当前位置:文档之家› 电子式互感器和电磁式互感器的区别

电子式互感器和电磁式互感器的区别

电子式互感器和电磁式互感器的区别
电子式互感器和电磁式互感器的区别

数字式互感器(又名:光电互感器,智能互感器、电子互感器)与传统的电磁互感器有着本质的区别。数字互感器输出的是数字信号,而电磁互感器是模拟信号(类似数字电视与模拟电视的区别)。它基于光电技术原理(这就是为什么也叫光电互感器了)是国家建设智能化电网的必备产品。传统的电流互感器原理是电磁感应,一次绕组串联在电力线路中,二次绕组外部回路接有测量仪器或继电保护及自动控制装置,利用高、低压绕组之间的电磁耦合,将信息从一次侧传到二次侧。这种结构要求在铁芯与绕组间以及一、二次绕组之间有足够耐压强度的绝缘层,以保证所有的低压设备与高电压相隔离。随着电力系统传输的电力容量的增加,电压等级越来越高,这样互感器的绝缘结构越来越复杂,体积和重量加大,产品的造价也越来越高。例如,常规的油浸式电流互感器,500kV产品的价格要比300kV的价格增加一倍。又因电磁型电流互感器的铁心具有饱和非线性,当电力系统发生短路故障时,高幅值的短路电流使互感器饱和、输出的二次电流严重畸变,造成保护拒动,使电力系统发生严重事故。互感器的饱和引起波形畸变,而且其频带响应特性较差,频带窄,系统高频响应差,而导致新型的基于高频暂态分量的快速保护的实现存在困难等一系列隐患。随着光电子技术的迅速发展,科技人员已研制出利用光学传感技术和电子学原理相结合的电子式电流互感器,简称数字互感器或光电互感器。数字互感器在原理与传统的互感器完全不同,数字互感器是利用光电子技术和光纤传感技术来实现电力系统电压、电流测量的新型互感器。它是光学电压互感器(OVT)、光学电流互感器(OCT)、组合式光学互感器等各种光学互感器的通称。基于晶体材料光电效应的教字式光电互感器,将取代现有基于铜材电磁效应的铁磁式互感器,已经成为业界的共识。我国研制已出220KV全电压、单晶体、纵向调制结构模式的光电互感器原理性样机,为产业化开发奠定了良好的基础。分类:光电互感器:包括有源型电子式电流互感器、无源磁光玻璃电子式电流互感器两种。有源型电子式电流互感器:有源型电子式电流互感器特点是一次传感器为空心线圈,高压侧电子器件需要由电源供电方能工作。其原理如图所示:

有源型电子式电流互感器

无源磁光玻璃电子式电流互感器:无源磁光玻璃型电子式电流互感器特点是一次传感器为磁光玻璃,无需电源供电。其原理如图所示:

无源磁光玻璃电子式电流互感器

优点:与传统的电磁感应式电流互感器相比,光电式电流互感器具有以下优点:(1)优良的绝缘性能,造价低。电磁感应式电流互感器绝缘结构复杂,其造价随电压等级呈指数关系上升。在光电式电流互感器中,高压侧信息是通过由绝缘材料做成的玻璃光纤而传输到低压侧的,其绝缘结构简单,造价一般随电压等级升高呈线性地增加。(2)不含铁心,不存在磁饱和、铁磁谐振等问题。光电式电流互感器运行暂态响应好、稳定性好,保证了系统运行的高可靠性。(3)电磁感应式电流互感器二次回路不能开路,低压侧存在开路高电压危险。由于光电式电流互感器的高压与低压之间只存在光纤联系,而光纤具有良好的绝缘性能,因此可保证高压回路与二次回路在电气上完全隔离,低压侧没有因开路而产生高压的危险,同时因没有磁耦合,消除了电磁干扰对互感器性能的影响。(4)暂态响应范围大,测量精度高。电网正常运行时,电流互感器流过的电流并不大,但短路电流越来越大。电磁感应式电流互感器因存在磁饱和问题,难以实现大范围测量,并在一个通道同时满足高精度计量和继电保护的需要。光电式电流互感器有很宽的动态范围,一个测量通道额定电流可测到几十安培至几千安培,过电流范围可达几万安培。因此既可同时满足计量和继电保护的需要,又可免除电磁感应式电流互感器多个测量通道的复杂结构。(5)频率响应范围宽。光电式电流互感器传感头部分的频率响应取决于光纤在传感头上的渡越时间,实际能测量的频率范围主要决定于电子线路部分。现代光电式电流互感器的结构已经可以测出高压电力线路上的谐波。而电磁感应式电流互感器是难以进行这诸多方面工作的。(6)没有因充油而产生的易燃、易爆炸等危险。光电式电流互感器绝缘结构简单,可以不采用油绝缘,在结构设计上就可避免这方面的危险。(7)体积小、重量轻。光电式互感器的传感头本身的重量一般小于1KG。(8)适应了电力计量与保护数字化、微机化和自动化发展的潮流。光电式电流互感器一般以数字量输出,这将最佳地适应日趋广泛采用的微机保护、电力计量数字化及自动化发展的潮流。国际上德国的数字互感器发展的比较成熟。近几年来,随着国外光电互感器产品的出现,以及国内陆续安装试用国外光电互感器,光电互感器的开发受到了产业部门和企业的重视。据有关资料分析,我国的光电互感器产业的市场潜力可达每年20亿元以上,但目前国内还没有能够提供正规产品的企业,但是随着中国电谷等地的电力发展我们必定能够赶超世界电力技术尖峰。

