当前位置:文档之家› 川崎泵,说明书

川崎泵,说明书

川崎泵,说明书
川崎泵,说明书

篇一:川崎k3v泵说明书

液压泵

一、概述:

液压泵将原动机的机械能转换成工作液体的压力能。按其职能系统,属于液压能源元件,又称为动力元件。

液压传动中使用的液压泵都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵。

液压泵可分为齿轮泵,叶片泵,柱塞泵(按结构来分)

本节主要介绍挖掘机上常用的齿轮泵、柱塞泵的基本概念、工作原理、结构特点、运用原理和维修知识。

1、液压泵的基本性能参数

液压泵的主要性能参数是压力p 和流量q

(1)压力

泵的输出压力由负载决定。当负载增加时,泵的压力升高,当负载减小,泵的压力降低,没有负载就没有压力。所以,在液压系统工作的过程中,泵的压力是随着负载的变化而变化的。如果负载无限制的增长。泵的压力也无限制的增高。直至密封或零件强度或管路被破坏。这是容积式液压泵的一个重要特点。因此在液压系统中必须设置安全阀。限制泵的最大压力,起过载保护作用。在位置的布置上,安全阀越靠近泵越好。

液压泵说明书对压力有两种规定:额定压力和最大压力。

额定压力——是指泵在连续运转情况下所允许使用的工作压力,并能保证泵的容积效率和使用寿命。

最大压力——泵在短时间内起载所允许的极限压力,为液压系统的安全阀的调定值不能超过泵的最大压力值,最好的是等于或小于额定压力值。

(2)流量q

流量是指泵在单位时间输出液体的体积。流量有理论流量和实际流量之分理论流量q0,等于排量q 与泵转数的乘积:

-3

q0=q*n*10 (l/min)

泵的排量是指泵每转一周所排出液体的体积。泵的排量取决于泵的结构参数。不同类型泵的排量记算方法也不同。排量不可变的称为定量泵,排量可变的称为变量泵。泵的实际流量q小于理论流量q0(因为泵的各密封间隙有泄漏)

q= q0ηv = q.n.ηv /1000(l/min)

式中ηv----泵的容积效率

ηv =(q(实际流

量)/ q0(理论流量))*100%

齿轮泵的容积效率,

ηv≥92%,柱塞泵ηv≥95%

泵的泄漏量(漏损)

与泵的输出压力有关,压力升高泄漏量(q0-q)即δq增加,所以泵的实际流量是随泵的输

出压力变化而变化的,而液压泵的理论流量与泵的输出压力无关。

(3)。转速n

泵的转速有额定转

速和最高转速之分。额定转速是指泵在正常工作情况下的转速,使泵具有一定的自吸能力,

避免产生空穴和气蚀现象,一般不希望泵超过额定转速运转。泵的最高转速受运动件磨损和

寿命的限制,同时也受气蚀条件的限制。如果泵的转速大于最高转速,可能产生气蚀现象,

使泵产生很大的振动与噪声,并加速零件的破坏,使寿命显著降低。

(4)。扭矩与功率:

泵的输入扭矩:

mi=1.59p.q/10ηm (n.m)

式中:p—压力(mpa)

q—排量(ml/min)

ηm—机械效率

泵的输入功率(即

驱动功率)

n0=pq/612

(kw)

n0=pq/450

(hp)

(5)。效率:

容积效率是泵的实

际流量q与理论流量q0的比值。

ηv=q/ q0

机械效率是泵的理

论扭矩m0与实际输入扭矩mi的比值

ηm= m0/ mi

泵的总效率是泵的

输出功率与输入功率的比值,即等于容积效率和机械效率的乘积。η= n0/ni=ηvηm

(6).自吸能力:

泵的自吸能力是指

泵在额定转速下,从低于泵以下的开式油箱中自行吸油的能力。自吸能力的大小常常以吸油

高度表示,或者用真空度来表示。一般泵所允许的吸油高度不超过500毫米。

对于自吸能力较差

的液压泵,一般采取如下措施:

1) 使油箱液面高

于液压泵,即液压泵安装在油箱液面以下工作。

2) 采用压力油箱,即采用封闭式油箱,增加油箱的表面压力,一般予压力为0.5~2.5

55×10(pa)最好在0.5~1×10(pa)

53) 采用补油泵供油,一般补油压力为3~7×10(pa)

对于不同结构类型的液压泵其自吸能力是不同的.齿轮泵较好,柱塞泵自吸能力较差.

二、齿轮泵(挂图16,齿轮泵工作原理)

齿轮泵具有结构简单,体积小,重量轻,工作可靠,成本低以及对液压油的污染不太敏感,便于维护和修理等优点,因此广泛地用在各种液压机械上。但由于齿轮泵的压力还较低,只能作定量泵使用。流量脉动和压力脉动较大,噪声高,故使用范围受到一定限制。

齿轮泵按啮合形式分为外啮合和内啮合齿轮泵,应用较广的是外啮合渐开线齿形的齿轮泵,故在此作重点介绍。 1.齿轮泵的工作原理:

外啮合的齿轮泵是由相互啮合的一对齿轮,壳体,以及前后端盖等主要零件组成。齿轮泵的工作原理:

见图2-1

齿轮i为主动齿轮,齿轮ⅱ为被动齿轮,当齿轮ⅰ旋转时,轮齿开始退出啮合之处为吸油腔,轮齿开始进入啮合处不压油腔。吸油腔和压油腔是被齿轮啮合接触以及径向间隙和端面间隙所隔开。吸油腔的容积增加,形成局部真空,油箱中的液压油在大气压的作用下进入吸油腔,实现吸油;压油腔的容积减小,液体便被排出压油腔,这样随着齿轮的连续转动,液压油就不断地吸入和排出完成能量转换。

2.齿轮泵的流量(指平均流量)

2泵的排量q=2πzmb

2-3 q=2πzmbnηv×10 (l/min)

式中:z—齿轮齿数。

m—齿轮模数

b—齿宽

n—齿轮泵转数

ηv--容积效率

3.齿轮泵的困油现象及其卸荷措施:

为了保证齿轮泵的正常工作,使吸油腔和压油腔被齿与齿的啮合接触线隔开而不连通,就要求齿轮的重叠系数ε大于1通常取ε=1.05~1.1。

由于重叠系数大于1,当一对齿尚未脱开啮合前,后一对齿就开始进入啮合,在这一小段时间内,同时有两对齿轮进行啮合,在它们之间形成一个封闭空间,一般称为闭死容积。随着齿轮的旋转,闭死容积是变化的,当闭死容积变小时急剧上升,油液从缝隙中强行挤出,使齿轮轴承受到很大的径向力,并产生振动和噪声;当闭死容积变大时,压力逐渐降低,产生真空,容易发生气蚀现象。为了减轻困油现象造成的危害,一般采用在侧板或轴套上开卸荷沟槽的办法解决。

开卸荷沟槽的原则: 1) 当闭死容积由最大逐渐减小时,通过卸荷槽与压油腔相通;

2) 当闭死容积由最小逐渐增加时,通过卸荷与吸油腔相通;

3) 当闭死容积处于最小位置时,闭死容积与吸压油腔都不相通。

4.齿轮泵轴向间隙自动补偿。

由于齿轮的轴向间隙和径向间隙的泄漏,使其产生容积损失,其中齿轮与侧板,齿轮轴端与轴套之间的轴向间隙漏损约占总漏损的75~80%。所以对于高压齿轮泵,为了提高容积效率,一般采用浮动轴套或浮动侧板,使轴向间隙能自动补偿。(如h泵),也有采用轴向径向都补偿的(如ccbz 泵)。

进出油口的判定,旋向判定,串联泵中排量大小的判定,注意看齿轮泵的铭牌。在无铭牌时,按如下原则判定:进油口比出油口大;输入轴从吸油口转向出油口;串联齿轮泵中泵体宽度大的排量大。

三、柱塞泵:

柱塞泵径向柱塞泵

轴向柱塞泵通轴式(斜盘式)定量轴向柱塞泵

变量轴向柱塞泵

弯轴式(斜轴式)定量轴向柱塞泵

变量轴向柱塞泵

弯轴式轴向柱塞变量泵a8vha系列。

1.变量泵的原理:(见图2-2)

所谓变量泵就是泵的排量可以改变,它是通过改变泵体的摆角(弯轴式)或斜盘的摆角(斜盘式)来改变柱塞的行程从而实现泵排出油液容积的变化。

摆角控制方式有手动调节和自动调节两种。a/r912挖掘机采用的变量泵a8v80ha(西德样机采用lpvd64斜盘式)。是一个液压双泵,它包括两个轴向柱塞泵、一个齿轮箱和一个恒功率调节器。两泵的机械部分由齿轮连接,液压部分则由恒功率调节器连接,当柴油机保持其额定扭矩时,两泵的流量随其压力的总和而无级变化。理论上,压力和流量的乘积是一个常数。(即功率恒定)(在变

量范围内)

也就是说,在变量范围内,当压力增加时(外负荷变大)流量变小(运动速度降低),当压力降低时,(外负荷减小)流量变大(运动速度变快),使柴油机的功率能得到充分利用,这就是恒功率变量泵的一个优点。

