对吸附剂的要求主要有: ①吸附量大;②选择性好。 一些常用吸附剂的性能见表8-1。 1.2 吸附理论 1.2.1 吸附平衡 (1)单组分吸附吸附剂只选择性的吸附一个组分(溶质)。

可用等温吸附方程(弗氏方程)表示: n kC 1*=ω 式中:ω-吸附质在固相中的浓度,kg 吸附质/kg 吸附剂; C *-吸附质与固相浓度成平衡的液相质量浓度,kg 吸附质/m 3。 k ,n-与吸附剂(质)性质、温度有关的常数。一般n 在2~10之间易吸附,小于0.5时,吸附困难。 吸附浓度较低时,可用线性方程表示: * kC =ω 参见下图,活性炭对醋酸(水容液)和苯甲酸(苯溶液)的吸附: 从图中可以看出,吸附质不同,吸附平衡浓度不同;另外,浓度低时ω~C *基本为线性关系。 吸附平衡后,对吸附质作物料衡算,得: m C C V ) (*0-=ω 式中:m-吸附剂的质量,kg ; V-液相体积,m 3; C 0,C *-平衡前、后的溶液浓度,kg 吸附质/m 3。 (2)双组分吸附 既吸附溶质又吸附溶剂。 设 x-液体中溶质的体积分数; y-固体中溶质的体积分数。 则以x ~y 曲线表示的平衡关系如下图所示:

新食品工程原理复习题及答案

一、填空题: 1. 圆管中有常温下的水流动,管内径d=100mm,测得其中的质量流量为15.7kg.s-1,其体积流量为_0.0157m3.s-1_.平均流速为__ 2.0m.s-1____。 2. 流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的____倍; 如果只将管径增加一倍,流速不变,则阻力损失为原来的_____倍。2;1/4 3. 离心泵的流量常用________调节。出口阀 4.(3分)某输水的水泵系统,经管路计算得,需泵提供的压头为He=25m水柱,输水量为20kg.s-1,则泵的有效功率为_________.4905w 5. 用饱和水蒸汽加热空气时,换热管的壁温接近__饱和水蒸汽;_的温度,而传热系数K值接近___空气____的对流传热系数。 6. 实现传热过程的设备主要有如下三种类型___、__、___.间壁式蓄热式直接混合式 7. 中央循环管式蒸发器又称__标准式__。由于中央循环管的截面积__较大_____。使其内单位容积的溶液所占有的传热面积比其它加热管内溶液占有的____要小__,因此,溶液在中央循环管和加热管内受热不同而引起密度差异,形成溶液的____自然__循环。 8. 圆管中有常温下的水流动,管内径d=100mm,测得中的体积流量为0.022m3.s-1,质量流量为__22kg.s-1 __,平均流速为_ 2.8m.s-1______。 9. 球形粒子在介质中自由沉降时,匀速沉降的条件是__粒子所受合力的代数和为零_ 。滞流沉降时,其阻力系数=__24/ Rep ___. 10. 某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为240mm,λ=0.57w.m-1.K-1,此时单位面积的热损失为_______。(注:大型容器可视为平壁)1140w 11. 非结合水份是主要以机械方式与物料相结合的水份。 12. 设离心机转鼓直径为1m,转速n=600 转.min-1,则在其中沉降的同一微粒,比在重力沉降器内沉降的速度快___201___倍。 13. 在以下热交换器中, 管内为热气体,套管用冷水冷却,请在下图标明逆流和并流时,冷热流体的流向。 本题目有题图:titu081.bmp 14. 用冷却水将一定量的热流体由100℃冷却到40℃,冷却水初温为15℃,在设计列管式换热器时,采用两种方案比较,方案Ⅰ是令冷却水终温为30℃,方案Ⅱ是令冷却水终温为35℃,则用水量WI__WII AI___A II。(大于,等于,小于) 大于,小于 15. 多效蒸发的原理是利用减压的方法使后一效的蒸发压力和溶液的沸点较前一效的____________,以使前一效引出的______________作后一效_________,以实现_____________再利用。为低、二次蒸汽、加热用、二次蒸汽 16. 物料干燥时的临界水份是指_由恒速干燥转到降速阶段的临界点时,物料中的含水率;它比物料的结合水份大。 17. 如右图所示:已知,ρ水=1000kg.m-3,ρ空气=1.29kg.m-3,R=51mm,则△p=500_ N.m-2,ξ=_1(两测压点A.B间位差不计) 本题目有题图:titu141.bmp 18. 板框压滤机主要由__滤板、滤框、主梁(或支架)压紧装置等组成_,三种板按1—2—3—2—1—2—3—2—1的顺序排列组成。 19. 去除水份时固体收缩最严重的影响是在表面产生一种液体水与蒸汽不易渗透的硬层,因而降低了干燥速率。 20. 多效蒸发的原理是利用减压的方法使后一效的蒸发压力和溶液的沸点较前一效的_为低,以使前一效引出的_二次蒸汽作后一效加热用,以实现_二次蒸汽_再利用。 21. 恒定的干燥条件是指空气的_湿度、温度、速度_以及_与物料接触的状况_都不变。 22. 物料的临界含水量的大小与_物料的性质,厚度和恒速干燥速度的大小__等因素有关。 二、选择题: 1. 当离心泵内充满空气时,将发生气缚现象,这是因为( ) B. A. 气体的粘度太小 B. 气体的密度太小 C. 气体比液体更容易起漩涡 D. 气体破坏了液体的连续性 2. 降膜式蒸发器内溶液是(C )流动的。 A. 自然循环; B. 强制循环; C. 不循环 3. 当空气的t=t=tφ(A)。