电子式互感器简介

电子式互感器简介 电子式电流电压互感器及智能电器产品简介: 随着计算机技术和电力设备二次系统测量、保护装置的数字化发展,电力系统对测量、保护、控制和数据传输智能化、自动化及电网安全、可靠和高质量运行的要求越来越高,具有测量、保护、监控、传输等组合功能的智能化、小型化、模块化、机电一体化电力设备,对电网安全、可靠和高质量运行具有重要意义。这已成为国内外著名电力设备生产企业进行产品研发的主流。 传统的电磁式电流电压互感器难以直接完成计算机技术对电流电压完整信息进行数字化处理的要求,难以实现电网对电量参数变化的在线监测。阻碍了电力系统自动化向更高水平发展,因此寻求一种能与数字化网络配套使用的新型电流电压互感器成为电网安全高效运行的迫切需要。 电子式电流电压互感器,二次输出为小电压信号,无需二次转换,可方便地与数字式仪表、微机保护控制设备接口,实现计量、控制、测量、保护和数据传输的功能,且消除了传统电磁式电流互感器因二次开路、电压互感器二次短路给电力系统设备和人身安全带来的故障隐患。 作为传统电磁式互感器理想的换代产品,电子式互感器可广泛用于中压领域电力监测、控制、计量、保护系统、工矿企业、高层建筑、配、变电等场所,能有效降低变电站(配电所)的建设成本和运行维护成本,提高电网运行质量、安全可靠性和自动化水平,因其几乎不消耗能量、无铁心(或仅含小铁心)、且减少了许多有害物质的使用而使其成为节能和环保产品。电子式电流电压互感器在发达国家已被广泛采用,国内也有越来越多的产品投入使用。 电子式电流电压互感器原理: 电子式电流互感器采用罗哥夫斯基(Rogowski)线圈和轻载线圈的基本原理。 Rogowski线圈由于采用非磁性的骨架,不存在磁饱和现象。一次电流通过Rogowski线圈得到了与一次电流I1的时间微分成比例的二次电压E,将该二次电压E进行积分处理,获得与一次电流成比例的电压信号,通过微处理器将该信号进行变换、处理,即可将一次电流信息变成模拟量和数字量输出。 轻载线圈它代表着经典感应电流互感器的发展方向。它由一次绕阻、小铁芯和损耗最小化的二次绕组组成。二次绕组上连接着分流电阻Ra,二次电流I2在分流电组Ra两端的电压降U2与一次电流I1成比例,电子式电流互感器比传统的电磁式电流互感器拥有更大的电流测量范围。 电子式电压互感器采用电阻分压原理。 互感器由高压臂电阻、低压臂电阻、屏蔽电极、过电压保护装置组成。通过分压

电子式互感器分类、特点及应用现状分析

电子式互感器的现状与发展前景 随着电力传输容量的增加,运行电压等级越来越高,传统的电磁式电流,电压互感器暴露出如绝缘要求高,磁饱和、铁磁谐振、动态范围小、频带窄以及有油易燃、易爆炸等一系列缺点。基于光学和电子学原理的电子式电压、电流互感器(分别简称为EVT和ECT)经过30多年的发展以其独特的优点,成为最有发展前途的一种超高压条件下电压、电流的测量设备。 早期的电子式互感器一次侧和二次侧通过光纤来传输信号,也称为光电式互感器。2002年,IEC根据新型电子式电压、电流互感器的发展趋势,制定了关于EVT的IEC60044-7标准和ECT的IEC60044 -8标准,明确了电子式互感器的定义及相成的技术规范。 根据IEC60044-7标准,EVT采用电阻分压器.电容分压器或光学装置作为一次转换部件,利用光纤怍为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 根据IEC600448标准,ECT采用传统电流互感器(CT)、霍尔传感器、Rogowski线圈或光学装置作为一次转换部件,利用光纤作为一次转换器和二次转换器之间的传输系统,并装有电子器件作测量信号的传输和放大,具有模拟量电压输出或数字量输出。 电子式互感器的分类 几十年来,电子式互感器产品的种类已经被开发出很多,根据原理的不同,电子式互感器可分为无源式和有源式2类。所谓无源式电子互感器是指高压侧传感头部分不需要供电电源的电于式互感器,而有源式电子互感器是指传感头部分需要供电电源的电子式互感器。 无源式电子互感器的优点是在传感头部分不需要复杂的供电装置,整个系统的线性度比较好,缺点是传感头部分有复杂而不稳定的光学系统,容易受到多种环境因素的影响,影响了实用化的进程,虽然各国学者不断的提出新方法以提高测量准确度,备种方法都在实验室条件下取得了一定成果,但都不同程度地存在着通用性差,装置复杂等缺点,未能有效克服这个困难,其研究还有待进一步深入。 有源式电子式互感器的原理大都比较简单,已被广泛接受。无源式EVT主要利用传统的电阻分压器,电容分压器以及单个电容器测量电压值。在有源式ECT中,作为一次电流采样传感头的元件有传统的电磁式电流互感器、分流器和Rogowski线圈等。

电子式电流互感器相关问题汇总

电子式电流互感器的定义 2000年,IEC根据基于光学和电子学原理的电流互感器(ECT)的发展趋势,制定了关于ECT的IEC60044-8标准,明确电子式电流互感器(Electronic Current Transformer: ECT)指采用传统电流互感器(CT),霍尔传感器、Rogowski线圈或光学装置作为一次转换部分,利用光纤作为一次转换器和一次转换器之间的传输系统,并且装有电子器件作测量信号的传输和放大,其输出可以是模拟量或数字量。由于其中某些类型要利用光学器件对电流传感且全部利用光纤传输信号,故电子式电流互感器亦称为光学电流互感器(Optical Current Transformer: OCT) 电磁互感器的优点在于性能比较稳定,适合长期运行.并且具有长期的运行经验。 电磁互感器的缺点: 磁式电流4.感器(Current Transformer: CT)己暴露出下述内在的致命弱点:1绝缘问题:传统电磁式电流互感器采用的空气绝缘,油纸绝缘,气体绝缘乃至串级绝缘都不能满足随电压等级日益增长而更为苛刻的运行条件,在超高压等级使用电磁式电流互感器会产生绝缘击穿的潜在危险;2误差问题:电磁式电流互感器的闭合铁芯由于电流的非周期分量作用而饱和,导磁率急剧降低,使误差在过渡过程中上升到不能允许的程度3铁磁谐振效应:由于电流互感器电感饱和作用引起的持续性、高幅值谐振过电压;4电磁式互感器含有铁芯,因此动态测量的范围小,频带窄面对暂态过程测量性能差;此外还有,输出端开路时导致高压危险; 体积重量均大,成本过高; 易产生干扰;不易与数字设备连接;因有绝缘油而导致易燃易爆炸等。已难以满足电力系统在线检测,高精度故障诊断,电力数字网发展需要 电子互感器的优点 1)数字化输出,简化了互感器与二次设备的接口,避免了信号在传输、储存 和处理中的附加误差,提高了系统可靠性。 2)信号光纤传输,抗电磁干扰性能好,在强电磁环境中保证信号的精确性 和可靠性。 3)无铁芯,不存在磁饱和、铁磁谐振现象,线性度好,绝缘简单,动态测量 范围大、频带宽、精度高。而且体积小、重量轻、低成本,减小了变电 站的面积,。 4)低压没有开路危险,没有因存在绝缘油而产生的易燃、易爆等危险 电子式电流互感器没有磁饱和、铁磁谐振等问题由于电磁式电流互感器使用了铁心,不可避免地存在磁饱和、铁磁共振和磁滞效应等问题,而电于式电流互感器采用的是磁光玻璃、光纤或电子线路。不存在这方面的问题。 电子式电流互感器绝缘结构简单,绝缘性能好。电磁式电流互感器的绝缘结构非常复杂,尤其是对于电压等级比较高的电流互感器来说,绝缘部分要消耗大量的电工材料,体积也非常庞大。而电子式电流互感器由于采用了光纤和比较轻便的绝缘子支往,其绝缘结构比较简单,绝缘性能也比较好、 (3)电子式电流互感器动态测量范围大,精度高。电网正常运行时,流过电流互感器的电流并不大,但短路电流一般很大,而且随着电网容量的增加,辣路故障时的电流越来越大。电磁式电流互感器f}I为存在磁饱和问题,难以实现大范围测量,不能同时满足高精度计量和继电保护的需要。电子式电流互感器有很宽的动态范围,测量额定电流的范围从几十安培至几千安培,过电流范围可达几万安墙。个电子式电流互感器可同时满足计量和继电保护的

