当前位置:文档之家› 两类交通分配模型算法的关系及其应用

两类交通分配模型算法的关系及其应用

两类交通分配模型算法的关系及其应用
两类交通分配模型算法的关系及其应用

DTA动态交通分配

( 2005) 西安交通大学对具有排队的多模式动态交通分配问题及其相关应用进行研究。本文对动态交通分配模型发展进行了介绍和总结,并详细讨论了模型中的路段动态函数、流量传播约束、FIFO等相关特性。 将单一交通模式的点排队路段动态模型扩展到多模式动态路段模型,并且证明了各种模式的路段行程时间函数合乎模式内的FIFO特性,以及在拥挤情况下各模式车辆的速度收敛 特性。 将多模式随机动态同时的路径与出发时间选择平衡条件描述为变分不等式问题,提出了两个不同的算法用于求解变分不等式问题: 算法一是基于路段的算法,这个算法给出了基于logit 的同时的路径与出发时间选择的随机动态网络配载方法,并证明了这个方法的正确性; 算法二是基于路径的启发式算法。仿真试验验证了模型以及两个算法的有效性。提出了多模式多用户动态交通分配模型,用于评估ATIS对不同模式出行者和交通系统的影响。将每一模式的出行者分为两类:一类是装配ATIS的出行者,另一类是未装配ATIS的出行者。由 于所能获得的交通信息质量的差异,他们将遵循不同的动态用户平衡条件。同时,每一种模式出行者在选择路径和出发时间时,不但考虑出行费用和进度延误费用的影响,而且还考虑 油耗费用的影响。将多模式多用户动态用户平衡条件描述为统一的变分不等式问题,利用对角化算法计算相应的平衡流量状态,并通过仿真试验验证了模型与算法的有效性。使用nested-logit 模型模拟ATIS的市场渗透率与服从率,模型的上层模拟了驾驶小汽车出行者的购买行为(市场渗透率),底层主要描述了装配ATIS设备的小汽车出行者的服从行为(服从率)。设计了固定点算法计算ATIS的平衡市场渗透率与服从率。并在简单的路网上进行了仿真研究,结果证明算法与模型是正确和有效的。提出了组合模式动态交通分配模型,模型中假设有两类出行者:一类是纯模式出行者,他们自己驾驶小汽车完成一次出行。另一类是组合模式出行者,在其一次出行的第一部分是自己驾驶小汽车完成的,剩余部分是乘公交车完成的。使用nested-logit 模型模拟出行者的复杂出行选择行为。将各种不同的选择行为描述为一个变分不等式问题。并给出了启发式算法求解相应的变分不等式问题。最后,利用仿真研究验证了模型与算法的有效性。 交通分配:(2005)所谓交通分配是指按照一定的原则,将各OD (Origin-Destination) 对间的出行量分配到具体的交通网络上去,从而得到各路段的交通量,以判断各路段的负荷水平。近半个世纪以来,国内外学者对交通分配问题进行了大量的研究,提出了不少交通流分配模型与软件。总体来看,这些模型可以分为两大类: 平衡分配模型:遵循War drop 用户最优(UO, User Optimum) 准则或系统最优(SO, System Optimum)准则。它们或者使得个别交通参与者的出行费用最低,或者使得交通网络上所有出 行者的总出行费用最低。 非平衡分配模型:运用启发式解法或其他近似解法的分配模型则统称为非平衡分配模型,如全有全无分配模型、容量受限分配模型、多路径概率分配模型、随机分配模型和嫡分配模型等。静态模型不能反映交通流的时变特性,相反,动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。 DTA( Dynamic Traffic Assignment ) 所谓动态交通分配, 就是将时变的交通出行合理分配到不同的路径上, 以降低个人的出行费用或系统总费用。动态交通分配是在交通供给状况以及交通需求状况均为已知的条件下, 分析其最优的交通流量分布模式, 从而为交通流管理、动态路径诱导等提供依据。交通供给状况:网络拓扑结构、网段特性、既定控制策略等。 交通需求状况:在每时刻产生的出行需求及其分布。 动态交通分配的意义建立在动态的交通流模型基础上的动态交通分配模型为解决交通控制与诱导问题提供了思路。

交通流分配模型综述

华中科技大学 研究生课程考试答题本 考生菀荣 考生学号M201673159 系、年级交通运输工程系、研一 类别科学硕士 考试科目交通流理论 考试日期2017 年 1 月10 日 交通流分配模型综述 摘要:近些年,交通流分配模型已经广泛应用到了交通运输工程的各个领域,