食品工程原理试题

食工原理复习题及答案(不含计算题) 一、填空题: 1. 圆管中有常温下的水流动,管内径d=100mm,测得其中的质量流量为15.7kg.s-1,其体积流量为____ 0.0157m3.s-1 _____.平均流速为_ 2.0m.s-1_____。 2. 流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的_2___倍; 如果只将管径增加一倍,流速不变,则阻力损失为原来的____ 1/4_倍。 3. 离心泵的流量常用____出口阀____调节。 4.(3分)题号2005 第2章知识点100 难度容易 某输水的水泵系统,经管路计算得,需泵提供的压头为He=25m水柱,输水量为20kg.s-1,则泵的有效功率为__ 4905w_______. 5. 用饱和水蒸汽加热空气时,换热管的壁温接近____饱和水蒸汽________的温度,而传热系数K值接近______ 空气______的对流传热系数。 6. 实现传热过程的设备主要有如下三种类型__ 间壁式_________、____ 蓄热式_________、__________直接混合式________. 7. 中央循环管式蒸发器又称______ 标准式_________。由于中央循环管的截面积_______。使其内单位容积的溶液所占有的传热面积比其它加热管内溶液占有的______________,因此,溶液在中央循环管和加热管内受热不同而引起密度差异,形成溶液的_______________循环。 ***答案*** ,较大,要小,自然 8. 圆管中有常温下的水流动,管内径d=100mm,测得中的体积流量为0.022m3.s-1,质量流量为_________,平均流速为_______。 ***答案*** 22kg.s-1 ; 2.8m.s-1 9. 球形粒子在介质中自由沉降时,匀速沉降的条件是_______________ 。滞流沉降时,其阻力系数=____________. ***答案*** 粒子所受合力的代数和为零24/ Rep 10. 某大型化工容器的外层包上隔热层,以减少热损失,若容器外表温度为500℃, 而环境温度为20℃, 采用某隔热材料,其厚度为240mm,λ=0.57w.m-1.K-1,此时单位面积的热损失为_______。(注:大型容器可视为平壁) ***答案*** 1140w 11. 非结合水份是__________________。 ***答案*** 主要以机械方式与物料相结合的水份。 12. 设离心机转鼓直径为1m,转速n=600 转.min-1,则在其中沉降的同一微粒,比在重力沉降器内沉降的速度快____________倍。 ***答案*** 201 13. 在以下热交换器中, 管内为热气体,套管用冷水冷却,请在下图标明逆流和并流时,冷热流体的流向。