2.斜轴式变量泵的流量:

2排量:q=(π/4)d.2r.z.sinγ

2-3实际流量:q=(π/4)d.2r.z.sinγ.n. ηv×10

2-3

=(π/2)d.r.z.sinγ.n. ηv×10 (l/min)

式中:q—实际流量 r—连杆球铰中心在发兰盘上的分布圆半径(cm)

d—柱塞直径(cm) z—柱塞数目

γ—缸体摆角

ηv—泵的容积效率(95~98%)

n—泵的转速(r/min)

泵的变量比:i=qmax/qmin=pmax/p0=sinγmax/sinγmin

斜盘式轴向柱塞泵的平均流量

-32

q=2.s.r.z.n.tgγ.ηv×10=(π/4)d.2r.z.n.tgγ.ηv

式中:d—柱塞直径 r—柱塞分布圆半径(cm)

z—柱塞数

γ—斜盘倾角

第二节泵装置

本机采用的泵装置是斜盘式串连轴向柱塞变量双泵,该装置由前泵,后泵和先导油泵组成。主泵上装有调节器,对泵进行控制。

2.2.1.外型

泵外型见图

2-2-1

图 2-2-2 泵外形图

篇二:川崎k3v泵说明书

川崎k3v系列斜盘式轴向柱塞泵

使用说明书

川崎重工业株式会社

液压泵

一、概述:

液压泵将原动机的机械能转换成工作液体的压力能。按其职能系统,属于液压能源元件,又称为动力元件。

液压传动中使用的液压泵都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵。

液压泵可分为齿轮泵,叶片泵,柱塞泵(按结构来分)

本节主要介绍挖掘机上常用的齿轮泵、柱塞泵的基本概念、工作原理、结构特点、运用原理和维修知识。

1、液压泵的基本性能参数

液压泵的主要性能参数是压力p 和流量q

(1)压力

泵的输出压力由负载决定。当负载增加时,泵的压力升高,当负载减小,泵的压力降低,没有负载就没有压力。所以,在液压系统工作的过程中,泵的压力是随着负载的变化而变化的。如果负载无限制的增长。泵的压力也无限制的增高。直至密封或零件强度或管路被破坏。这是容积式液压泵的一个重要特点。因此在液压系统中必须设置安全阀。限制泵的最大压力,起过载保护作用。在位置的布置上,安全阀越靠近泵越好。

液压泵说明书对压力有两种规定:额定压力和最大压力。

额定压力——是指泵在连续运转情况下所允许使用的工作压力,并能保证泵的容积效率和使用寿命。

最大压力——泵在短时间内起载所允许的极限压力,为液压系统的安全阀的调定值不能超过泵的最大压力值,最好的是等于或小于额定压力值。

(2)流量q

流量是指泵在单位时间输出液体的体积。流量有理论流量和实际流量之分

理论流量q0,等于

排量q 与泵转数的乘积:

-3

q0=q*n*10 (l/min)

泵的排量是指泵每

转一周所排出液体的体积。泵的排量取决于泵的结构参数。不同类型泵的排量记算方法也不

同。排量不可变的称为定量泵,排量可变的称为变量泵。

泵的实际流量q小

于理论流量q0(因为泵的各密封间隙有泄漏)

q= q0ηv = q.n.

ηv /1000(l/min)

式中ηv----泵的

容积效率

ηv =(q(实际流

量)/ q0(理论流量))*100%

齿轮泵的容积效率,

ηv≥92%,柱塞泵ηv≥95%

泵的泄漏量(漏损)

与泵的输出压力有关,压力升高泄漏量(q0-q)即δq增加,所以泵的实际流量是随泵的输

出压力变化而变化的,而液压泵的理论流量与泵的输出压力无关。

(3)。转速n

泵的转速有额定转

速和最高转速之分。额定转速是指泵在正常工作情况下的转速,使泵具有一定的自吸能力,

避免产生空穴和气蚀现象,一般不希望泵超过额定转速运转。

泵的最高转速受运

动件磨损和寿命的限制,同时也受气蚀条件的限制。如果泵的转速大于最高转速,可能产生

气蚀现象,使泵产生很大的振动与噪声,并加速零件的破坏,使寿命显著降低。

(4)。扭矩与功率:

泵的输入扭矩:

mi=1.59p.q/10ηm (n.m)

式中:p—压力(mpa)

q—排量(ml/min)

ηm—机械效率

泵的输入功率(即

驱动功率)

n0=pq/612

(kw)

n0=pq/450

(hp)

(5)。效率:

容积效率是泵的实

际流量q与理论流量q0的比值。

ηv=q/ q0

机械效率是泵的理论扭矩m0与实际输入扭矩mi的比值

ηm= m0/ mi

泵的总效率是泵的输出功率与输入功率的比值,即等于容积效率和机械效率的乘积。η= n0/ni=ηvηm

(6).自吸能力:

泵的自吸能力是指泵在额定转速下,从低于泵以下的开式油箱中自行吸油的能力。自吸能力的大小常常以吸油高度表示,或者用真空度来表示。一般泵所允许的吸油高度不超过500毫米。

对于自吸能力较差的液压泵,一般采取如下措施:

1) 使油箱液面高于液压泵,即液压泵安装在油箱液面以下工作。

2) 采用压力油箱,即采用封闭式油箱,增加油箱的表面压力,一般予压力为0.5~2.5

55×10(pa)最好在0.5~1×10(pa)

53) 采用补油泵供油,一般补油压力为3~7×10(pa)

对于不同结构类型的液压泵其自吸能力是不同的.齿轮泵较好,柱塞泵自吸能力较差.

二、齿轮泵(挂图16,齿轮泵工作原理)

齿轮泵具有结构简单,体积小,重量轻,工作可靠,成本低以及对液压油的污染不太敏感,便于维护和修理等优点,因此广泛地用在各种液压机械上。但由于齿轮泵的压力还较低,只能作定量泵使用。流量脉动和压力脉动较大,噪声高,故使用范围受到一定限制。

齿轮泵按啮合形式分为外啮合和内啮合齿轮泵,应用较广的是外啮合渐开线齿形的齿轮泵,故在此作重点介绍。 1.齿轮泵的工作原理:

外啮合的齿轮泵是由相互啮合的一对齿轮,壳体,以及前后端盖等主要零件组成。齿轮泵的工作原理:

见图2-1

齿轮i为主动齿轮,齿轮ⅱ为被动齿轮,当齿轮ⅰ旋转时,轮齿开始退出啮合之处为吸油腔,轮齿开始进入啮合处不压油腔。吸油腔和压油腔是被齿轮啮合接触以及径向间隙和端面间隙所隔开。吸油腔的容积增加,形成局部真空,油箱中的液压油在大气压的作用下进入吸油腔,实现吸油;压油腔的容积减小,液体便被排出压油腔,这样随着齿轮的连续转动,液压油就不断地吸入和排出完成能量转换。

2.齿轮泵的流量(指平均流量)

2泵的排量q=2πzmb

2-3 q=2πzmbnηv×10 (l/min)

式中:z—齿轮齿数。 m—齿轮模数

b—齿宽

n—齿轮泵转数

ηv--容积效率

3.齿轮泵的困油现象及其卸荷措施:

为了保证齿轮泵的正常工作,使吸油腔和压油腔被齿与齿的啮合接触线隔开而不连通,就要求齿轮的重叠系数ε大于1通常取ε=1.05~1.1。

由于重叠系数大于1,当一对齿尚未脱开啮合前,后一对齿就开始进入啮合,在这一小段时间内,同时有两对齿轮进行啮合,在它们之间形成一个封闭空间,一般称为闭死容积。随着齿轮的旋转,闭死容积是变化的,当闭死容积变小时急剧上升,油液从缝隙中强行挤出,使齿轮轴承受到很大的径向力,并产生振动和噪声;当闭死容积变大时,压力逐渐降低,产生真空,容易发生气蚀现象。为了减轻困油现象造成的危害,一般采用在侧板或轴套上开卸荷沟槽的办法解决。

开卸荷沟槽的原则: 1) 当闭死容积由最大逐渐减小时,通过卸荷槽与压油腔相通;

2) 当闭死容积由最小逐渐增加时,通过卸荷与吸油腔相通;

3) 当闭死容积处于最小位置时,闭死容积与吸压油腔都不相通。

4.齿轮泵轴向间隙自动补偿。

由于齿轮的轴向间隙和径向间隙的泄漏,使其产生容积损失,其中齿轮与侧板,齿轮轴端与轴套之间的轴向间隙漏损约占总漏损的75~80%。所以对于高压齿轮泵,为了提高容积效率,一般采用浮动轴套或浮动侧板,使轴向间隙能自动补偿。(如h泵),也有采用轴向径向都补偿的(如ccbz 泵)。

进出油口的判定,旋向判定,串联泵中排量大小的判定,注意看齿轮泵的铭牌。在无铭牌时,按如下原则判定:进油口比出油口大;输入轴从吸油口转向出油口;串联齿轮泵中泵体宽度大的排量大。

三、柱塞泵:

柱塞泵径向柱塞泵

轴向柱塞泵通轴式(斜盘式)定量轴向柱塞泵

变量轴向柱塞泵

弯轴式(斜轴式)定量轴向柱塞泵

弯轴式轴向柱塞变量泵a8vha系列。

1.变量泵的原理:(见图2-2)

所谓变量泵就是泵的排量可以改变,它是通过改变泵体的摆角(弯轴式)或斜盘的摆角(斜盘式)来改变柱塞的行程从而实现泵排出油液容积的变化。

摆角控制方式有手动调节和自动调节两种。a/r912挖掘机采用的变量泵a8v80ha(西德样机采用lpvd64斜盘式)。是一个液压双泵,它包括两个轴向柱塞泵、一个齿轮箱和一个恒功率调节器。两泵的机械部分由齿轮连接,液压部分则由恒功率调节器连接,当柴油机保持其额定扭矩时,两泵的流量随其压力的总和而无级变化。理论上,压力和流量的乘积是一个常数。(即功率恒定)(在变量范围内)

也就是说,在变量范围内,当压力增加时(外负荷变大)流量变小(运动速度降低),当压力降低时,(外负荷减小)流量变大(运动速度变快),使柴油机的功率能得到充分利用,这就是恒功率变量泵的一个优点。

2.斜轴式变量泵的流量:

2排量:q=(π/4)d.2r.z.sinγ

2-3实际流量:q=(π/4)d.2r.z.sinγ.n. ηv×10

2-3

=(π/2)d.r.z.sinγ.n. ηv×10 (l/min)

式中:q—实际流量

r—连杆球铰中心在发兰盘上的分布圆半径(cm)

d—柱塞直径(cm) z—柱塞数目

γ—缸体摆角

ηv—泵的容积效率(95~98%)

n—泵的转速(r/min)

泵的变量比:i=qmax/qmin=pmax/p0=sinγmax/sinγmin

斜盘式轴向柱塞泵的平均流量

-32

q=2.s.r.z.n.tgγ.ηv×10=(π/4)d.2r.z.n.tgγ.ηv

式中:d—柱塞直径

径(cm)

z—柱塞数

γ—斜盘倾角

第二节泵装置

本机采用的泵装置是斜盘式串连轴向柱塞变量双泵,该装置由前泵,后泵和先导油泵组成。主泵上装有调节器,对泵进行控制。

篇三:川崎k3v泵说明书

03890312

川崎斜板形k3v系列

轴向活塞泵

使用说明书

株式会社川崎精機

目录

1. 型号表示

2. 规格

3. 构造和动作原理

4. 4-1 4-2 4-3 4-4 4-5 4-6 注满油和排气4-7 开始运转时的注意事项

5 5-1 一般的注意事项5-2 泵体异常的检查方法5-3 马达的过载5-4 泵流量的过低,排出压力不能升高时5-5

附图,附表

附图 1. 附图 2. 附表1. 泵体装紧扭矩一览表

1

1.型号表示

k3v 112 dt - 1ce r - 9c32 – 1b

2

2.规格

*1. 闭路规格的最高旋转数

使用闭路规格时,请预先商谈。 *2. 吸入压力 0 kgf/cm? 时的旋转数。

3

篇四:川崎k3v泵说明书

使用说明书

川崎重工业株式会社

液压泵

一、概述:

液压泵将原动机的机械能转换成工作液体的压力能。按其职能系统,属于液压能源元件,又称为动力元件。液压传动中使用的液压泵都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵。

液压泵可分为齿轮泵,叶片泵,柱塞泵(按结构来分)

本节主要介绍挖掘机上常用的齿轮泵、柱塞泵的基本概念、工作原理、结构特点、运用原理和维修知识。

1、液压泵的基本性能参数

液压泵的主要性能参数是压力p 和流量q

(1)压力泵的输出压力由负载决定。当负载增加时,泵的压力升高,当负载减小,泵的压力降低,没有负载就没有压力。所以,在液压系统工作的过程中,泵的压力是随着负载的变化而变化的。如果负载无限制的增长。泵的压力也无限制的增高。直至密封或零件强度或管路被破坏。这是容积式液压泵的一个重要特点。因此在液压系统中必须设置安全阀。限制泵的最大压力,起过载保护作用。在位置的布置上,安全阀越靠近泵越好。

液压泵说明书对压力有两种规定:额定压力和最大压力。

额定压力——是指泵在连续运转情况下所允许使用的工作压力,并能保证泵的容积效率和使用寿命。

最大压力——泵在短时间内起载所允许的极限压力,为液压系统的安全阀的调定值不能超过泵的最大压力值,最好的是等于或小于额定压力值。

(2)流量q

流量是指泵在单位时间输出液体的体积。流量有理论流量和实际流量之分

理论流量q0,等于排量q 与泵转数的乘积:

-3

q0=q*n*10 (l/min)

泵的排量是指泵每转一周所排出液体的体积。泵的排量取决于泵的结构参数。不同类型泵的排量记算方法也不同。排量不可变的称为定量泵,排量可变的称为变量泵。

泵的实际流量q小于理论流量q0(因为泵的各密封间隙有泄漏)

q= q0ηv = q.n.ηv /1000(l/min)

式中ηv----泵的容积效率

ηv =(q(实际流量)/ q0(理论流量))*100%

齿轮泵的容积效率,ηv≥92%,柱塞泵ηv≥95%

泵的泄漏量(漏损)与泵的输出压力有关,压力升高泄漏量(q0-q)即δq增加,所以泵的实际流量是随泵的输出压力变化而变化的,而液压泵的理论流量与泵的输出压力无关。

(3)。转速n

泵的转速有额定转速和最高转速之分。额定转速是指泵在正常工作情况下的转速,使

泵的最高转速受运动件磨损和寿命的限制,同时也受气蚀条件的限制。如果泵的转速大于最高转速,可能产生气蚀现象,

使泵产生很大的振动与噪声,并加速零件的破坏,使寿命显著降低。

(4)。扭矩与功率:泵的输入扭矩: mi=1.59p.q/10ηm (n.m) 式中:p—压力(mpa)

q—排量(ml/min)ηm—机械效率

泵的输入功率(即驱动功率)

n0=pq/612 (kw)

n0=pq/450 (hp)

(5)。效率:

容积效率是泵的实际流量q与理论流量q0的比值。

ηv=q/ q0

机械效率是泵的理论扭矩m0与实际输入扭矩mi的比值

ηm= m0/ mi

泵的总效率是泵的

输出功率与输入功率的比值,即等于容积效率和机械效率的乘积。η= n0/ni=ηvηm

(6).自吸能力:

泵的自吸能力是指泵在额定转速下,从低于泵以下的开式油箱中自行吸油的能力。自吸能力的大小常常以吸油高度表示,或者用真空度来表示。一般泵所允许的吸油高度不超过500毫米。

对于自吸能力较差的液压泵,一般采取如下措施:

1) 使油箱液面高于液压泵,即液压泵安装在油箱液面以下工作。

2) 采用压力油箱,即采用封闭式油箱,增加油箱的表面压力,一般予压力0.5-2.5mpa

最好在0.5-1mpa

3) 采用补油泵供油,一般补油压力为3-7mpa

对于不同结构类型的液压泵其自吸能力是不同的.齿轮泵较好,柱塞泵自吸能力较差.

二、齿轮泵(挂图16,齿轮泵工作原理)

齿轮泵具有结构简单,体积小,重量轻,工作可靠,成本低以及对液压油的污染不太敏感,便于维护和修理等优点,因此广泛地用在各种液压机械上。但由于齿轮泵的压力还较低,只能作定量泵使用。流量脉动和压力脉动较大,噪声高,故使用范围受到一定限制。

齿轮泵按啮合形式分为外啮合和内啮合齿轮泵,应用较广的是外啮合渐开线齿形的齿轮泵,故在此作重点介绍。 1.齿轮泵的工作原理:

外啮合的齿轮泵是由相互啮合的一对齿轮,壳体,以及前后端盖等主要零件组成。齿轮泵的工作原理:

见图2-1

齿轮i为主动齿轮,齿轮ⅱ为被动齿轮,当齿轮ⅰ旋转时,轮齿开始退出啮合之处为吸油腔,轮齿开始进入啮合处不压油腔。吸油腔和压油腔是被齿轮啮合接触以及径向间隙和端面间隙所隔开。吸油腔的容积增加,形成局部真空,油箱中的液压油在大气压的作用下进入吸油腔,实现吸油;压油腔的容积减小,液体便被排出压油腔,这样

随着齿轮的连续转动,液压油就不断地吸入和排出完成能量转换。

2.齿轮泵的流量(指平均流量)

2泵的排量q=2πzmb

2-3 q=2πzmbnηv×10 (l/min)

式中:z—齿轮齿数。 m—齿轮模数

b—齿宽

n—齿轮泵转数

ηv--容积效率

3.齿轮泵的困油现象及其卸荷措施:

为了保证齿轮泵的正常工作,使吸油腔和压油腔被齿与齿的啮合接触线隔开而不连通,就要求齿轮的重叠系数ε大于1通常取ε=1.05~1.1。

由于重叠系数大于1,当一对齿尚未脱开啮合前,后一对齿就开始进入啮合,在这一小段时间内,同时有两对齿轮进行啮合,在它们之间形成一个封闭空间,一般称为闭死容积。随着齿轮的旋转,闭死容积是变化的,当闭死容积变小时急剧上升,油液从缝隙中强行挤出,使齿轮轴承受到很大的径向力,并产生振动和噪声;当闭死容积变大时,压力逐渐降低,产生真空,容易发生气蚀现象。为了减轻困油现象造成的危害,一般采用在侧板或轴套上开卸荷沟槽的办法解决。

开卸荷沟槽的原则: 1) 当闭死容积由最大逐渐减小时,通过卸荷槽与压油腔相通;

2) 当闭死容积由最小逐渐增加时,通过卸荷与吸油腔相通;

3) 当闭死容积处于最小位置时,闭死容积与吸压油腔都不相通。

4.齿轮泵轴向间隙自动补偿。

由于齿轮的轴向间隙和径向间隙的泄漏,使其产生容积损失,其中齿轮与侧板,齿轮轴端与轴套之间的轴向间隙漏损约占总漏损的75~80%。所以对于高压齿轮泵,为了提高容积效率,一般采用浮动轴套或浮动侧板,使轴向间隙能自动补偿。(如h泵),也有采用轴向径向都补偿的(如ccbz 泵)。

进出油口的判定,旋向判定,串联泵中排量大小的判定,注意看齿轮泵的铭牌。在无铭牌时,按如下原则判定:进油口比出油口大;输入轴从吸油口转向出油口;串联齿轮泵中泵体宽度大的排量大。

三、柱塞泵:

柱塞泵径向柱塞泵

轴向柱塞泵通轴式(斜盘式)定量轴向柱塞泵

变量轴向柱塞泵

弯轴式(斜轴式)定量轴向柱塞泵

变量轴向柱塞泵

弯轴式轴向柱塞变量泵a8vha系列。

1.变量泵的原理:(见图2-2)

所谓变量泵就是泵的排量可以改变,它是通过改变泵体的摆角(弯轴式)或斜盘的摆角(斜盘式)来改变柱塞的行程从而实现泵排出油液容积的变化。

摆角控制方式有手动调节和自动调节两种。a/r912挖掘机采用的变量泵a8v80ha(西德样机采用lpvd64斜盘式)。是一个液压双泵,它包括两个轴向柱塞泵、一个齿轮箱和一个恒功率调节器。两泵的机械部分由齿轮连接,液压部分则由恒功率调节器连接,当柴油机保持其额定扭矩时,两泵的流量随其压力的总和而无级变化。理论上,

压力和流量的乘积是一个常数。(即功率恒定)(在变量范围内)也就是说,在变量范围内,当压力增加时(外负荷变大)流量变小(运动速度降低),当压力降低时,(外负荷减小)流量变大(运动速度变快),使柴油机的功率能得到充分利用,这就是恒功率变量泵的一个优点。 2.斜轴式变量泵的流量:

2排量:q=(π/4)d.2r.z.sinγ

2-3实际流量:q=(π/4)d.2r.z.sinγ.n. ηv×10

2-3

=(π/2)d.r.z.sinγ.n. ηv×10 (l/min)

式中:q—实际流量 r—连杆球铰中心在发兰盘上的分布圆半径(cm)

d—柱塞直径(cm) z—柱塞数目

γ—缸体摆角

ηv—泵的容积效率(95~98%)

n—泵的转速(r/min)

泵的变量比:i=qmax/qmin=pmax/p0=sinγmax/sinγmin

斜盘式轴向柱塞泵的平均流量

-32

q=2.s.r.z.n.tgγ.ηv×10=(π/4)d.2r.z.n.tgγ.ηv

式中:d—柱塞直径 r—柱塞分布圆半径(cm)

z—柱塞数

γ—斜盘倾角

篇五:川崎k3v泵说明书

川崎斜板形k3v系列

轴向活塞泵目录

1. 型号表示

2. 规格

3. 构造和动作原理

4. 使用上的注意事项 4-1 安装4-2 配管上的注意事项 4-3 关于过滤网 4-4 动作油和温度范围 4-5 使用上的注意事项 4-6 注满油和排气 4-7 开始运转时的注意事项 5 故障的原因及处理5-1 一般的注意事项 5-2 泵体异常的检查方法 5-3 马达的过载 5-4 泵流量的过低,排出压力不能升高时 5-5 异常音,异常振动附图,附表

附图1. 泵的构造图附图2. 泵的展开图附表1. 泵体装紧扭矩一览表

1. 型号表示

- -

2. 规格

*1. 闭路规格的最高旋转数

使用闭路规格时,请预先商谈。 *2. 吸入压力 0 kgf/cm3时的旋转数。

该泵的构造是两台泵以花键接头(114)相连接的,马达的旋转被传递到前部的驱动轴f(111),同时驱动两台泵。油的吸入和排出口在二台泵的连接部即阀块(312)处汇集,前泵和后泵共用吸入口。因为前,后泵的构造原理和动作原理是相同的,故以前泵为例,进行说明。

构,交替进行油的吸入—吐出动作的阀盖机构。

f(111),油缸体(141),活塞瓦(151,152),压板(153), 球面缸衬(156), 垫片(158),油缸弹簧(157)组成。驱动轴的两端由轴承(123,124)支持。活塞瓦装于活塞上,形成球接头,同时减轻由负荷压力产生的推力,有一个把活塞瓦(211)上轻轻扇以调整油压平衡的壳部。为了使活塞瓦的副机构能在支撑板上圆滑的动作,通过押板和球面缸衬,使活塞瓦被油压弹簧压在支撑板之上。同样,油缸体也被油缸弹簧压在阀板(313)上。

斜板机构由斜板(212),活塞瓦(211),斜板支持台(251),倾转缸衬(214)倾转销(531), 伺服油缸(532)构成。斜板在活塞瓦动作面的相反侧形成的圆筒状的部位上被支撑在斜板支撑台上。由调节器控制的油压力,在设置在副活塞两侧的油压室的引导作用下,使得副活塞左右运动,此时借助于倾转销的球部,斜板在斜板支持台上摇动,可以改变倾转角(?)。

由阀块(312),阀板(313),阀板销(885)构成。带有二个瓜状孔的阀板被装在阀块上,对气缸块进行供油和回收油。被阀板切换的油,通过阀块连接到外部配管。

当驱动轴被马达(马达,引擎)驱动时,借助于花键联接,油缸体也同时旋转。当斜板倾斜时,被装在油缸体中的活塞一边同油缸体一起旋转,一边相对油缸进行往复连动。因此,就单个活塞而言当油缸体旋转一周时,活塞向离开阀板的方向运动(吸油行程),当油缸体转了180?时,完成行程,当油体继续转动余下的180?时,活塞向着阀板方向运动(排油行程)。当斜板倾角为零时,斜板不做冲程运动,不排油。

减速机说明书

目录 一、传动方案的拟定与分析......................................................................... 错误!未定义书签。 二、电动机的选择 ........................................................................................ 错误!未定义书签。 三、计算总传动比及分配各级的传动比..................................................... 错误!未定义书签。 四、动力学参数计算 .................................................................................... 错误!未定义书签。 五、蜗轮蜗杆设计计算 (2) 六、轴的设计计算 (5) 七、滚动轴承的选择及校核计算 (8) 八、键连接的选择及校核 (10) 九、联轴器的选择及校核 (11) 十、减速器的润滑与密封 (11) 十一、箱体及附件的结构设计 (11) 设计小结 (12) 参考文献 (13)

一、传动方案的拟定与分析 蜗杆下置式减速器 二、电动机的选择 1、电动机类型的选择 按工作要求和条件,选择全封闭自散冷式笼型三相异步电动机,电压380V,型号选择Y系列三相异步电动机。 2、电动机功率选择 1)传动装置的总效率: η∑=η12η22η3η4 =0.992 ×0.982 ×0.8×0.96=0.723 η1η2η3η 4 分别表示联轴器、轴承、双头蜗杆传动和卷筒的效率 2)电机所需的功率: P d = P w /η ∑ =1.5÷0.723=2.07KW 3、确定电动机转速 单级蜗杆传动比为i/ =(10~40),工作机转速n w =44rpm,则电动机 转速可选范围为n d =(440~1760)rpm综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,选择n=1000rpm 4、确定电动机型号 根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y122M-6。 其主要性能:额定功率2.2KW;满载转速940r/min; 三、计算总传动比及分配各级的传动比 1、总传动比 i 总= n m /n w =940/44=21.36 四、动力学参数计算 1、计算各轴转速 n Ⅰ=n m =940rpm n Ⅱ=n w =44rpm 2、计算各轴的输入功率 P Ⅰ=P d ×η 1 =2.05KW P Ⅱ=P Ⅰ ×η 3 =1.64KW P 卷=P Ⅱ ×η 1 ×η 2 =1.59KW 3、计算各轴扭矩 T d =9.55×106P d /n m =9.55×106×2.07/940=2.1×104N·mm T Ⅰ=T d ×η 1 =2.08×104 N·mm T Ⅱ=i×T Ⅰ ×η 2 ×η 3 =3.55×105 N·mm T 卷= T Ⅱ ×η 1 ×η 2 =3.45×105 N·mm η∑=0.723 P d =2.07KW 电动机型号: Y122M-6 i 总 =21.36