并且在交通规划中起到了很重要的作用。本文对交通流分配模型研究现状进行了综述,并分别对静态交通流分配模型、动态分配模型以及公交网络进行了阐述和讨论。同时对相关的交通仿真还有网络优化问题研究现状进行了探讨。最后结合自身学习经验做出了一些评价和总结。 关键词:交通流分配;模型;公交网络 0引言 随着经济和科技的发展,城市化进程日益加快,城市也因此被赋予更多的工程,慢慢聚集大量的人口。而人口数量的增加而直接带来的城市出行量增加,不管是机动车出行还是非机动车出行量都相较以前增加了很多,从而引发了一系列的交通问题。因为在城市整体规划中,交通规划已经成为了十分突出的问题。在整个交通规划过程中,交通分配在其中占有很重要的地位,为相关公交路线,具体道路宽度规划等都有很大作用。 1交通流分配及研究进程 1.1交通流分配简介 由于连接OD之间的道路有很多条,如何将OD交通量正确合理的分配到O和D之间的各条路线上,是交通流分配模型要解决的首要问题。交通流分配是城市交通规划的一个重要组成部分也是OD量推算的基础。交通流分配模型分为均衡模型和非均衡模型。 1.2交通流模型研究进程 以往关于交通流分配模型的研究多是基于出行者路径偏好的,主要有以Wardrop第一和第二原则为分配依据建立的交通分配模型,Wardrop第一原则假定所有出行者独立做出令自己出行时间最小的决策,最终达到纳什均衡的状

ER图2关系模型:九步转换算法

3.2.3 Mapping from ER Models to Relational Models ?Mapping Algorithm ?Example There is almost a one-to-one correspondence between the ER constructs and the relational ones. The two major distinctions are: 1.In a relational schema, relationships are represented implicitly through primary and foreign keys of participating entities. 2.In a relational schema, columns of relations cannot be multi-valued or composite. Composite attributes are replaced with their simple component ones, and multi-valued attributes are stored in a separate relation. 一.Mapping Algorithm We can translate an ER schema to a relational schema by following a nine-step algorithm based on the one given in Elmasri and Navathe 1994. The algorithm attempts to minimize the need for joins and NULL values when defining relations (Steps 2, 4, and 5). 1.For each strong entity E: o Create a new table. o Include as its columns, all the simple attributes and simple components of the composite attributes of E. o Identify the primary key and the alternate keys. Do not include any

关于交通分配方法作业

题目:设图示交通网络的OD 交通需求量为t=200辆,各径路的交通阻抗函数分别为: 1110.05h c +=,22025.010h c +=,33015.015h c += 试用全有全无分配法、增量分配法(二等分)和均衡分配法(迭代步长分别取0.618和0.0291)求出分配结果,并进行比较。 设目标函数表示车辆受到的总阻抗,即令交通阻抗函数对h 求积分,函数如下: 2332222110075.0150125.01005.05h h h h h h Z +++++= 1.全有全无分配法 1.1方法介绍 全有全无分配法是将OD 交通需求沿最短经路一次分配到路网上去的方法,也被称为交通需求分配。顾名思义,全有(all )指将OD 交通需求一次性地全部分配到最短径路上。全无(nothing )指对最短径路以外的径路不分配交通需求量。 全有全无分配法应用于没有通行能力限制的网络交通交通量分配等场合。在美国芝加哥城交通解析中,首次获得应用。另外,后述增量分配法和均衡分配法中频繁使用。 1.2 解:由路段费用函数可知,在路段交通量为零时,径路1最短。利用该方法的以下结果: 15,10,2520010.05,0,200321321===?+====c c c h h h 因为,25,13 2=

TransCAD四阶段法交通流分配

建小区,填属性,画小区,填小区属性数据, 建路网,填属性,画路网,填路网属性数据, 进入小区层建立联系:在小区层tools-map editing-connect点OK。(作用:将路的节点与形心联系起来) 补全路网数据。 建立距离矩阵:在小区层tools-geographic analysis-distance matrix点OK起名保存 期望线:在小区层tools-geographic analysis-desire lines起名后点OK 建立网络将所的联系起来:networks/paths-create将other link fields和other node fields中的全部选中。起名后保存。 用重力模型生成OD分布矩阵:在小区层planning-tripdistribution-grarity application在datdview栏选小区层,productions选生成量attractions 选吸引量,constraint type选doubly双重力模型点OK保存。 选点层数据加属性:dataview-modify table点addfield加属性起名后点OK。将小区号填到对应的点好后面。然后点tools下的selection将填上小区号的行选中。 将OD矩阵的小区行列号ID转换成为小区质心节点行列号ID 在交通分布matrix中右键Indices→Add indices 出现对话框:

点击Add Index,完成以下设置 point点层index点层数据中新增的属性点击OK,再次回到索引对话框,选择新索引即可。 将rowids改为new行列号转换完成。

Dijkstra算法模型设计与实现

Dijkstra算法模型设计与实现 一、Dijkstra算法概述 Dijkstra算法是一种点对多点的集中式最短路径算法,即寻找网 络中其他所有节点到目的节点的最短路径。 Dijkstra算法通过对路径的长度进行迭代,从而计算出到达目的节点的最短路径。其基本思想是按照路径长度增加的顺序来寻找最短路径,显然有:到达目的节点v的最短路径中最短的肯定是节点的最近节点v所对应的单条链路,最短路径中下一个最短的肯定是节点v 的下一个最近的邻节点所对应的单条链路,或者是通过前面选定的节点的最短的由两条链路组成的的路径,依次类推。 二、Dijkstra算法描述 设每个节点i标定的到达目的节点1的最短路径长度估计为D i , 如果在迭代的过程中,D i 已变成一个确定的值,称节点i为永久标定的节点,这些永久标定的节点的集合用P表示。在算法的每一步中,在P以外的节点中,必定是选择与目的节点1最近的节点加入到集合P中。具体算法如下: 1. 初始化,即P=1{},D1=0,D j=d j1,j11。(若j,1 ()?A, 则d j1 =¥)。 2. 寻找下一个与目的节点最近的节点,即求使下式成立的i。置 。如果P包括了所有的节点,则算法结束。 D i =min j?P D j ,i?P

3. 更改标定值,即对所有的j?P,置D j =min i D j ,d ji +D i é?ù?,返 回第2步。 三、Dijkstra算法实现 根据Dijkstra算法描述编写程序进行实现,程序中采用邻接矩阵表示一个有向图,输入为该图的邻接矩阵以及目的节点,输出为图中各点的邻接关系,依照次邻接关系可得到到达目的节点的最短路径。 程序用C语言编写,GCC环境编译,具体代码见附录。 四、运行结果及分析 选择一具有7个节点的有向图进行实验,其各边权重及拓扑结构如下所示: 图1 实验用图 选取节点1为目的节点,运行程序: 1. 输入表示该图的邻接矩阵,不相邻的节点间链路权值用-1表示,代表无穷大; 2. 输入目的节点编号; 3. 得到输出结果,如下图所示。

交通分配方法作业

题目:设图示交通网络的OD 交通需求量为t=200辆,各径路的交通阻抗函数分别为: 1110.05h c +=,22025.010h c +=,33015.015h c += 试用全有全无分配法、增量分配法(二等分)和均衡分配法(迭代步长分别取0.618和0.0291)求出分配结果,并进行比较。 设目标函数表示车辆受到的总阻抗,即令交通阻抗函数对h 求积分,函数如下: 2332222110075.0150125.01005.05h h h h h h Z +++++= 1.全有全无分配法 1.1方法介绍 全有全无分配法是将OD 交通需求沿最短经路一次分配到路网上去的方法,也被称为交通需求分配。顾名思义,全有(all )指将OD 交通需求一次性地全部分配到最短径路上。全无(nothing )指对最短径路以外的径路不分配交通需求量。 全有全无分配法应用于没有通行能力限制的网络交通交通量分配等场合。在美国芝加哥城交通解析中,首次获得应用。另外,后述增量分配法和均衡分配法中频繁使用。 1.2 解:由路段费用函数可知,在路段交通量为零时,径路1最短。利用该方法的以下结果: 15,10,2520010.05,0,200321321===?+====c c c h h h 因为,25,13 2=