食品工程原理试题思考题及习题及答案

思考题与习题 绪论 一、填空 1 同一台设备的设计可能有多种方案,通常要用()来确定最终的方案。 2 单元操作中常用的五个基本概念包括()、()、()、()和()。 3 奶粉的生产主要包括()、()、()、()、()等单元操作。 二、简答 1 什么是单元操作?食品加工中常用的单元操作有哪些? 2 “三传理论”是指什么?与单元操作有什么关系? 3 如何理解单元操作中常用的五个基本概念? 4 举例说明三传理论在实际工作中的应用。 5 简述食品工程原理在食品工业中的作用、地位。 三、计算 1 将5kg得蔗糖溶解在20kg的水中,试计算溶液的浓度,分别用质量分数、摩尔分数、摩尔浓度表示。已知20%蔗糖溶液的密度为1070kg/m3。 2 在含盐黄油生产过程中,将60%(质量分数)的食盐溶液添加到黄油中。最终产品的水分含量为15.8%,含盐量1.4%,试计算原料黄油中含水量。 3 将固形物含量为7.08%的鲜橘汁引入真空蒸发器进行浓缩,得固形物含量为58%得浓橘汁。若鲜橘汁进料流量为1000kg/h,计算生产浓橘汁和蒸出水的量。 4 在空气预热器中用蒸气将流量1000kg/h,30℃的空气预热至66℃,所用加热蒸气温度143.4℃,离开预热器的温度为138.8℃。求蒸气消耗量。 5 在碳酸饮料的生产过程中,已知在0℃和1atm下,1体积的水可以溶解3体积的二氧化碳。试计算该饮料中CO2的(1)质量分数;(2)摩尔分数。忽略CO2和水以外的任何组分。 6 采用发酵罐连续发酵生产酵母。20m3发酵灌内发酵液流体发酵时间为16h。初始接种物中含有1.2%的酵母细胞,将其稀释成2%菌悬液接种到发酵灌中。在发酵罐内,酵母以每2.9h 增长一倍的生长速度稳定增长。从发酵罐中流出的发酵液进入连续离心分离器中,生产出来的酵母悬浮液含有7%的酵母,占发酵液中总酵母的97%。试计算从离心机中分离出来的酵母悬浮液的流量F以及残留发酵液的流量W(假设发酵液的密度为1000kg/m3)。

《食品工程原理》教学大纲

《食品工程原理》教学大纲 一、本课程的教学目标和任务 本课程为食品专业的必修专业基础课。课程内容主要包括动量传递、热量传递和质量传递的三大传递理论及其在食品工程中的应用,即研究食品工程单元操作的基本原理与应用。动量传递内容包括流体力学和流体输送机械(泵与风机)的选用、颗粒与流体间的相对运动;热量传递内容包括传热学和蒸发操作等;质量传递内容包括传质过程、吸收与蒸馏、吸附与离子交换,浸出与萃取等单元操作;此外还包括热、质同时传递的过程,如食品的干燥等。 食品工程原理是一门主要研究食品加工过程的技术原理与工程实现的应用基础课程,与机械工程、化学工程等学科的有关课程密切相关,其基础涉及数学、物理、力学、热力学、传热学和传质学等。本课程以单元操作为主线,研究食品加工过程的有关理论与工程方法,为食品科学与工程及相近专业的学生和工程技术人员学习研究提供参考。 二、本课程的教学要求 食品工程原理是食品科学与工程及其相近专业的一门十分重要的专业基础课程,在创新人才培养中具有举足轻重的地位。由于课程涉及的知识面宽,对理论分析、设计计算、实验探索、工程经验的贯通融合和创新应用方面要求很高。学习中要注重逐步树立学生的工程观念,从先进实用、安全可靠、经济方便、节能减排等方面认真掌握单元操作和工程系统集成方面的知识。 1.注重培养学生的工程设计和应用的能力。食品加工工艺千变万化,其实现的途径又可以多种多样,所以要树立学生的工程观念,能够根据生产工艺要求和物料特性,合理地选择单元操作及相应的设备,完成过程分析、设计计算,努力使系统集成达到最优化。 2.注重培养学生的数据攫取能力。食品工程原理学科研究的历史短,基础数据十分缺乏。如何通过网络或资料查取有参考价值的数据,或者通过实验测取、生产现场查定相关数据、是进行良好的食品工程设计的重要前提。 3.注重培养学生的实验能力。学习实验设计、单元操作实验、数据处理、误差分析方法,提高学生的动手能力和实验技能。 4. 多媒体等现代化教学手段辅助教学,使学生增加感性认识,激发学习兴趣,提高教学质量。