电子式互感器的应用分析

电子式互感器的应用分析 摘要: 互感器是电力系统中不可缺少变电站的重要设备,按照一定的比例关系将一 次回路上的高电压和大电流变为可直接输入测量仪表和继电保护设备的低电压和 小电流,实现二次设备与高压部分的隔离,保证设备和人身安全。 一、常规互感 1.1常规互感器概述 传统的电力系统中一直采用基于电磁感应原理的电磁式电流互感器(CT)和 电磁式电压互感器(PT),为二次计量和保护等设备提供电流及电压信号,CT的 额定输出信号为1A或5A,PT的额定输出信号为100V或100/√3V。它们的原理 和结构与变压器相似,在铁芯上绕有一、二次绕组,靠一、二次绕组之间的电磁 耦合将信号从一次侧传到二次侧。电磁型互感器的工作原理如下图 额定一次电流与额定二次电流之比称为电磁型互感器的额定电流比,用Kn表示。在理想情况下,二次电流与一次电流成正比,相位差在连接正确时为零: 但实际上一次磁动势中有一小部分将作为励磁磁动势用于产生铁心中主磁通,不能全部转化为二次磁动势。故励磁电流是造成电磁型互感器误差的主要原因, 减小误差必须减小励磁电流。 1.2电子式互感器与常规互感器相比的优势 随着电力系统的发展,继电保护、电气设备自动化程度不断提高,传统电磁 式互感器的缺点多。电子式互感器弥补常规互感器的缺陷,解决电力系统难题。 (1)高低压完全隔离,安全性高,具有优良的绝缘性能。 (2)不含铁心,消除了磁饱和及铁磁谐振等问题。 (3)抗电磁干扰性能好。 (4)动态范围大,测量精度高 (5)频率响应范围宽。 (6)没有因充油而潜在的易燃、易爆炸等危险。 (7)体积小、重量轻。 (8)性价比好。 综上所述,电子式互感器与常规互感器相比具有诸多优势,故选用电子式互 感器。 二、电子式互感器 2.1电子式互感器综述 电子式互感器是互感器传感准确化、传输光纤化和输出数字化发展趋势的必然。便于向数字化、微机化发展等诸多优点,是智能变电站的关键技术之一。 其中,发展较成熟、工程上有应用的是罗氏线圈型电流互感器(下文简写为RCT)用于保护绕组,低功率线圈型电流互感器(下文简写为LPCT)用于测量绕组,全光纤型电流互感器(下文简写为FOCT)和分压型电子式电压互感器(下文简写为EVT)。 2.2有源电子式互感器 有源式电子互感器一次信号变化仍是电气量之间的变化,不涉及到光等其它 物理量,这一点与常规互感器一致。 2.3 无源电子式互感器

电子式互感器的原理与比较

电子知识 随着光纤传感技术、光纤通信技术的飞速发展,光电技术在电力系统中的应用越来越广泛。电子式互感器就是其中之一。电子式互感器具有体积小、重量轻、频带响应宽、无饱和现象、抗电磁干扰性能佳、无油化结构、绝缘可靠、便于向数字化、微机化发展等诸多优点,将在数字化变电站中广泛应用。 电子式互感器的诞生是互感器传感准确化、传输光纤化和输出数字化发展趋势的必然结果。电子式互感器是数字变电站的关键装备之一。传感方法对电子式互感器的结构体系有很大影响。光学原理的电子式互感器结构体系简单,是无源的电子式互感器。电磁测量原理的电子式互感器是有源电子式互感器。 1电子互感器的优点 1.1高低压完全隔离,安全性高,具有优良的绝缘性能,不含铁芯,消除了磁饱和及铁磁谐振等问题 电磁式互感器的被测信号与二次线圈之间通过铁芯耦合,绝缘结构复杂,其造价随电压等级呈指数关系上升。非常规互感器将高压侧信号通过绝缘性能很好的光纤传输到二次设备,这使得其绝缘结构大大简化,电压等级越高其性价比优势越明显。非常规互感器利用光缆而不是电缆作为信号传输工具,实现了高低压的彻底隔离,不存在电压互感器二次回路短路或电流互感器二次回路开路给设备和人身造成的危害,安全性和可靠性大大提高。 电磁式互感器由于使用了铁芯,不可避免地存在磁饱和及铁磁谐振等问题。非常规互感器在原理上与传统互感器有着本质的区别,一般不用铁芯做磁耦合,因此消除了磁饱和及铁磁谐振现象,从而使互感器运行暂态响应好、稳定性好,保证了系统运行的高可靠性。