动态交通系统

请问,建立一个动态系统,首先是采集全城路网的交通流数据,这个交通流应该是平衡的,如果,新建一条路,那么平衡就打破了,其他受影响的道路的交通流就变化了,这样一个动态系统能够反映这种变化。我就想问问,国内是否有这种类似的系统,关键是要比较直观的。 如果是有这样的系统,请问是用什么软件或者模型构建的。 这类系统有的是是城市交通管理系统的一部分,也有某些城市的交研部门自己建立的,算法是关键,软件仅仅是一个评估和人机接口,例如某些交管平台是有交通在线或离线仿真需求的,新增道路对现有路网状况的影响也是其建设目的之一,但仅仅只是之一而已。 就个人所知,一般都是用商业软件进行二次开发,但效果并不理想。 我先说下这个事情的来龙去脉吧,希望论坛里的各路大侠能够给些建议。 我所在单位是一个以市政道路设计为主的设计院,希望能建立这样一个交通流预测系统,就是说,主要就是为了给具体道路,桥梁建设工程的可行性提供依据。比如说,所在城市的一条主干道已经非常饱和了,到底是增加一条道路分流好,还是拓宽好,两种方案分别会对其他道路上的交通流产生怎样的影响,是否会引起其他路段的堵塞。目前,道路工程项目的前期研究非常薄弱,就算是用了交通流预测分析,但是,这条路对其他道路的交通影响并没有包含在工程可研中,所以,我们想建立这样一个系统,解决以上问题。 很好的想法!这样做市政道路设计算是跟国际接轨了。个人观点,以后的道路设计肯定会和动态的路网交通分析结合起来做,这种趋势在美国已越来越明显;国内慢一些,但也会很快跟进,先掌握这种分析技巧的单位将会更有竞争实力。 2007年,Minneapolis的一座桥塌了,每天路过这座桥的大约10万辆车需要改道。联邦公路局(FHWA)的官员很快打电话给亚利桑那大学的Yi-Chang Chiu教授,请他用软件工具DynusT(基于仿真的动态交通分配软件) 定量分析塌桥对交通出行选择模式和路网交通流的影响,以便在塌桥修复之前,更有效地疏导交通。因为从塌桥之前的均衡的路网交通状态过渡到塌桥后的另外一种均衡状态需要数天甚至几个星期的调整,驾驶员才能将自己的出行时间和出行路线大致固定下来。分析这种行为其实很复杂的,计算量也很巨大。对于大路网的仿真分析,为了接近路网均衡状态,仿真迭代24小时的路网交通,计算时间甚至需要几天。

动态交通流分配浅析

动态交通流分配浅析 摘要:实现交通分配理论的交通分配模型可分为两大类:静态交通分配模型和动态交通分配模型,它们都有各自的优缺点。静态交通分配模型假设交通需求和路段行程时间为常数或仅依赖于本路段上的交通流量,这对于交通量比较平稳、路段行驶时间受交通负荷影响较小的城市间长距离非拥挤的城市交通特性分析和路网规划是比较可行的。而对于存在拥挤现象的城市交通网络,交通需求在一天之中变化甚大。使得网络交通流的时空分布规律具有时变特性,从而导致路段行驶时间大大依赖于交通负荷的变化。因此,在城市交通控制与管理中更需要考察路网中,交通流状态随空间与时间的演化过程,针对可能出现的拥挤和阻塞及时采取有效措施.确保城市交通系统平稳、高效地运行。动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。 关键词:动态交通流分配定义现状意义存在问题 The shallow analysis of Dynamic Traffic Assignment Abstract: the traffic assignment model of Traffic assignment theory can be divided into two categories: static and dynamic traffic assignment model for traffic assignment models, both of which have their own advantages and disadvantages. Static traffic assignment models assuming that traffic demand and link travel time is constant or only dependent on the traffic flow on this road, which is relatively stable for the traffic, roads and the traffic load less affected by the time the inter-city long distance non-urban traffic congestion characterization and network planning is more feasible. However, for there is congestion in the urban transport network., changes in traffic demand in the day are great, which makes the network traffic flow varies with time-varying spatial and temporal distribution of properties, resulting in roads and the time relied heavily on the traffic load changes. Thus, in urban traffic control and management of road, it is more significant to examine how traffic flow varies with space and tempo while studying the road network, and thus timely and effective measures can be taking for the congestion and obstruction., and that ensure that urban transport system operate smoothly and effectively. Dynamic traffic assignment included traffic demand changes over time and travel costs with the changing nature of traffic load, moreover, it can give an instant flow of traffic distribution. Key words: dynamic traffic assignment, definition, status quo, meaning, problems ·0引言 动态交通分配的这种功能使其在城市交通流诱导系统及智能运输系统的研究中具有举足轻重的作用。因而,研究动态交通分配理论.并将其应用于交通控制与管理是十分必要的。同时,动态交通分配为交通流管理与控制动态路径诱导等提供了依据,也是智能交通系统的重要理论基础。