最新整理食品工程原理名词解释和简答题复习课程

1.1.位能:由于流体在地球重力场中处于一定的位置而具有的能量。若任选一基准水平面作为位能的零点,则离基准垂直距离为Z的流体所具有的位能为mgz。 2.动能:由于运动而具有的能量。若流体以均匀速度u流动,则其动能为mv2/2.若流动界面上流速分布不均,可近似按平均流速进行计算,或乘以动能校正系数。 3.内能:物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量总和。对于不克压缩流体,其内能主要是流体的分子动能,对于可压缩流体,其内能既有分子动能,也有分子位能,如果单位质量流体所含的内能为e,则质量为m的流体所具有的内能E=me。在热力计算时,我们对某一状态下的内能变化值。 4.流动功:如果设备中还有压缩机或泵等动力机械,则外接通过这类机械将对体系做功,是为功的输入,相反也有体系对外做功的情形,是为功的输出,人为规定,外界对体系做功为正,体系对外界做工为负。 5.汽蚀:水泵叶轮表面受到气穴现象的冲击和侵蚀产生剥落和损坏的现象。吸上真空高度达最大值时。液体就要沸腾汽化,产生大气泡,气泡随液流进入叶轮的高压区而被压缩,于是气泡又迅速凝成液体,体积急剧变小,周围液体就以极高速度冲向凝聚中心,造成几百个大气压甚至几千个大气压的局部应力致使叶片受到严重损伤。 6.汽蚀余量:指泵吸收入口处单位液体所具有的超过气化压力的富余能量, 7.泵的工作点:泵的特性曲线与某特定管路的特性曲线的交点。1.雷诺准数:Re=dup/u;是惯性力和黏性力之比,是表示流动状态的准数2努赛尔特准数:Nu:表示对流传热系数的准数3普兰特准数:Pr:表示物性影响的准数4格拉斯霍夫准数:Gr:表示自然对流影响的准数5粘度:液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子;运动黏度是流体的动力黏度与流体的密度之比6热传导:是通过微观粒子(分子·原子·电子等)的运动实现能量传递;热对流:指流体质点间发生相对位移而引起的热量传递过程;热辐射:指物体由于热的原因以电磁波的形式向外发射能量的过程7水分结冰率:食品冻结过程中水分转化为冰晶体的程度;最大冰晶生成区:水分结冰率变化最大的温度区域(-1~5摄氏度)8形状系数:表证非球形颗粒与球形颗粒的差异程度。9分隔尺度:指混合物各个局部小区域体积的平均值;分隔强度:指混合物各个局部小区域的浓度与整个混合物的平均浓度的偏差的平均值。10泵的工作点:将同一系统中的泵的特性曲线和某特定管路曲线,用同样的比例尺绘在一张图上,则这两条曲线的交点称为系统的工作点11温度场:某一瞬间空间中各点的温度分布;温度梯度:沿等温面法线方向上的温度变化率12颗粒群的频率分布曲线:将各个颗粒的相对应的颗粒百分含量绘制成曲线;累计分布曲线是将小于(大于)某粒径的颗粒占全部颗粒的百分含量与该粒径的关系绘制成表格或图形来直观表示颗粒粒径的累积分布13粉碎:利用机械力将固体物料破碎为大小符合要求的小块颗粒或粉末的单元操作;粉碎比“物料粉碎前后的平均粒度之比14床层空隙率:众多颗粒按某种方式堆积成固体定床时,床层中颗粒堆积的疏密程度可用空隙率表示,数值等于床层空隙体积与床层总体积之比15床层的比表面:单位床层体积具有的颗粒表面积16水力光滑管:当δ﹥Δ时,管壁的凸凹不平部分完全被黏性底层覆盖,粗糙度对紊流核心几乎没有影响,此情况成为水力光滑管17紊流核心:黏性影响在远离管壁的地方逐渐减弱,管中大部分区域是紊流的活动区,这里成为紊流核心18允许吸上真空高度Hsp:在吸上真空高度上留有一定的余量,所得的吸上真空高度19最大吸上真空高度Hsmax:当泵的吸入口处的绝对压力Ps降低到与被输送液体在输送温度下的饱和蒸汽压Pv相等时,吸上真空高度就达到最大的临界值,称为最大吸上真空高度20泵的几何安装高度(吸入高度):指泵的吸入口轴线与贮液槽液面间的垂直距离21壁效应:壁面附近的空隙率总是大于床层内部,因阻力较小,流体在近壁处的流速必大于床层内部22黑体:A=1表示投射到物体表面上的辐射能全部被该物体吸收;白体或镜体:R=1,表示投射到物体表面上的辐射能全被该物体反射;透热体:D=1表示投射到物体表面上的辐射能全部被透过;灰体:能以相同的吸收率且部分地吸收所有波长范围的辐射能的物体;特点:a,灰体的吸收率