1.2抗电磁干扰性能好,低压侧无开路高压危险 电磁式电流互感器二次回路不能开路,低压侧存在开路危险。非常规互感器的高压侧和低压侧之间只存在光纤联系,信号通过光纤传输,高压回路与二次回路在电气上完全隔离,互感器具有较好的抗电磁干扰能力,低压侧无开路引起的高电压危险。 1.3动态范围大,测量精度高,频率响应范围宽 电网正常运行时电流互感器流过的电流不大,但短路电流一般很大,而且随着电网容量的增加,短路电流越来越大。电磁式电流互感器因存在磁饱和问题,难以实现大范围测量,同一互感器很难同时满足测量和继电保护的需要。非常规互感器有很宽的动态范围,可同时满足测量和继电保护的需要。 非常规互感器的频率范围主要取决于相关的电子线路部分,频率响应范围较宽。非常规互感器可以测出高压电力线上的谐波,还可以进行电网电流暂态、高频大电流与直流的测量,而电磁式互感器是难以进行这方面工作的。 1.4数据传输抗干扰能力强 电磁式互感器传送的是模拟信号,电站中的测量、控制和继电保护传统上都是通过同轴电缆将电气传感器测量的电信号传输到控制室。当多个不同的装臵需要同一个互感器的信号时,就需要进行复杂的二次接线,这种传统的结构不可避免地会受到电磁场的干扰。而光电式互感器输出的数字信号可以很方便地进行数据通信,可以将光电式互感器以及需要取用互感器信号的装臵构成一个现场总线网络。实现数据共享,从而节省大量的二次电缆;同时光纤传感器和光纤通信网固有的抗电磁干扰性能,在恶劣的电站环境中更是显示出了无与伦比的优越性,光纤系统取代传统的电气系统是未来电站建设与改造的必然趋

NAEG系列全光纤电流互感器介绍V

N A E G系列全光纤电流互 感器介绍V Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

NAE-GL系列 全光纤电子式电流互感器应用与校验

目录

1 NAE-GL系列产品的总体方案 总体方案 对于数字化变电站过程层的传感设备主要包括三个部分内容:电子式电流互感器,电子式电压互感器和合并单元,如图所示。而对于电子式电流、电压互感器而言也分别包括了传感部分和电气部分。 目前市场上电子式电流互感器产品主要有低功耗线圈实现的电子式电流互感器(LPCT)、用罗氏线圈来实现的有源型电子式电流互感器、磁光玻璃实现的电子式电流互感器以及基于全光纤的电子式电流互感器等几类,都有一些实际运行或挂网的经验;电子式电压互感器的产品主要有电容分压式电子互感器,电感变压式电子互感器两类,工程化过程中也有一些实际运行的经验。 图过程层传感设备功能块框图

全光纤电子式互感器应用功能与连接 图示出了过程层传感设备应用功能与连接示意图。可以看出,电流光纤敏感环通过光纤与电流电气单元相连接,电压敏感源通过屏蔽电缆(对电容分压式电子互感器而言)或光缆(对光晶体作为敏感源而言)与电压电气单元相连。电气单元一方面接受来自合并单元的同步时钟信号对数据进行同步,另一方面将测定的数据传送到合并单元中。电气单元还留有通讯接口,用于同当地的手持验证终端进行信息交换,用来查验电流、电压的数值等数据。合并单元接受来自外部的时钟对时信号,也发出多路时钟同步信号用于电气单元内数据同步;合并单元接受来自多路电气单元的数据,处理后输出多路数据信号用于相关的保护和测量等使用。

电子式互感器在智能电网建设中的应用

电子式互感器在智能电网建设中的应用研究 李红岩 周德志 (1.辽宁新创达电力设计研究有限公司 辽宁 沈阳 110179;2.沈阳电力勘测设计院 辽宁 沈阳 110003) 摘 要: 电子式互感器相比与传统电磁式互感器在智能电网中有着诸多的优点,对电子式互感器分类、工作原理进行简单介绍,阐述电子式互感器在智能电网中的应用现状及运维中暴露的问题,并提出解决方案。 关键词: 电子式电流互感器;电子式电压互感器;智能电网;智能变电站 中图分类号:TM45 文献标识码:A 文章编号:1671-7597(2012)1120116-02 表1 电子式电压互感器技术性能比较表 1 电子式互感器的简介 电子式互感器是具有模拟量电压输入或数字量输出,共频 率为15Hz~100Hz的电气测量仪器和继电保护装置使用。其中 图1为数字量输出型电子式互感器的通用图框。 表2 电子式电流互感器技术性能比较表 图1 单相电子式互感器的通用图框 根据IEC和国家标准,电子式互感器可分为有源型和无源 型两种。在图1中,若一次变换器是电子部件,需要一次电源供 电,则称此类电子式互感器为有源式电子式互感器;若一次传 感器是光学原理的,光纤传输系统可以直接将光测量信送出, 无需一次变换器,则称此类电子式互感器为无源式电子式互感 器。其中图2为电子式互感器的分类示意图。 图2 电子式互感器的分类示意图 2 电子式互感器的技术特点及性能比较 电子式互感器与常规互感器相比,具有消除磁饱和现象、 对电力系统故障响应快、消除铁磁谐振、绝缘性能优良、能适 应电能计量与保护数字化发展、动态范围大、频率响应范围 宽、经济型好等优点。其中不同原理的电子式互感器也具有其 自身的技术特点。 在工程应用中,不用原理的电子式互感器有其自身的优势 和弊端。表1、表2中将对电子式电压互感器和电子式电流互感 器根据其分类进行在性能上进行比较。