浅谈网络流算法与几种模型转换

浅谈网络流算法与几种流模型 吴迪1314010425 摘要:最大流的算法,算法思想很简单,从零流开始不断增加流量,保持每次增加流量后都满足容量限制、斜对称性和流量平衡3个条件。只要残量网络中不存在增广路,流量就可以增大,可以证明他的逆命题也成立;如果残量网络中不存在增广路,则当前流就是最大流。这就是著名的增广路定理。s-t的最大流等于s-t的最小割,最大流最小割定理。网络流在计算机程序设计上有着重要的地位。 关键词:网络流Edmonds-Karp 最大流 dinic 最大流最小割网络流模型最小费用最大流 正文: 图论中的一种理论与方法,研究网络上的一类最优化问题。1955年,T.E.哈里斯在研究铁路最大通量时首先提出在一个给定的网络上寻求两点间最大运输量的问题。1956年,L.R. 福特和 D.R. 富尔克森等人给出了解决这类问题的算法,从而建立了网络流理论。所谓网络或容量网络指的是一个连通的赋权有向图 D= (V、E、C),其中V 是该图的顶点集,E是有向边(即弧)集,C是弧上的容量。此外顶点集中包括一个起点和一个终点。网络上的流就是由起点流向终点的可行流,这是定义在网络上的非负函数,它一方面受到容量的限制,另一方面除去起点和终点以外,在所有中途点要求保持流入量和流出量是平衡的。如果把下图看作一个公路网,顶点v1…v6表示6座城镇,每条边上的权数表示两城镇间的公路长度。现在要问:若从起点v1将物资运送到终点v6去,应选择那条路线才能使总运输距离最短?这样一类问题称为最短路问题。如果把上图看作一个输油管道网,v1 表示发送点,v6表示接收点,其他点表示中转站,各边的权数表示该段管道的最大输送量。现在要问怎样安排输油线路才能使从v1到v6的总运输量为最大。这样的问题称为最大流问题。 最大流理论是由福特和富尔克森于 1956 年创立的,他们指出最大流的流值等于最小割(截集)的容量这个重要的事实,并根据这一原理设计了用标号法求最大流的方法,后来又有人加以改进,使得求解最大流的方法更加丰富和完善。最大流问题的研究密切了图论和运筹学,特别是与线性规划的联系,开辟了图论应用的新途径。 先来看一个实例。 现在想将一些物资从S运抵T,必须经过一些中转站。连接中转站的是公路,每条公路都有最大运载量。如下: 每条弧代表一条公路,弧上的数表示该公路的最大运载量。最多能将多少货物从S运抵T? 这是一个典型的网络流模型。为了解答此题,我们先了解网络流的有关定义和概念。 若有向图G=(V,E)满足下列条件: 1、有且仅有一个顶点S,它的入度为零,即d-(S) = 0,这个顶点S便称为源点,或称为发点。 2、有且仅有一个顶点T,它的出度为零,即d+(T) = 0,这个顶点T便称为汇点,或称为收点。 3、每一条弧都有非负数,叫做该边的容量。边(vi, vj)的容量用cij表示。 则称之为网络流图,记为G = (V, E, C) 介绍完最大流问题后,下面介绍求解最大流的算法,算法思想很简单,从零流开始不断增加流量,保持每次增加流量后都满足容量限制、斜对称性和流量平衡3个条件。 三个基本的性质: 如果C代表每条边的容量F代表每条边的流量 一个显然的实事是F小于等于C 不然水管子就爆了 这就是网络流的第一条性质容量限制(Ca pacity Constraints):F ≤ C 再考虑节点任意一个节点流入量总是等于流出的量否则就会蓄水或者平白无故多出水 这是第二条性质流量守恒(Flow Conservation):Σ F = Σ F 当然源和汇不用满足流量守恒 最后一个不是很显然的性质是斜对称性(Skew Symmetry): F = - F 这其实是完善的网络流理论不可缺少的就好比中学物理里用正负数来定义一维的位移一样 百米起点到百米终点的位移是100m的话那么终点到起点的位移就是-100m同样的x向y流了F 的流y就向x流了-F的流 把图中的每条边上的容量于流量之差计算出,得到参量网络。 我们的算法基于这样一个事实:参量网络中任