《食品工程原理》习题答案

《食品工程原理》复习题答案 第一部分 动量传递(流动、输送、非均相物系) 一.名词解释 1.过程速率:是指单位时间内所传递的物质的量或能量。 2.雷诺准数:雷诺将u 、d 、μ、ρ组合成一个复合数群。Re 值的大小可以用来判断流动类型。 3.扬程(压头):是指单位重量液体流经泵后所获得的能量。 4.分离因数:同一颗粒在同种介质中的离心沉降速度与重力沉降速度的比值。 二.填空题 1.理想流体是指 的流体。(黏度为零) 2.对于任何一种流体,其密度是 和 的函数。(压力,温度) 3.某设备的真空表读数为200mmHg ,则它的绝对压强为 mmHg 。当地大气压强为101.33×103 Pa 。(560mmHg ) 4.在静止的同—种连续流体的内部,各截面上 与 之和为常数。(位能,静压能) 5.转子流量计读取方便,精确,流体阻力 ,不易发生故障;需 安装。(小,垂直) 6.米糠油在管中作流动,若流量不变,管径不变,管长增加一倍,则摩擦阻力损失为原来的______倍。(2) 7.米糠油在管中作层流流动,若流量不变,管径、管长不变,油温升高,粘度为原来的1/2 ,则摩擦阻力损失为原来的 倍。(1/2) 8.米糠油在管中作层流流动,若流量不变,管长不变, 管径增加一倍,则摩擦阻力损失为原来的_____倍。 (1/16) 9.实际流体在直管内流过时,各截面上的总机械能 守恒,因实际流体流动时有 。 (不,摩擦阻力) 10.任何的过程速率均与该过程的推动力成 比,而与其阻力成 比。(正,反) 11.在离心泵吸入管底部安装带吸滤网的底阀,底阀为 。(逆止阀) 12. 是为了防止固体物质进入泵内,损坏叶轮的叶片或妨碍泵的正常操作。(滤网) 13.离心泵工作时流体流速与压力的变化为: 高压流体泵壳通道 逐渐扩大的的离心力机械旋转所造成的气压流体被甩出后常压流体)()((低速流体、高速流体) 14.泵的稳定工作点应是 特性曲线与 特性曲线式M 的交点。(管路,泵或H-q v ) 15.产品样本上离心泵的性能曲线是在一定的 下,输送 时的性能曲线。 (转速,20℃的水或水) 16.用离心泵向锅炉供水,若锅炉中的压力突然升高,则泵提供的流量_____,扬程_________。 (减少;增大) 17.根据操作目的(或离心机功能),离心机分为过滤式、 和 三种类型。 (沉降式、分离式) 18. 常速离心机、高速离心机、超速离心机是根据 的大小划分的。(分离因数) 19.某设备进、出口的表压分别为 -12 kPa 和157 kPa ,当地大气压为101.3 kPa ,试求此设备进、出口的压力差为多少Pa 。 (答:-169kPa ) kPa 16915712-=--=-=?出进P P P 三.选择题 1.在连续稳定的不可压缩流体的流动中,流体流速与管道的截面积( A )关系。 A .反比 B.正比 C.不成比 2.当流体在园管内流动时,管中心流速最大,层流时的平均速度与管中心的最大流速的关系为( B )。A. u =3/2 u max B. u =1/2 u max C. u =0.8u max 3.湍流的特征有( C )。 A.流体分子作布朗运动中 B.流体质点运动毫无规则,且不断加速 C.流体质点在向前运动中,同时有随机方向的脉动 D.流体分子作直线运动 4.微差压计要求指示液的密度差( C )。