(完整版)电子式互感器的原理与比较

电子式互感器的原理与比较 随着光纤传感技术、光纤通信技术的飞速发展,光电技术在电力系统中的应用越来越广泛。电子式互感器就是其中之一。电子式互感器具有体积小、重量轻、频带响应宽、无饱和现象、抗电磁干扰性能佳、无油化结构、绝缘可靠、便于向数字化、微机化发展等诸多优点,将在数字化变电站中广泛应用。 电子式互感器的诞生是互感器传感准确化、传输光纤化和输出数字化发展趋势的必然结果。电子式互感器是数字变电站的关键装备之一。传感方法对电子式互感器的结构体系有很大影响。光学原理的电子式互感器结构体系简单,是无源的电子式互感器。电磁测量原理的电子式互感器是有源电子式互感器。 1电子互感器的优点 1.1高低压完全隔离,安全性高,具有优良的绝缘性能,不含铁芯,消除了磁饱和及铁磁谐振等问题 电磁式互感器的被测信号与二次线圈之间通过铁芯耦合,绝缘结构复杂,其造价随电压等级呈指数关系上升。非常规互感器将高压侧信号通过绝缘性能很好的光纤传输到二次设备,这使得其绝缘结构大大简化,电压等级越高其性价比优势越明显。非常规互感器利用光缆而不是电缆作为信号传输工具,实现了高低压的彻底隔离,不存在电压互感器二次回路短路或电流互感器二次回路开路给设备和人身造成的危害,安全性和可靠性大大提高。 电磁式互感器由于使用了铁芯,不可避免地存在磁饱和及铁磁谐振等问题。非常规互感器在原理上与传统互感器有着本质的区别,一般不用铁芯做磁耦合,因此消除了磁饱和及铁磁谐振现象,从而使互感器运行暂态响应好、稳定性好,保证了系统运行的高可靠性。 1.2抗电磁干扰性能好,低压侧无开路高压危险 电磁式电流互感器二次回路不能开路,低压侧存在开路危险。非常规互感器的高压侧和低压侧之间只存在光纤联系,信号通过光纤传输,高压回路与二次回路在电气上完全隔离,互感器具有较好的抗电磁干扰能力,低压侧无开路引起的高电压危险。 1.3动态范围大,测量精度高,频率响应范围宽 电网正常运行时电流互感器流过的电流不大,但短路电流一般很大,而且随着电网容量的增加,短路电流越来越大。电磁式电流互感器因存在磁饱和问题,难以实现大范围测量,同一互感器很难同时满足测量和继电保护的需要。非常规互感器有很宽的动态范围,可同时满足测量和继电保护的需要。

电子式互感器原理与应用概述

电子式互感器原理与应用概述 摘要:电子式互感器是随着现代技术发展新型互感器,因其特殊的技术优势将逐步替代传统的电磁式互感器产品。本文将着重从电子式互感器的原理与应用方面进行深入的分析,以供参考。 关键词:电子式互感器原理应用 1、引言 随着计算机技术和电力设备二次系统测量、保护装置的数字化发展,电力系统对测量、保护、控制和数据传输智能化、自动化及电网安全、可靠和高质量运行的要求越来越高,具有测量、保护、监控、传输等组合功能的智能化、小型化、模块化、机电一体化电力设备,对电网安全、可靠和高质量运行具有重要意义。这已成为国内外著名电力设备生产企业进行产品研发的主流。 传统的电磁式电流电压互感器难以直接完成计算机技术对电流电压完整信息进行数字化处理的要求,难以实现电网对电量参数变化的在线监测,阻碍了电力系统自动化向更高水平发展,因此寻求一种能与数字化网络配套使用的新型电流电压互感器成为电网安全高效运行的迫切需要。 2、电子式互感器 电子式互感器(electronic instrument transformer)是由传感元件和数据处理单元组成的互感器,用以测量和监控电流、电压等参数。由于其传感机理先进,绝缘相对简单,动态范围大,频率响应宽,准确度高,适应电能计量、保护数字化和自动化发展方向,将成为传统电磁式互感器的换代产品。 电子式电流电压互感器,二次输出为小电压信号,无需二次转换,可方便地与数字式仪表、微机保护控制设备接口,实现计量、控制、测量、保护和数据传输的功能,且消除了传统电磁式电流互感器因二次开路、电压互感器二次短路给电力系统设备和人身安全带来的故障隐患。 作为传统电磁式互感器理想的换代产品,电子式互感器可广泛用于中压领域电力监测、控制、计量、保护系统、工矿企业、高层建筑、配、变电等场所,能有效降低变电站(配电所)的建设成本和运行维护成本,提高电网运行质量、安全可靠性和自动化水平,因其几乎不消耗能量、无铁心(或仅含小铁心)、且减少了许多有害物质的使用而使其成为节能和环保产品。电子式电流电压互感器在发达国家已被广泛采用,国内也有越来越多的产品投入使用。 3、电子式互感器的原理 3.1 电子式电流电压互感器原理 电子式电流互感器采用罗哥夫斯基(Rogowski)线圈和轻载线圈的基本原理。Rogowski线圈由于采用非磁性的骨架,不存在磁饱和现象。一次电流通过Rogowski线圈得到了与一次电流I1的时间微分成比例的二次电压E,将该二次电压E进行积分处理,获得与一次电流成比例的电压信号,通过微处理器将该信号进行变换、处理,即可将一次电流信息变成模拟量和数字量输出。轻载线圈它代表着经典感应电流互感器的发展方向。它由一次绕阻、小铁芯和损耗最小化的二次绕组组成。二次绕组上连接着分流电阻Ra,二次电流I2在分流电组Ra两端的电压降U2与一次电流I1成比例,电子式电流互感器比传统的电磁式电流互感器拥有更大的电流测量范围。 3.2 电子式电压互感器采用电阻分压原理

电子式电流电压互感器原理

电子式电流电压互感器原理 来源:西安高研电器有限责任公司时间:2010-06-21 阅读:50次标签: 电子式电流电压互感器原理: 电子式电流互感器采用罗哥夫斯基(Rogowski)线圈和轻载线圈的基本原理。信息来源:https://www.doczj.com/doc/6115661564.html, Rogowski线圈? 由于采用非磁性的骨架,不存在磁饱和现象。原理图如图1所示。一次电流通过Rogowski线圈得到了与一次电流I1的时间微分成比例的二次电压E,将该二次电压E进行积分处理,获得与一次电流成比例的电压信号,通过微处理器将该信号进行处理、变换、分析,即可将一次电流信息变成小电压模拟量和数字量输出。 图1电子式电流互感器Rogowski线圈原理图 轻载线圈? 它代表着经典感应电流互感器的发展方向,其基本原理如图2所示。 图2? 轻载型电子式电流互感器原理图信息来源:https://www.doczj.com/doc/6115661564.html,