交通分配及其算法

V 为网络节点集,即:道路交叉点;A 为路段集,即:道路 交通量—人的个数—OD 矩阵 ,a C a A ∈:路段a 的通行能力 ()a a t x :路段a 的阻抗,a x 为流量,通常以时间记,假设仅与路段a 有关 系统最优是系统规划者所期望得到的一种平衡状态,其前提是所有网络用户必须互相协作,遵从网络管理者的统一调度,所以是计划指向型分配准则。 出行者的出行决策过程是相互独立的,路网上的交通流的状态是出行者独立选择的结果。出行者必然转向费用较小的路径.其结果,路网上的交通量分布最终必然趋于用户平衡状态。所以,用户平衡状态最接近实际的交通状态。 Wardrop 准则的提出标志着网络流平衡分配概念从描述转为严格刻画,不但假设司机都力图选择阻抗最小的路径,而且还假设司机随时掌握整个网络的状态,精确计算每条路径的阻抗,还假设了司机的计算能力与水平是相同的。 在这些假设条件下进行的配流被称为确定性配流,得到的用户平衡条件被称为确定性平衡条件,简称UE 条件。User Equilibrium System Optimal rs k rs a f q ∑=且0rs k f ≥(rs k f —O-D 对r-s 之间路径k 上的流量)rs q 等于连接rs 之间 各路径上的路段的交通量的总和。 ,rs rs a k a k r s k x f σ=∑∑∑(,rs a k σ—如果弧a 在连接O-D 对r-s 的路径k 上,其值为1,否则为0)路段a 上的流量等于通过a 的路径上分配到a 上的交通量的总和。 1. 目标函数本身并没有什么直观的经济含义或行为含义。 2. 没必要直接求解用户平衡条件方程组,平衡状态可以由求解等价都极小值问题得到。 3. 模型的解关于路段流量唯一,关于路径流不唯一 4. 等价性与唯一性证明略

交通流元胞自动机模型综述

第23卷 第1期2006年1月 公 路 交 通 科 技 Journal of Highway and Transportation Research and Development Vol .23 No .1 Jan .2006 文章编号:1002-0268(2006)01-0110-05 收稿日期:2004-09-27 作者简介:郑英力(1971-),女,福建宁德人,讲师,研究方向为交通控制与仿真.(z hengyl71@s ina .com ) 交通流元胞自动机模型综述 郑英力,翟润平,马社强 (中国人民公安大学 交通管理工程系,北京 102623) 摘要:随着交通流模拟的需要及智能交通系统的发展,出现了基于元胞自动机理论的交通流模型。交通流元胞自动机模型由一系列车辆运动应遵守的运动规则和交通规则组成,并且包含驾驶行为、外界干扰等随机变化规则。文章介绍了交通流元胞自动机模型的产生与发展,总结和评述了国内外各种元胞自动机模型,并对元胞自动机模型的发展提出展望。 关键词:元胞自动机;交通流;微观模拟;模型中图分类号:U491.1+23 文献标识码:A Survey of Cellular Automata Model of Traffic Flow ZH ENG Ying -li ,ZH AI Run -p ing ,MA She -q iang (Department of Traffic Management Engineering ,Chinese People 's Public Security University ,Beijing 102623,China )Abstract :With the increas ing demand of traffic flow si mulation and the development of ITS research ,the traffic flow model based on cellular automata has been developed .Cellular automata model of traffic flow incorporates a series of vehicle movement rules and traffic regulations .Meanwhile ,the model works under some stochastic rules takin g into consideration of drivers 'behaviors and ambient interfer -ences .This paper introduces the establishment and development of cellular automata model of traffic flow ,su mmarizes and comments on different kinds of typical cellular automata models of traffic flow ,and furthermore ,presents a new perspective for further stud y of the model . Key words :Cellular automata ;Traffic flow ;Microscopic simulation ;Model 0 引言 交通流理论是运用物理学和数学定律来描述交通特性的理论。经典的交通流模型主要有概率统计模 型、车辆跟驰模型、流体动力学模型、车辆排队模型等 [1] 。20世纪90年代,随着交通流模拟的需要及智 能交通系统的发展,人们开始尝试将物理学中的元胞自动机(Cellular Automata ,简称CA )理论应用到交通领域,出现了交通流元胞自动机模型。 交通流C A 模型的主要优点是:(1)模型简单,特别易于在计算机上实现。在建立模型时,将路段分 为若干个长度为L 的元胞,一个元胞对应一辆或几辆汽车,或是几个元胞对应一辆汽车,每个元胞的状态或空或是其容纳车辆的速度,每辆车都同时按照所建立的规则运动。这些规则由车辆运动应遵守的运动规则和交通规则组成,并且包含驾驶行为、外界干扰等随机变化规则。(2)能够再现各种复杂的交通现象,反映交通流特性。在模拟过程中人们通过考察元胞状态的变化,不仅可以得到每一辆车在任意时刻的速度、位移以及车头时距等参数,描述交通流的微观特性,还可以得到平均速度、密度、流量等参数,呈现交通流的宏观特性。