辊压机用行星减速机说明书

辊压机用行星减速机说明书 一、概述 行星齿轮减速机,是吸收国外同类产品所长,根据国内的实际情况,采用现辊压机用 代齿轮制造技术,为辊压机配套设计制造的高承载、长寿命减速机。该系列减速机在设计上采用行星传动方式,通过高精密制造,使行星传动的关键————功率分流均载得以保证。因此该系列减速机能充分适应水泥工业辊压机要求。该系列减速机体积小、重量轻,能在多粉尘环境下承受强冲击、振动的重负荷条件。经过十多年的工业运行,证实完全能替代进口。 二、性能与特点 1、高承载能力、抗冲击、抗震动; 2、可正、反两向运转; 3、传动效率:0.95 以上; 4、环境温度-10~+40?。低于 0?时,启动前润滑油应预热; 5、特别适用于严重冲击、多粉尘及连续运转的情况; 6、减速机输出为空心轴,采用锁紧盘、法兰连接; 7、减速机需另配稀油润滑站或循环冷却装置。 三、结构特点 1、其结构是定轴圆柱齿轮串联行星传动的组合式行星减速机; 2、齿轮副均采用铬镍钼合金钢进行渗碳淬火热处理后磨齿工艺,并对齿轮齿形进行修形, 精度达 GB10095.1-2-2001的 6 级;

3、为了保证各行星轮之间的均载,减速机内部采用均载性能良好的浮动元件,降低噪 音,提高整机性能。 六、安装与调试 (一)安装前的准备: 1、应由受过培训的合格的技术人员进行设备的组装和安装。安装规划阶段,应保证减 速机周围有足够的设备安装和保养、维护空间; 2、应清除空心轴内外的防锈油膜; 3、做好安装前的准备工作。 (二)安装说明 1、空心轴清理干净,安装时不得用润滑脂等。 2、涨套安装要牢固,按涨套要求螺栓力矩分步多次拧紧; 3、支撑安装要平直,左右支撑板法兰端面平行度保证小于 0.3mm,拧紧力矩及紧固顺 序见下: 螺栓紧固力矩 Nm M30 2000 M36 3560 M42 5720

行星减速机技术参数

概述 行星减速机(planetary reducer)是一种用途广泛的工业产品,其性能可与其它军品级减速机产品相媲美,却有着工业级产品的价格,行星减速机广泛汽车、钢铁、家居、医疗、电子设备、船舶、机械设备等领域。 分类 一般的减速机有斜齿轮减速机,精密行星减速机、伺服专用行星减速机、直角行星减速机、行星齿轮减速机、螺旋齿轮减速机、精密型减速机、蜗轮蜗杆减速机、行星摩擦式机械无级变速机等等。 级数 按级数分一般有三种:一级减速(一般为小于10:1)、二级减速(一般为大于10:1而小于等于200:1)、三级减速(有的品牌没有第三级,最大减速比做到100:1,一般划分原则就是大于100:1),但雷荇行星减速电机可做到五级,减速比最大做到4592:1; 原理 由一个内齿环(A)紧密结合于齿箱壳体上,环齿中心有一个自外部动力所驱动之太阳齿轮(B),介于两者之间有一组由三颗齿轮等分组合于托盘上之行星齿轮组(C)该组行星齿轮依靠著出力轴、内齿环及太阳齿轮支撑浮游于期间;行星减速机当入力侧动力驱动太阳齿时,可带动行星齿轮自转,并依循著内齿环之轨迹沿著中心公转,游星之旋转带动连结于托盘之出力轴输出动力。 参数 级数:行星齿轮的套数。由于一套行星齿轮无法满足较大的传动比,有时需要2套或者3套来满足用户较大的传动比的要求.由于增加了行星齿轮的数量,所以2级或3级减速机的长度会有所增加,效率会有所下降。

回程间隙:将输出端固定,输入端顺时针和逆时针方向旋转,使输入端产生额定扭矩+-2%扭矩时,减速机输入端有一个微小的角位移,此角位移就是回程间隙.单位是"分",就是一度的六十分之一.也有人称之为背隙。 行星减速机按照用途分为大功率减速机、小功率减速机,不同参数、尺寸、材质、电压、电流、速比、负载、空转等参数的行星减速机,分别应用于不同的领域;例如兆威减速机小型行星减速机参数: 尺寸:3.4mm-38mm 电压:3V-24V 功率:0.5W-50W 速比:2-2000 材质:塑胶、金属齿轮 扭矩=9550×电机功率÷电机输入转速×速度比×使用系数 备注:电机功率单位【Kw】 电机转速单位【r/m】 输出扭矩单位【N·m】 型号 行星减速机的型号命名方式分别根据规格、尺寸、材质、结构来命名;例如兆威机电开发的小型行星减速机的 性能 行星减速机体积小、重量轻,承载能力高,使用寿命长、运转平稳,噪声低、输出扭矩大,速比大、效率高、性能安全的特点。兼具功率分流、多齿啮合独用的特性。是一种具有广泛通用性的新型减速机。 定制参数范围: 1、全系列精密行星齿轮箱减速电机,直径 3.4mm-38mm,功率:0.01-40W,输出转速5-2000rpm,减速比5-1500,输出扭矩1gf.cm到50Kgf.cm; 2、通用驱动器、调节器齿轮箱传动机构系统; 3、定制化精密齿轮、蜗轮、蜗杆传动机构系统; 4、精密、微小的塑胶和特殊金属粉末注塑零件及集成装配组件。 产品主要涉及汽车部件、医疗传动应用、智能家居、工业设备、消费电子产品、标准微型齿

川崎K3V变量泵使用说明书

川崎液压泵培训教材 一、概述: 液压泵将原动机的机械能转换成工作液体的压力能。按其职能系统,属于液压能源元件,又称为动力元件。 液压传动中使用的液压泵都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵。 液压泵可分为齿轮泵,叶片泵,柱塞泵(按结构来分) 本节主要介绍挖掘机上常用的齿轮泵、柱塞泵的基本概念、工作原理、结构特点、运用原理和维修知识。 1、液压泵的基本性能参数 液压泵的主要性能参数是压力P 和流量Q (1)压力 泵的输出压力由负载决定。当负载增加时,泵的压力升高,当负载减小,泵的压力降低,没有负载就没有压力。所以,在液压系统工作的过程中,泵的压力是随着负载的变化而变化的。如果负载无限制的增长。泵的压力也无限制的增高。直至密封或零件强度或管路被破坏。这是容积式液压泵的一个重要特点。因此在液压系统中必须设置安全阀。限制泵的最大压力,起过载保护作用。在位置的布置上,安全阀越靠近泵越好。 液压泵说明书对压力有两种规定:额定压力和最大压力。 额定压力——是指泵在连续运转情况下所允许使用的工作压力,并能保证泵的容积效率和使用寿命。 最大压力——泵在短时间内起载所允许的极限压力,为液压系统的安全阀的调定值不能超过泵的最大压力值,最好的是等于或小于额定压力值。 (2)流量Q 流量是指泵在单位时间输出液体的体积。流量有理论流量和实际流量之分 理论流量Q0,等于排量q 与泵转数的乘积: Q0=q*n*10-3(L/min) 泵的排量是指泵每转一周所排出液体的体积。泵的排量取决于泵的结构参数。不同类型泵的排量记算方法也不同。排量不可变的称为定量泵,排量可变的称为变量泵。 泵的实际流量Q小于理论流量Q0(因为泵的各密封间隙有泄漏) Q= Q0ηV = q.n.ηV /1000(L/min) 式中ηV----泵的容积效率 ηV =(Q(实际流量)/ Q0(理论流量))*100% 齿轮泵的容积效率,ηV≥92%,柱塞泵ηV≥95% 泵的泄漏量(漏损)与泵的输出压力有关,压力升高泄漏量(Q0-Q)即ΔQ增加,所以泵的实际流量是随泵的输出压力变化而变化的,而液压泵的理论流量与泵的输出压力无关。 (3)。转速n 泵的转速有额定转速和最高转速之分。额定转速是指泵在正常工作情况下的转速,使泵具有一定的自吸能力,避免产生空穴和气蚀现象,一般不希望泵超过额定转速运转。 泵的最高转速受运动件磨损和寿命的限制,同时也受气蚀条件的限制。如果泵的转速

减速机型号标示说明书

标准文档 减速机型号说明 1、H、B系列大功率减速机 HB系列标准工业齿轮箱特点: H、B大功率齿轮减速机采用通用设计方案,可按客户需求变 1. 型为行业专用的齿轮箱。 2.实现平行轴、直交轴、立式、卧式通用箱体,零部件种类减少,规格型号增加。 3.采用吸音箱体结构、较大的箱体表面积和大风扇、圆柱齿轮和螺旋锥齿轮均采用先进的磨齿工艺,使整机的温升、噪声降低、运转的可靠性得到提高,传递功率增大。