它由一次绕组、小铁芯和损耗最小化的二次绕组组成。二次绕组上连接着分流电阻Ra,二次电流I2在分流电阻Ra两端的电压降U2与一次电流I1成比例,电子式电流互感器比传统的电磁式电流互感器拥有更大的电流测量范围。 电子式电压互感器采用电阻分压原理,其原理如图3所示。互感器由高压臂电阻、低压臂电阻、屏蔽电极、过电压保护装置组成。通过分压器将一次电压转换成与一次电压和相位成比例的小电压信号。采用屏蔽电极的方法改善电场分布状况和杂散电容的影响,在二次输出端并联一个过电压保护装置,防止在二次输出端开路时将二次侧电压提高。也可采用电容(阻容)分压的原理制作电子式电压互感器。信息来源:https://www.doczj.com/doc/6115661564.html, 图3 电子式电压互感器原理图

电子式互感器的功能及应用

电子式互感器的功能 带宽 应该具备合理的带宽,其带宽应能覆盖所需测量的变频电量的基波和关注的谐波的频率。 采样频率 采样频率应该高于带宽的两倍以上,对于变采样频率的变频功率传感器,当采样频率低于传感器带宽2倍时,应当开启适当的防混叠滤波器,限制输入信号的带宽。 精度 作为变频电量测量的传感器/变送器,不仅仅在工频下可以获得准确度指标,而是应该在标称频率范围之内,误差应小于标称准确级对应的误差限值。 由于变频功率传感器用于功率测量,其电压、电流的角差不可忽视。 波峰因数 由于变频器输出PWM波的波峰因数不是固定值,而是电压越低时,波峰因数越大,因此,变频功率传感器应能准确测量较高峰值因数的电压、电流信号、若不具备验证条件时,可以用较低的电压或较小的电流输入传感器,检验其测量准确度,一般而言,若能在较宽的幅值范围内实现高精度测量,即可在较高的波峰因数下实现较高的测量准确度。 电子式互感器的应用 首先,变频功率传感器适用于工频电量测量和计量。其次,变频功率传感器适用于带宽范围内的任意电参量的测量和计量。广泛应用于电力推进、电机、风机、水泵、风力发电、轨道交通、电动汽车、变频器、特种变压器、荧光灯、LED照明等领域的产品检试验、能效评测及电能质量分析。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.doczj.com/doc/6115661564.html,/

电子式互感器和电磁式互感器的区别

数字式互感器(又名:光电互感器,智能互感器、电子互感器)与传统的电磁互感器有着本质的区别。数字互感器输出的是数字信号,而电磁互感器是模拟信号(类似数字电视与模拟电视的区别)。它基于光电技术原理(这就是为什么也叫光电互感器了)是国家建设智能化电网的必备产品。传统的电流互感器原理是电磁感应,一次绕组串联在电力线路中,二次绕组外部回路接有测量仪器或继电保护及自动控制装置,利用高、低压绕组之间的电磁耦合,将信息从一次侧传到二次侧。这种结构要求在铁芯与绕组间以及一、二次绕组之间有足够耐压强度的绝缘层,以保证所有的低压设备与高电压相隔离。随着电力系统传输的电力容量的增加,电压等级越来越高,这样互感器的绝缘结构越来越复杂,体积和重量加大,产品的造价也越来越高。例如,常规的油浸式电流互感器,500kV产品的价格要比300kV的价格增加一倍。又因电磁型电流互感器的铁心具有饱和非线性,当电力系统发生短路故障时,高幅值的短路电流使互感器饱和、输出的二次电流严重畸变,造成保护拒动,使电力系统发生严重事故。互感器的饱和引起波形畸变,而且其频带响应特性较差,频带窄,系统高频响应差,而导致新型的基于高频暂态分量的快速保护的实现存在困难等一系列隐患。随着光电子技术的迅速发展,科技人员已研制出利用光学传感技术和电子学原理相结合的电子式电流互感器,简称数字互感器或光电互感器。数字互感器在原理与传统的互感器完全不同,数字互感器是利用光电子技术和光纤传感技术来实现电力系统电压、电流测量的新型互感器。它是光学电压互感器(OVT)、光学电流互感器(OCT)、组合式光学互感器等各种光学互感器的通称。基于晶体材料光电效应的教字式光电互感器,将取代现有基于铜材电磁效应的铁磁式互感器,已经成为业界的共识。我国研制已出220KV全电压、单晶体、纵向调制结构模式的光电互感器原理性样机,为产业化开发奠定了良好的基础。分类:光电互感器:包括有源型电子式电流互感器、无源磁光玻璃电子式电流互感器两种。有源型电子式电流互感器:有源型电子式电流互感器特点是一次传感器为空心线圈,高压侧电子器件需要由电源供电方能工作。其原理如图所示: 有源型电子式电流互感器 无源磁光玻璃电子式电流互感器:无源磁光玻璃型电子式电流互感器特点是一次传感器为磁光玻璃,无需电源供电。其原理如图所示:

电子式互感器及其在智能变电站中应用

电子式互感器及其在智能变电站中的应用 摘要:详细介绍了关于电子式互感器的定义、分类及原理,分析了有源式和无源式电子式互感器的类型、原理及其存在的主要问题,并就其技术特征进行对比,讨论了电子式互感器是如何在智能变电站中起到关键的作用以及未来电子式互感器的发展趋势。 关键词:智能电网智能变电站电子式互感器有源式无源式发展趋势 中图分类号:tm76 文献标识码:a 文章编 号:1674-098x(2012)04(a)-0087-02 application of electronic transformer in smart substation feng yi-xin (college of electrical engineering and automation,fuzhou university,fuzhou 350108,china) abstract:introduction is made to the concepts,classifications of electronic transformer,while analyse is made to the comparison between active type and passive type due to the classifications,axioms and the main problems.the development trend of electronic transformers in the future will play a vital part in the construction of smart substation,even in the smart grid. key words:smart grid;smart substation;electronic transformer;development trend