基于有限理性的方式划分和交通分配组合模型

基于有限理性的方式划分和交通分配组合模型出行者作为城市交通系统的主体,其出行行为影响整个网络的运行效果。传统的出行行为研究通常假定出行者是绝对理性的,其决策行为遵循效用理论,以 出行阻抗最小或者效用最大作为决策依据,很少考虑出行者的有限理性特点。 本文以出行者的出行行为为研究对象,结合问卷调查标定前景理论的参数体系,在有限理性的框架下讨论方式选择和路径选择行为,并建立方式划分和交通 分配组合模型,最后通过算例分析组合模型的特点、出行者参考点依赖效应以及模型参数的敏感性。本文首先明确了有限理性的概念,详细介绍了前景理论和TODIM方法的基本观点以及相关研究和应用。 随后对比了前景理论中不同函数形式的差异,分析了前景理论各个参数的内涵,将出行者或者出行情景按照风险水平高低划分为3类,并通过问卷调查得到 了前景理论在出行路径选择问题中的参数体系,同时验证了该参数体系的有效性。紧接着结合离散选择模型和TODIM方法提出了有限理性条件下的方式划分模型,结合离散选择模型和前景理论提出了有限理性条件下的随机交通分配模型,最终在有限理性的基础之上提出了改进的方式划分和交通分配组合模型。 最后,利用Nguyen & Dupuis网络作为算例,验证组合模型的有效性研究结果表明,组合模型能够体现总出行需求对私家车出行选择概率的影响,两者呈负相 关的关系;私家车的实际出行需求、出行者对不同路径的感知具有明显的参考点依赖效应,而出行者路径选择行为的参考点依赖效应不显著;私家车的实际出行需求随着参数θ的增大而减小,各条路径之间的差异随着参数κ的增大而增大, 参数θ可在(0,6)中取值,参数K可在(0,1)之间取值。

TransCAD交通分配方法介绍

交通分配方法 The following are traffic assignment methods encountered in transportation planning practice, all of which are available in TransCAD: All-or-Nothing Assignment (AON) 全有全无分配法 Under All-or-Nothing Assignment, all traffic flows between O-D pairs are assigned to the shortest paths connecting the origins and destinations. This model is unrealistic in that only one path between every O-D pair is used, even if there is another path with the same or nearly the same travel time or cost. Also, traffic on links is assigned without considering whether or not there is adequate capacity or heavy congestion; travel time is a fixed input and does not vary depending on the congestion on a link. 在全有全无分配模型中,OD点之间的交通量全部分配到起讫点之间的最短路上。这个模型是不切实际的,因为每个OD对的数值只分配到一条路径上,即使存在另外一条时间、成本相同或相近的路线。同样,交通量分配的时候没有考虑是否有足够的通行能力,即使已经出现严重的拥堵;路线的运行时间为一个输入的固定值,它不因为路线的拥堵而变化。 STOCH Assignment STOCH分配法 STOCH Assignment distributes trips between O-D pairs among multiple alternative paths that connect the O-D pairs. The proportion of trips that is assigned to a particular path equals the choice probability for that path, which is calculated by a logit route choice model. Generally speaking, the smaller the travel time of a path, compared with the travel times of the other paths, the higher its choice probability would be. STOCH Assignment, however, does not assign trips to all the alternative paths, but only to paths containing links that are considered "reasonable." A reasonable link is one that takes the traveler farther away from the origin and/or closer to the destination. The link travel time in STOCH Assignment is a fixed input and is not dependent on link volume. Consequently, the method is not an equilibrium method. STOCH分配法将交通量分配到OD点对之间的多条路径上。各条路线的分配比例根据路线的选择概率确定,而此概率用一个logit路线选择模型来计算。一般而言,运行时间更短的线路被选择的概率就更高。事实上,STOCH分配模型并不是将交通量分配到所有可供选择的路线上,而只分配到包含“可行路段”的路径上。一个合理的路段应该让旅行者离起点更远,而且/或者离终点更近。在STOCH分配模型中,路段运行时间是一个输入的固定值,与交通量无关。因此,这种方法不是一个平衡的方法。 Incremental Assignment增量分配法 Incremental Assignment is a process in which fractions of traffic volumes are assigned in steps. In each