4.输入方式:电机联接法兰、轴输入。 5.输出方式:带平键的实心轴、带平键的空心轴、胀紧盘联结的空心轴、花键联结的空心轴、花键联结的实心轴和法兰联结的实实用文案. 标准文档 心轴。 6.安装方式:卧式、立式、摆动底座式、扭力臂式。 7.H、B系列产品有3~26型规格,减速传动级数有1~4级,速比1.25~450;和我厂R、K、S系列组合得到更大的速比。 技术参数: 1.速比范围1.25-450 2.扭矩范围2.6-900kN 3.功率范围4-5000kW H、B系列产品结构图及产品实例:

实用文案. 标准文档 2、列摆线针轮减速机标记方法及其使用条件1、标记方法如下:

= 2、使用条件 A、适用于连续工作制,允许正、反向运转。 B、输出轴及输入轴轴伸上的键按GB/T1096普通平键型式及尺寸。 C、卧式双轴型减速器输出轴应处于水平位置工作,必须倾斜使用时请与制造厂联系。 实用文案. 标准文档 D、立式减速器输出轴应垂直向下使用, 3、K系列螺旋锥齿轮减速机 节省空间,可靠耐用,承受过载能力高,功率可达200KW,能耗低,性能优越,减速效率高达95%以上, 振动小,噪音低,刚性铸铁箱体,齿轮表面经高频热处理,经过

YO(Z)J750液力偶合器(正车)减速箱使用维护说明书1

YOZJ 700 / 750型 液力偶合器正车减速箱使用维护说明书

目录 1. 前言---------------------------------------------------------------------- 1 2. 简介---------------------------------------------------------------------- 2 3. 工作原理---------------------------------------------------------------- 2 4. 特点-------------------------------------------------------------------- 4 5. 型号和安装方式------------------------------------------------------- 6 6. 主要技术参数和功率容量------------------------------------------- 9 7. 结构特点-------------------------------------------------------------- 10 8. 安装-------------------------------------------------------------------- 13 9. 试运转----------------------------------------------------------------- 17 10. 操作---------------------------------------------------------------------- 18 11. 维护、保养和维修---------------------------------------------------- 20 12. 故障及排除------------------------------------------------------------ 21 YOZJ700/750型液力偶合器正车减速箱(以下简称“偶合器减速箱”)由两部分组成:输入部分是偶合器,其工作腔直径分别为700和750mm;输出部分为两级同轴式齿轮减速箱,齿轮减速比为1.5~3.5。输出轴和输入轴位于同一轴心线上,且转向相同(见图1)。可与国产的190、CAT3500和MTU4000等系列柴油机或电动机匹配,应用在机械传动或复合(机械和电)传动的石油钻机及挖泥船上。 图1.液力偶合器正车减速箱传动示意图

行星减速机如何正确安装【干货技巧】

行星减速机如何正确安装 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 行星减速机以其体积小(与电机直径基本同),传动效率高(85~90%),减速范围广(1:3~100),精度高(回差小)等诸多优点,而被广泛应用于伺服、步进、直流无刷等控制电机(后称驱动电机)的传动系统中。在保证精密传动的前提下,可以降低转速﹑增大扭矩和降低负载与驱动电机的转动惯量比。但在实际使用中经常会出现因安装不当导致的故障,减速机和驱动电机断轴就是主要故障类型之一。对断轴机理的分析有利于广大客户了解如何正确安装行星减速机,更好地发挥行星减速机的作用。 一、不同心出现的断轴问题 有的用户在设备运行一段时间后,驱动电机的输出轴断了。为什么驱动电机的输出轴会扭断?当我们仔细观查驱动电机折断的输出轴横断面,会发现横断面的外圈较明亮,而越向轴心处断面颜色越暗,最后到轴心处是折断的痕迹(点状痕)。这一现象大多是驱动电机与减速机装配时两者的不同心所致。 当驱动电机和减速机间装配同心度保证得较好时,驱动电机输出轴所承受的仅仅是转动力(扭矩),运转时也会很平顺,没有脉动感。而在不同心时,驱动电机输出轴还要承受来自于减速机输入端的径向力(弯矩)。这个径向力的作用将会使驱动电机输出轴被迫弯曲,而且弯曲的方向会随着输出轴转动不断变化。如果同心度的误差较大时,该径向力使电机输出轴局部温度升高,其金属结构不断被破坏,最终将导致驱动电机输出轴因局部疲劳而折断。两者同心度的误差越大时,驱动电机输出轴折断的时间越短。在驱动电机输出轴折断的同时,减速机输入端同样也会承受来自于驱动电机

JS40矿用减速器说明书

JS40矿用减速器 使用说明书 本产品执行《MT148—1997刮板输送机用减速器》标准 ××××重型机械制造有限公司 2003年8月

目录 一、概述 (1) 二、技术特征 (1) 三、结构型式及作用 (1) 四、使用维护注意事项 (2) 五、机器的润滑 (2) 六、机器可能发生的故障及处理方法 (3) 七、零部件的修理与验收 (3)

一、概述: 1、用途: 该减速器具有承载能力大、传动效率高、噪音低、体积小、重量轻、寿命长的特点。适用于输入轴与输出轴呈垂直方向布置的传动装置,如刮板输送机、带式输送机及各种运输机械,也可用于冶金、矿山、化工、水泥、建筑、轻工、能源等各种通用机械的传动机构中。 1.型号组成及代表意义: kW) 减速器 二、技术特征: 1、减速器传动比………………………………………1:24.564 2、外形尺寸(长x宽x高)………………………1150×834×470毫米 3、机器总重…………………………………………656千克 三、结构型式及作用: 减速机由一对圆弧伞齿轮、一对斜齿轮、一对直齿轮组成三级减速,总减速比为l:24.564。第一、二、三轴的轴承为单列园锥滚子轴承,第四轴为双列向心球面滚子轴承。第一轴上的锁紧螺母是用以固定轴承并保证轴承轴向游隙量为0.05~0.1毫米,第二、三、四轴承轴向游隙量是用调整垫

保证,其中二、三轴轴承轴向游隙量为0.08~0.15毫米,四轴轴承轴向游隙量为0.06~0.15毫米。在组装时,园弧伞齿轮的轴向位置要进行适当调整,以保证啮合侧隙和接触斑点,轴园弧伞齿轮的轴向位移通过调整螺母调整,大圆弧伞齿轮通过调整垫调整轴向位置。以达到较好的啮合精度,调整好的一对园弧伞齿轮啮合侧隙不小于0.17毫米,接触斑点沿齿长和齿高方向不小于50%。 减速器内注入150号工业齿轮油,注入量为浸入大园弧伞齿轮的 1/3,以保证各部位得到充足的润滑。 四、使用维护注意事项: 1、每班检查减速器各连接螺栓有无松动现象,发现松动应及时拧紧。 2、要经常注意减速器的工作情况,如发现有异常噪音、温升过高或各 密封面渗漏现象时,应及时处理;油温不得超过80℃;齿轮齿面不得有明显磨损、点蚀;在检修时各部位应按规定的间隙调整合适。 五、机器的润滑: 六、可能发生的故障及处理方法:

行星减速机型号大全

按照功率大小分为小功率行星减速机、大功率行星减速机;按照传动行星分为行星齿轮减速电机、行星直流减速电机、精密行星减速电机等;行星减速机的型号主要是根据规格、参数、性能来命名的,主要型号如下: 3.4mm行星减速机 产品分类:五金行星齿轮箱 产品型号:ZWBMD003003 产品规格:Φ3.4MM 产品电压:3.0V 空载转速:(步进电机可定制) 空载电流:220 mA MAX(可定制) 负载转速:2.4-300 rpm(可定制) 减速比:5/25/125/625:1(可定制)

产品分类:五金行星齿轮箱 产品型号:ZWBMD004004 产品规格:Φ4MM 产品电压:3.0V 空载转速:(步进电机可定制) 空载电流:340 mA MAX(可定制)负载转速:2.4-300 rpm(可定制)减速比:5/25/125/625:1(可定制)

产品分类:五金行星齿轮箱 产品型号:ZWMD006006 产品规格:Φ6MM产品 电压:3-24V 空载转速:11-3824 rpm(可定制)空载电流:30-40 mA MAX(可定制)负载转速:8-3229 rpm(可定制) 负载电流:100 mA MAX(可定制)速比:23.04-1707.9(可定制)

产品分类:五金行星齿轮箱 产品型号:ZWMD008008 产品规格:Φ8MM产品 电压:4.2V 空载转速:19-1228rpm(可定制) 空载电流:95-100mA MAX(可定制)负载转速:15-935rpm(可定制) 负载电流:155-160mA MAX(可定制)速比:13-809.1(可定制)

行星轮系减速器设计说明书

第一章概述 行星轮系减速器较普通齿轮减速器具有体积小、重量轻、效率高及传递功率范围大等优点,逐渐获得广泛应用。同时它的缺点是:材料优质、结构复杂、制造精度要求较高、安装较困难些、设计计算也较一般减速器复杂。但随着人们对行星传动技术进一步的深入地了解和掌握以及对国外行星传动技术的引进和消化吸收,从而使其传动结构和均载方式都不断完善,同时生产工艺水平也不断提高,完全可以制造出较好的行星齿轮传动减速器。 根据负载情况进行一般的齿轮强度、几何尺寸的设计计算,然后要进行传动比条件、同心条件、装配条件、相邻条件的设计计算,由于采用的是多个行星轮传动,还必须进行均载机构及浮动量的设计计算。 行星齿轮传动根据基本够件的组成情况可分为:2K—H、3K、及K—H—V三种。若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW型、NGWN型和N型等。我所设计的行星齿轮是2K—H行星传动NGW型。