电子式互感器在电力工程中的应用

电子式互感器在电力工程中的应用 摘要:高压电力互感器的作用主要是对电力系统进行保护、测量、计量,为电 力系统提供电压、电流信号。互感器的安全性和精度,直接影响着电力系统的稳定、安全运行,是电力系统的重要元件。当前,电力系统最高运行电压已达 750kV等级,1000kV也已试运行,高压直流已达到±800kV。电力系统中自动化技 术正努力朝向数字化的方向发展,这代表了电力系统的发展方向。 关键词:电子式互感器;电力工程;应用 一、电子式高压电力互感器研究的意义 (一)传统互感器的缺点 电力系统的安全稳定运行的先决条件是系统中电流、电压的准确测量。对电流、电压的测量精度,直接影响着电力系统的计算分析、系统监测诊断以及电能 计量的准确性。电流互感器以及电压互感器构建成整体的电力互感器,能够维持 电力设备进行继电保护信号的获取以及电能计量。近些年,电力系统不断提升输 变电容量,传统电磁式互感器已经不能满足运行要求,在使用时也出现了较多的 弊端:(1)复杂绝缘结构,笨重的设备体积,较低的性价比,尤其在超高压系统,无法满足其热稳定以及动稳定的要求。传统互感器是通过油浸纸作为设备的 绝缘介质,造成了极大的安全隐患,可能会出现燃爆情况。(2)传统电磁式传 感器在进行稳态电流的测量时,具有较好的线性度,但是暂态电流含有直流分量,容易导致电流互感器饱和,出线非线性失真,较大地影响了测量的准确度。(3)传统电压互感器在运行过程中可能会导致铁磁谐振,对设备造成损坏。(4)传 统互感器的二次侧输出具有严格的负荷限制,如果二次负载太大,误差率会提升。 (二)新型互感器的开发和应用 我国经过多年的探究与研发,在新型互感器方面取得了新的突破,从根本上 推动了新型互感器的应用发展。(1)二次设备微机化,具有较低的功率消耗, 这相应的就降低了互感器的输出容量,但是其对低电平、抗电磁干扰具有较高的 要求。(2)智能化、集成化的开关设备对互感器的类型选择具有较高的要求, 需要使用小体积,较轻质量以及数字化输出的互感器。(3)变电站以及发电厂 已经广泛应用自动化技术,互感器的数字化输出以及网络化接入需求逐年提升。(4)随着通信技术的发展,互感器输出信号转化数字化后,利用光纤进行传输,光纤不导电,能从根本上消除高压设备绝缘安全问题。 (三)电子式互感器的优点 (1)简单的绝缘结构,较小的设备体积,较轻的质量。不用使用绝缘油当绝 缘物质,具有较高的安全性,安装,运输比较方便。(2)不会出现电磁感应器 饱和情况,抗干扰能力强、准确性高。(3)信号处理设备以及传感器具有较小 的外形,能够直接装入成套设备中,为电力系统集成化发展提供了保障。 二、电子式互动感器的技术应用原理 电子式电流互感器,也称为EVT或ECT。其性能改革,也经历了无数次转变,过程更投入了大量的资金与研究精力,现阶段,全球已有大批具有行业资质、专 业制造水准的厂家与销售商家,使它的市场销售率与应用率,不断壮大并走向国 际化。随着社会工业、技术行业对电能的需求量不断加大,以往采用的电磁式电 流互感器,已明显不符合时代要求。人们对它的安全性,也有了较高的要求。如 早年应用电磁式互感器,具有:磁饱和、铁磁谐振、难以测试、精确度较差、动 态测量范围窄的不足;而现代的电子式互感器,具有:设计轻便、方便携带、安

电子式电流互感器工程应用研究

电子式电流互感器工程应用研究 摘要:电子式互感器已逐步在高压输变电工程中得到应用,本文通过对不同原理和结构类型的电子式互感器的优缺点进行了比较研究,并结合工程应用中出现的问题,从设备研制、工程建设和标准制定与完善方面提出了一些建议,以促进电子式互感器的工程应用和发展。 关键词:电流互感器光学电子式电流互感器工程应用 Abstract:The electronic transformer has gradually applied in high-voltage transformation project,this article compares it advantages and disadvantages by different principle and structure types of electronic transformer,and puts forward some Suggestions from equipment development,engineering construction standards and perfect in order to promote the electronic instrument transformer engineering application and development based on the engineering application problems. Key words:current transformer;optical electronic current transformer;the engineering application 近年来据国家有关部门公布的资料,我国电网和电源建设发展迅速,每年与之配套的电流互感器市场需求预计多达40亿元以上,总产量约数万台。虽然目前采用电子式互感器的需求只有很小比例,但是近年来,随着智能化电网推进速度的加快,电子式互感器的应用将得到迅猛发展。为此,对于电子式互感器的技术特点和应用中存在的问题

电子式电流互感器的原理和应用

电子式电流互感器的原理和应用 天津市电力公司发展策划部(天津市300010)魏联滨 天津市电力公司基建部(天津市300010)邹新梧 =摘要> 介绍了电流互感器的原理,对其主要技术优势进行了说明;介绍了天津地区电网建设工程应用情况;指出电子式互感器将成为未来电力系统信号测量和互感器技术发展的必然趋势。 =关键词> 电子式;电流互感器;原理;应用 0引言 智能变电站是采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。智能变电站作为统一坚强智能电网的重要基础和节点支撑,是必不可少的建设内容。 电子式电流互感器是智能化变电站的重要组成部分,它的测量精度和运行稳定性直接影响到变电站乃至电网的安全稳定运行。目前,在中国电力系统中,已经有不同原理的电子式互感器在不同的电压等级的变电站得到较为广泛的应用。天津地区也已经开始在变电站建设中逐步试用和推广电子式电流互感器。 1电子式互感器的基本概念及特点 2002年,I EC根据电子式互感器的研究和发展情况,制定了I E C60044-7电子式电压互感器标准和I E C60044-8电子式电流互感器标准,对电子式互感器的特点、性能指标和检定原则进行了规范。 目前,电子式电流互感器主要采用Rogo w sk i线圈、光学装置或传统电流互感器等方式实现一次电流信号的转换。电子电流式互感器可直接输出数字量信号,实现采集信号对外的光纤传输。根据传感头部分是否需要提供电源,电子式电流互感器可分为有源式和无源式两类,如图1所示。 与传统电磁式互感器相比。电子式互感器主要有以下特点: 1)电子式互感器可从实现原理上根本地避免磁路饱和、铁磁谐振等问题,提高采集精度 ; 图1电子式电流互感器分类 2)频率响应宽,动态范围大,可有效进行高频大电流的测量,基于光学原理的电子式电流互感器还可进行直流的测量; 3)无油,因此没有易燃易爆等缺陷,二次信号通过光纤传输,也没有电磁式互感器二次侧开路等危险; 4)二次侧信号通过光纤传输,没有电缆传输方式的电磁干扰问题;. 5)绝缘结构简单,一次高压与二次设备通过光纤连接,无电磁式互感器的绝缘问题; 6)体积小、重量轻、造价低,随着电压等级的升高这些优势更加明显; 7)二次侧可直接输出数字信号与其他智能电子设备接口。 2有源电子式电流互感器原理及其应用 有源电子式电流互感器主要有低功耗铁芯线圈和Rogo w ski线圈原理两种。 211低功耗铁芯线圈 低功耗铁芯线圈与传统电磁式互感器实现原理基本一致。低功率线圈:LPCT是传统电磁式CT的一种发展,LPCT按照高阻抗进行设计。使传统CT 在很高的一次电流下出现饱和的基本特性得到了改善,扩大了测量范围。LPCT一般在5%-120%额定电流下线性度较好,适用于测量。 212Rogo w ski线圈 21211基本原理 Rogo w ski线圈为拆绕在非铁磁材料上的空心线圈。如图2所示。 由于Rogo w sk i线圈的输出电压与电流变化率