(完整版)DTA动态交通分配

(2005) 西安交通大学对具有排队的多模式动态交通分配问题及其相关应用进行研究。本文对动态交通分配模型发展进行了介绍和总结,并详细讨论了模型中的路段动态函数、流量传播约束、FIFO等相关特性。 将单一交通模式的点排队路段动态模型扩展到多模式动态路段模型,并且证明了各种模式的路段行程时间函数合乎模式内的FIFO特性,以及在拥挤情况下各模式车辆的速度收敛特性。 将多模式随机动态同时的路径与出发时间选择平衡条件描述为变分不等式问题,提出了两个不同的算法用于求解变分不等式问题: 算法一是基于路段的算法,这个算法给出了基于logit的同时的路径与出发时间选择的随机动态网络配载方法,并证明了这个方法的正确性; 算法二是基于路径的启发式算法。仿真试验验证了模型以及两个算法的有效性。提出了多模式多用户动态交通分配模型,用于评估ATIS对不同模式出行者和交通系统的影响。将每一模式的出行者分为两类:一类是装配ATIS的出行者,另一类是未装配ATIS的出行者。由于所能获得的交通信息质量的差异,他们将遵循不同的动态用户平衡条件。同时,每一种模式出行者在选择路径和出发时间时,不但考虑出行费用和进度延误费用的影响,而且还考虑油耗费用的影响。将多模式多用户动态用户平衡条件描述为统一的变分不等式问题,利用对角化算法计算相应的平衡流量状态,并通过仿真试验验证了模型与算法的有效性。使用nested-logit模型模拟ATIS的市场渗透率与服从率,模型的上层模拟了驾驶小汽车出行者的购买行为(市场渗透率),底层主要描述了装配ATIS设备的小汽车出行者的服从行为(服从率)。设计了固定点算法计算ATIS的平衡市场渗透率与服从率。并在简单的路网上进行了仿真研究,结果证明算法与模型是正确和有效的。提出了组合模式动态交通分配模型,模型中假设有两类出行者:一类是纯模式出行者,他们自己驾驶小汽车完成一次出行。另一类是组合模式出行者,在其一次出行的第一部分是自己驾驶小汽车完成的,剩余部分是乘公交车完成的。使用nested-logit模型模拟出行者的复杂出行选择行为。将各种不同的选择行为描述为一个变分不等式问题。并给出了启发式算法求解相应的变分不等式问题。最后,利用仿真研究验证了模型与算法的有效性。 交通分配: (2005)所谓交通分配是指按照一定的原则,将各OD (Origin-Destination)对间的出行量分配到具体的交通网络上去,从而得到各路段的交通量,以判断各路段的负荷水平。近半个世纪以来,国内外学者对交通分配问题进行了大量的研究,提出了不少交通流分配模型与软件。总体来看,这些模型可以分为两大类: 平衡分配模型:遵循War drop用户最优(UO, User Optimum)准则或系统最优(SO, System Optimum)准则。它们或者使得个别交通参与者的出行费用最低,或者使得交通网络上所有出行者的总出行费用最低。 非平衡分配模型:运用启发式解法或其他近似解法的分配模型则统称为非平衡分配模型,如全有全无分配模型、容量受限分配模型、多路径概率分配模型、随机分配模型和嫡分配模型等。 静态模型不能反映交通流的时变特性,相反,动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。 DTA(Dynamic Traffic Assignment) 所谓动态交通分配, 就是将时变的交通出行合理分配到不同的路径上, 以降低个人的出行费用或系统总费用。动态交通分配是在交通供给状况以及交通需求状况均为已知的条件下, 分析其最优的交通流量分布模式, 从而为交通流管理、动态路径诱导等提供依据。 交通供给状况:网络拓扑结构、网段特性、既定控制策略等。

相关主题
文本预览
相关文档 最新文档