第二章原始数据及系统组成框图 (一)有关原始数据 课题: 一种自动洗衣机行星轮系减速器的设计 原始数据及工作条件: 使用地点:自动洗衣机减速离合器内部减速装置; 传动比:p i=5.2 输入转速:n=2600r/min 输入功率:P=150w n=3 行星轮个数: w z=63 内齿圈齿数 b (二)系统组成框图

洗涤:A制动,B放开,运动经电机、带传动、中心齿轮、行星轮、行星架、波轮 脱水:A放开,B制动,运动经电机、带传动、内齿圈(脱水桶)、中心齿轮、行星架、 波轮与脱水桶等速旋转。

第三章减速器简介 减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。 减速器降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。降速同时降低了负载的惯量,惯量的减少为减速比的平方。 一般的减速器有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等等。按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。 1)蜗轮蜗杆减速器的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。 2)谐波减速器的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。 3)行星减速器其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。

川崎泵,说明书

篇一:川崎k3v泵说明书 液压泵 一、概述: 液压泵将原动机的机械能转换成工作液体的压力能。按其职能系统,属于液压能源元件,又称为动力元件。 液压传动中使用的液压泵都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵。 液压泵可分为齿轮泵,叶片泵,柱塞泵(按结构来分) 本节主要介绍挖掘机上常用的齿轮泵、柱塞泵的基本概念、工作原理、结构特点、运用原理和维修知识。 1、液压泵的基本性能参数 液压泵的主要性能参数是压力p 和流量q (1)压力 泵的输出压力由负载决定。当负载增加时,泵的压力升高,当负载减小,泵的压力降低,没有负载就没有压力。所以,在液压系统工作的过程中,泵的压力是随着负载的变化而变化的。如果负载无限制的增长。泵的压力也无限制的增高。直至密封或零件强度或管路被破坏。这是容积式液压泵的一个重要特点。因此在液压系统中必须设置安全阀。限制泵的最大压力,起过载保护作用。在位置的布置上,安全阀越靠近泵越好。 液压泵说明书对压力有两种规定:额定压力和最大压力。 额定压力——是指泵在连续运转情况下所允许使用的工作压力,并能保证泵的容积效率和使用寿命。 最大压力——泵在短时间内起载所允许的极限压力,为液压系统的安全阀的调定值不能超过泵的最大压力值,最好的是等于或小于额定压力值。 (2)流量q 流量是指泵在单位时间输出液体的体积。流量有理论流量和实际流量之分理论流量q0,等于排量q 与泵转数的乘积: -3 q0=q*n*10 (l/min) 泵的排量是指泵每转一周所排出液体的体积。泵的排量取决于泵的结构参数。不同类型泵的排量记算方法也不同。排量不可变的称为定量泵,排量可变的称为变量泵。泵的实际流量q小于理论流量q0(因为泵的各密封间隙有泄漏) q= q0ηv = q.n.ηv /1000(l/min) 式中ηv----泵的容积效率

JDJDX系列减速机使用说明书

JD-JDX(JM-JMX) 系列减速机安装使用维护说明书 重庆京庆重型机械有限公司

目录 1减速机技术参数 (2) 2结构简介 (2) 3减速机的润滑 (3) 4减速机的安装 (6) 5减速机的试运转 (7) 6维护保养 (8) 7出厂说明 (8) ※注:括号内的内容为JM-JMX系列减速机的参数

1减速机技术参数 1.1 型号: 详见技术协议1.2 额定功率输入(kW):详见技术协议1.3 额定输入转速(r/min):详见技术协议1.4 传动比:详见技术协议1.5 转向(面对输出轴):输出轴顺、逆时针旋转 1.6 中心距(mm):参见外形图 1.7传动形式:单级减速;水平异心 1.8润滑油牌号: N220~N320级压工业齿轮油或2~5号齿轮油(JIS K2219-1978)1.9润滑方式:强制润滑 1.10 外形尺寸:详见外形图 1.11 质量:详见外形图 1.12 润滑油量:见下表 型号JD280~450 JM280~450 JD560~630 JM560~630 JD710~800 JM710~800 油量(升)70 80 120 型号JDX280~450 JMX280~450 JDX560~630 JMX560~630 JDX710~1000 JMX710~1000 油量(升)250 400 900 2结构简介 2.1JD-JDX(JM-JMX)系列减速机均为单级减速装置,输入轴与输出轴为 水平异心布置。可提供传动比范围从3.15~7.1:1(4.0~7.1:1),名义传动比分别为3.15;4.0;4.5;5.0;5.6;6.3;7.1(4.0;4.5;4.8;5.0;5.6; 6.3;6.7; 7.1)。

LF系列卧式风机、减速机使用说明

LF系列 卧式风机、减速机 使 用 说 明 书

目录 一、简介 二、现场安装 三、开车 四、运行维护 五、易损件目录 六、安装基础尺寸

一、简介 LF系列冷却塔风机是专为冷却塔设计的轴流风机,不仅能为冷却塔提供所需的风量和风压,而且具有很高的效率,能在冷却塔的湿热环境中长期正常运转。本设备适用于化工、石油、电力、纺织、冶金等各行业的循环水冷却装置。由于长期连续在湿热环境中工作,故设备的正常安装及日常维护保养就显得尤为重要,为了更好地服务于用户,正确使用该设备,使其充分发挥作用,编写本说明书,方便用护操作和维护保养。 1、电机 根据用户的不同需要,可对各种规格风机配置相适应型号的电机(如Y或YB系列电机,双速或三速电机)。 2、联轴器 采用薄壁管及两个半联轴器与橡胶柱销或膜片组成。传动轴在出厂前已经过严格的动平衡测试调整,确保其运转可靠,两端半联轴器与传动轴上所附的配重块,用户不得随意

拆卸,安装时应小心轻放,更不能在空心管上压任何东西,以免破坏动平衡酿成事故。 3、齿轮箱 齿轮箱为二级减速传动,采用螺旋锥齿轮副和斜齿轮副相结合的传动体系,具有结构紧凑,传动功率大,运转平衡可靠,低噪声等特性。齿轮的材料为优质合金钢,经过适当的热处理工艺,使齿轮具有良好的机械性能,从而提高了耐磨性和抗冲击能力,润滑系统采用油池浸与甩油流动润滑相结合的方式。箱内保持一定的储油量,甩油盘将油送至储油槽,使油流动,通过流道润滑轴承。高速轴进口处动密封采用骨架密封或机械密封。齿轮箱运行8000小时后应拆盖检查密封磨损情况,以决定是否更换。

箱盖上的吊环螺钉为检修齿轮箱时开启箱盖而设,不能用于齿轮箱整体吊装。箱体上预备有控制仪表接点螺孔,可根据用户需要接入控制装置,为自动控制提供条件。 4、叶轮 叶轮是叶片、轮毂等零件组成。该部件在出厂前已校正平衡,轮毂上附着的平衡块不得随意拆卸。我厂还备有多种翼型和多个叶片组合的叶轮,以满足用户对风机的不同要求及各种工况条件。 5、油标 由镀锌水煤气管组成,可以方便地观察齿轮箱油位,同时可以通过油标上的螺孔加油或放油。 二、现场安装 1、安装准备 为了保证安装质量,提高工作效率,须做好安装前的准备工作。 (1)熟悉安装设计图纸、本产品的说明书等技术文件,包括熟悉风机的安装要求、结构特征,在系统中的工作状况和作用,及风机基础的施工验收情况,并按设计图纸查对风机的规格、型式、叶轮的旋转方向,以及配用电机的功率要求,地脚螺栓的中心距,进出风筒的法兰孔径和方位及中心距,检查轴的中心标高是否符合设计要求(基础平面:高度误差<5㎜,斜度<2㎜)。

减速机使用说明书

BL27——87摆线针轮减速机是一种采用摆线针齿啮合的减速传动机构,以液压马达作用力。该减速机主要用于QY8汽车起重机迴转机构,也可广泛用于冶金、矿山、石油、轻化、纺织、食品等机构设备上。 2.技术规格 1

3.产品特点 ①传动比大。 ②结构紧凑、体积小、重量轻。 ③工作表面相对滑动小,传动效率高。 ④运转平稳、噪音小,具有较大的过载能力和较高的冲击性能。 2

⑤使用寿命长。 ⑥带有液压制动机构,制动灵活、可靠。 4.工作原理和结构 图一为摆针线轮减速机的传动原理图,图二为该减速机的结构图。传动装置由三部分组成,即输入部分,减速部分,输出部分。 3