电子式互感器与常规互感器对比

第一章电子式互感器与常规互感器对比 一、常规互感器分类 1.1电压互感器 电压互感器按原理分为电磁感应式和电容分压式两类。 电磁感应式多用于220kV及以下各种电压等级。电容分压式一般用于110kV 以上的电力系统。电压互感器按用途又分为测量用和保护用两类,对前者的主要技术要求是保证必要的准确度;对后者可能有某些特殊要求,如要求有第三个绕组,铁芯中有零序磁通等。 1.1.1 电磁感应式电压互感器 电磁感应式电压互感器的等值电路与变压器的等值电路相同。 1.1.2 电容分压式电压互感器 在电容分压器的基础上制成。电容C1和C2串联,U1为原边电压, U2为C2上的电压。空载时,电容C2上的电压为由于C1和C2均为常数,因此正比于原边电压。但实际上,当负载并联于电容C2两端时,将大大减小,以致误差增大而无法作电压互感器使用。为了克服这个缺点,在电容C2两端并联一带电抗的电磁式电压互感器YH,组成电容分压式电压互感器。电抗可补偿电容器的内阻抗。YH有两个副绕组,第一副绕组可接补偿电容Ck供测量仪表使用;第二副绕组可接阻尼电阻Rd,用以防止谐振引起的过电压。 电容式电压互感器多与电力系统载波通信的耦合电容器合用,以简化系统,降低造价。此时,它还需满足通信运行上的要求。 1.2电流互感器 电磁型电流互感器利用变压器原、副边电流成比例的特点制成。其工作原理、等值电路也与一般变压器相同,只是其原边绕组串联在被测电路中,且匝数很少;副边绕组接电流表、继电器电流线圈等低阻抗负载,近似短路。原边电流(即被测电流)和副边电流取决于被测线路的负载,而与电流互感器的副边负载无关。由于副边接近于短路,所以原、副边电压U1和都很小,励磁电流I0也很小。电流互感器运行时,副边不允许开路。因为一旦开路,原边电流均成为励磁电流,使磁通和副边电压大大超过正常值而危及人身和设备安全。因此,电流互感器副边回路中不许接熔断器,也不允许在运行时未经旁路就拆下电流表、继电器等设备。电流互感器的接线方式按其所接负载的运行要求确定。最常用的接线方式为单相,三相星形和不完全星形。 电流互感器可按以下几种方式分类:

电子式电流互感器的设计

龙源期刊网 https://www.doczj.com/doc/6115661564.html, 电子式电流互感器的设计 作者:蒋志恒郭豫襄刘晓焱 来源:《科技资讯》2012年第23期 摘要:电子式电流互感器的设计是电路供电问题中的一个难点和重点。本文通过对电子电流互感器常用供电方案比较及电子式电流互感器的设计方案探讨,说明了电子式电流互感器的设计。 关键词:电子式电流互感器高压侧电源供能电路 中图分类号:TM7 文献标识码:A 文章编号:1672-3791(2012)08(b)-0138-01 在目前研究的重点和热点一般是电子式电流互感器的设计方面,电子式电流互感器具有广阔的发展前景.本文所设计的是一种新型的电子式电流互感器,它具有明显的优点,其绝缘结 构非常简单,重量较轻,体积较小,灵敏度高,可靠性高,测量范围相对较大大,频带较宽。 在高频开关的电源中,不仅需要检测出开关管和电感等元器件。还要用电流检测方法对互感器、霍尔元件进行检测。电子式电流互感器有频带较宽、能耗较小、价格较便宜、信号还原性较好等许多的优点。在双端变换器中,电子式电流互感器的功率变压器,原为流过的正负对称双极性电流脉冲,它没有直流分量的影响,这然电流互感器可以很好的应用。 1 常用供电方案的分析比较 1.1 激光供能 激光供电系统主要是采用其它光源或者是激光,在低电位侧利用光纤把光能量传到高电位的一侧,再利用光电转换器件把光能量转换成电能量,经过DC-DC再次变换以后提供稳定的电源进行输出。 激光供能是一种新的供电方式,激光供能的优点把能量以光形式通过光纤传到高压侧,让高压和低压电实现了完全隔离,不让其再受电磁场干扰的影响,其稳定可靠,并且安全。但激光供电也有设计难点,如下:第一,受激光输出功率的大小限制,尤其是光电转换效率影响,该方法提供的能量是非常有限的,制作成本也相对较高。第二,激光供电的输出功率和发光波长都会受到温度的影响,一定要采取相应的措施实现对温度的自动控制。 1.2 母线电流取能供电 在母线电流取能供电中为了平衡负载的电阻。供电的都是能量来自高压母线的电流,电能的获取是利用一个套在母线上磁感应线圈来实现的,母线环的周围有大量的磁场,并通过磁场来获取所需的能量,再经过处理,提供给高压的电子线路。

相关主题
文本预览
相关文档 最新文档