食品工程原理第一章习题

第一章 流体力这基础 1. 解:已知d 1 = 0.02m ,d 2 = 0.012,Δp = 800Pa ,ρ = 940kg/m 3 列出伯努利方程 根据题意:z 1 = z 2,Δp = p 1 – p 2,由此得: 2 -2 122u u p = ?ρ (1) 再与连续性方程联立 解得:u 2 = 1.398 m/s ,由此求得: )/(1058.134s m Q -?= 2.解:已知s m Q /10233-?=,d = 0.027m ,s Pa ??=-31012.2μ,ρ = 1030kg/m 3。 根据流量求出流速 s m u /49.3= 441011058.4Re ?>?= ∴ 此管内流动为紊流。 3.解:已知:s m Q /105.134-?=,d = 0.01m ,s Pa ??=-31040μ,ρ = 940kg/m 3,l = 27m 。 列出伯努利方程: ∑+++=++f L u p z u p z 2 g 2g 2 2 22211 1ρρ 根据已知条件得:z 1 = z 2,u 1 = u 2。由此得: ∑=?f L p ρ 根据流量求出流速,再判断流动状态 ∴ 此管内流动为层流。 计算1426.0=λ 根据范宁公式:∑?=2 2 u d l L f λ计算kg J L f /23.702=∑ 由此得: ∑=?= ?kPa L p f 6600ρ 4. 解:已知:u = 6 m/s ,d = 0.033m ,l = 100m 。s Pa ??=-3 1012μ,ρ = 1000kg/m 3

∑+++=++f L u p z u p z 2 g 2g 2 2 22211 1ρρ 根据已知条件得:z 1 = z 2,u 1 = u 2。由此得: ∑=?f L p ρ 判断流动状态 ∴ 此管内流动为紊流。管内壁为水力光滑管,所以可认为粗糙度Δ = 0。查摩擦因数图,求得:λ = 0.027。 代入范宁公式,得: kg J L f /73.1472=∑ 由此得: ∑=?=?=?kPa L p f 73.1472100073.1472ρ 5. 解:根据范宁公式: ∑?=22 u d l L f λ 已知液体作层流流动,∴ Re 64= λ,d d 2 1=' 计算流速和Re 变化的倍数 ∑∑=' f f L L 16 6. 解:根据范宁公式: ∑?=22 u d l L f λ 已知:Q Q 2=',得: u d Q d Q u 24 242 2=='= 'ππ Re 22e R =??= ' = 'μ ρμ ρu d u d 已知流体处于紊流区,圆管为光滑管,根据布拉休斯公式,可得: 841.0Re) 2(3164 .0)e (R 3164.025 .025.0=='=λ ()∑∑=??='?'='f f L u d l u d l L 36.32 2841.022 2λλ

相关主题
文本预览
相关文档 最新文档