4

整个减速机由液压马达,制动器和减速器三大部分组成。(结构图未画出液压马达和制动器全部)。 摆线针轮传动与渐开线一齿差行星传动原理相同,所不同的是行星轮(摆线轮)采用摆线齿廓曲线,固定的内齿轮(针轮)采用圆柱形针齿。 当输入轴(3)和偏心套(7)一起绕中心Oz作顺时针回转时,摆针轮(8)随转臂轴承(10)一起绕中心Oz公转,绕转臂中心Ob自转,即作复合转动,摆线轮就绕自己的中心Ob朝逆时针方向作减速回转,并通过平面曲柄机构把摆针轮减速的回转运动等速地传递给输出轴。 设计轮的齿数为Zz,摆线轮的齿数为Z 5

则Zz-Z=1 其减速比为(插入公式被锁定我这里没装Office) 由上式可知:当输入轴转Z转时,输出轴则反方向转一转或输入轴转一转时,输出轴转1/Z转,即摆线轮沿针齿轮滚过一齿。 该机的制动部分采用蹄式液压制动。压力油推动制动油缸活塞,通过连杆机构将制动力传递给制动蹄抱住与液压马达输出轴固定的制动轮(2)达到制动效果。制动力的大小由进入制动油缸的油压调整控制。 5、安装运输 5.1 外形安装尺寸如图三所示 5.2 安装运输注意事项: 6

川崎K3V泵说明书

川崎斜板形K3V系列 轴向活塞泵 目录 1. 型号表示 2 2. 规格 3 3. 构造和动作原理 4 4. 使用上的注意事项 6 4-1 安装 6 4-2 配管上的注意事项7 4-3 关于过滤网9 4-4 动作油和温度范围11 4-5 使用上的注意事项12 4-6 注满油和排气12 4-7 开始运转时的注意事项13 5 故障的原因及处理14 5-1 一般的注意事项14 5-2 泵体异常的检查方法14 5-3 马达的过载15 5-4 泵流量的过低,排出压力不能升高时16 5-5 异常音,异常振动16 附图,附表 附图1. 泵的构造图17 附图2. 泵的展开图18 附表1. 泵体装紧扭矩一览表19

1.型号表示 K3V 112 DT - 1CE R - 9C32 – 1B 2.规格

*1. 闭路规格的最高旋转数 使用闭路规格时,请预先商谈。 *2. 吸入压力0 kgf/cm3时的旋转数。 3. 构造及动作原理 该泵的构造是两台泵以花键接头(114)相连接的,马达的旋转被传递到前部的驱动轴F (111),同时驱动两台泵。油的吸入和排出口在二台泵的连接部即阀块(312)处汇集,前泵和后泵共用吸入口。因为前,后泵的构造原理和动作原理是相同的,故以前泵为例,进行说明。 此泵大致由以下几个部分组成,进行泵的旋转运动的旋转机构,调整吐出流量的斜板机构,交替进行油的吸入—吐出动作的阀盖机构。 旋转机构由驱动轴F(111),油缸体(141),活塞瓦(151,152),压板(153), 球面缸衬(156), 垫片(158),油缸弹簧(157)组成。驱动轴的两端由轴承(123,124)支持。活塞瓦装于活塞上,形成球接头,同时减轻由负荷压力产生的推力,有一个把活塞瓦(211)上轻轻扇以调整油压平衡的壳部。为了使活塞瓦的副机构能在支撑板上圆滑的动作,通过押板和球面缸衬,使活塞瓦被油压弹簧压在支撑板之上。同样,油缸体也被油缸弹簧压在阀板(313)上。 斜板机构由斜板(212),活塞瓦(211),斜板支持台(251),倾转缸衬(214)倾转销(531), 伺服油缸(532)构成。斜板在活塞瓦动作面的相反侧形成的圆筒状的部位上被支撑在斜板支撑台上。由调节器控制的油压力,在设置在副活塞两侧的油压室的引导作用下,使得副活塞左右运动,此时借助于倾转销的球部,斜板在斜板支持台上摇动,可以改变倾转角(α)。 阀盖机构,由阀块(312),阀板(313),阀板销(885)构成。带有二个瓜状孔的阀板被装在阀块上,对气缸块进行供油和回收油。被阀板切换的油,通过阀块连接到外部配管。 当驱动轴被马达(马达,引擎)驱动时,借助于花键联接,油缸体也同时旋转。当斜板倾斜时,被装在油缸体中的活塞一边同油缸体一起旋转,一边相对油缸进行往复连动。因此,就单个活塞而言当油缸体旋转一周时,活塞向离开阀板的方向运动(吸油行程),当油缸体转了180 时,完成行程,当油体继续转动余下的180 时,活塞向着阀板方向运动(排油行程)。当斜板倾角为零时,斜板不做冲程运动,不排油。

齿轮减速机 使用说明书

1. 一般情况 1.1 减速器交货后即准许投入运转,但考虑到运输过程中的安全 问题,所以没有加入润滑油。 2. 运输 2.1 减速器上半壳体上的吊钩(或吊环螺钉)决不可用于吊运整台减速器,该吊钩仅用于吊装减速器上半壳体(机盖)。 2.2 吊运整台减速器时,用麻绳套入机体下方的吊钩即可进行。 3. 联轴器等的安装 3.1 如果准备用联轴器、皮带轮、传动齿轮、链轮等类似的零件同减速器配合,应当利用轴端的定位中心孔。对中误差应≤0.01mm。 3.2 采用热装、冷缩等方法,应仔细安排工艺过程。 3.3 决不能采用强行打击或冲击的装配方法,因为这样可能损坏挡圈、轴承等零件。 4. 安装、调整齿面接触 4.1 减速器必须刚性固定在坚实的水平基础上,所用的地脚螺栓见图纸。 4.2 在调整与原动机和工作机相联时,必须使各轴处于精确的水平位置(可用减速器顶部的调整平面测量),不能有任何纵向或横向方向的倾斜,以确保正确的润滑。 应密切注视齿轮齿的啮合情况,可采用工程铅油(兰油)薄薄地涂抹于几个齿轮齿上,经过试运转后,就能够判定齿的啮合状况,齿轮齿廓的偏一端接触可能是由于减速器体的变形造成的。最终的确切判别结论应当根据加载荷条件下的啮合情况而定。齿面接触率应达到设计要求,不允许偏一端接触。 在减速器输入输出轴伸装配悬臂齿轮或皮速带轮等时,更应正确地调整,必须校核轴强度。 为了保护联轴器和减速器,即使使用柔性联轴器,也需要进行认真仔细的调整。 为了消除减速器壳体变形的任何可能性,地基表面不平时,必须利用调整垫片非常认真地调平。 如果减速器安装在钢铁结构上或者受外力作用时,为安全可靠起见,建议利用销栓或水平制动装置锁紧减速器,以防止轴向移动。 4.4减速器安装于室外或置于其它不利环境中时(例如有灰尘、污物、热源,或水雾等等),如有可能必须进行遮蔽防护,但是不能影响空气沿减速器壳体表面的自由流动。 4.5 在输出端为输出动力而装有链轮,传动齿轮和曲轴(柄)的减速器,在进行装配时应采用如下的方法,即作用在减速器上的(总负荷)合力方向应当指向地基。 5. 润滑冷却方法与润滑油及注油 5.1 在启动前,减速器必须注入润滑油,并且使其达到正确的油 位。辅助装置安装就序。 5.2 一般采用油池润滑,自然冷却。 当减速器工作平衡温度超过85 ℃时,可采用循环油润滑,或采用油池润滑加盘状管冷却。对于停歇时间超过24小时,且满载起动的减速器应采用循环油润滑,并应在起动前给润滑油。 油池润滑的油量见油标。 循环润滑的油量按热平衡、胶合强度计算。 润滑油的牌号(粘度)按高速级齿轮圆周速度v或润滑方法选择: 当v≤2.5m.s时,或当环境温度在35℃~50℃之间,选用中负荷齿轮油N320(或VG320、Mobil630)。 当v > 2.5m/s或采用循环润滑时,选用中负荷齿轮油N220(或VG220、Mobil630)。 当环境温度高于45℃时,对减速器应采取降温措施。当环境温度低于0℃时润滑油要予热,

减速器说明书

减速器说明书

机械制图课程设计 说明书 题目:一级齿轮减速器 指导老师: 学生姓名: 学号: 所属院系:机械工程学院 专业:机械工程 班级: 完成日期: 目录 1.概述 (1)

2.装配体分析 (2) 2.1 整体分析 (2) 2.2 简述一级减速器的装配顺序 (5) 2.3 简述一级减速器的表达方式 (9) 3.本人工作内容 (9) 4.设计日志 (11) 4.1 零件建模 (12) 4.2 文献查询 (14) 5.设计小绪 (14) 6.参考文献 (14) 1.减速器的概述

减速器简述:减速机在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。按照传动级数不同可分为单级和多级减速机;按照齿厂轮形状可分为圆柱齿轮减速机、圆锥齿轮减速机和圆锥-圆柱齿引轮减速机;按照传动的布置形式又可分为展开式、分流式和同进轴式减速机。减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动、齿轮-蜗杆传动所组成的独立部件,常用作原动件与工作机之间的减速传动装置。在原动机和工作机或执行机构之间起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。 降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。 速同时降低了负载的惯量,惯量的减少为减速比的平方。 减速器的种类:一般的减速器有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等等。 减速器应用场合及领域:减速机是国民经济诸多领域的机械传动装置,行业涉及的产品类别包括了各类齿轮减速机、行星齿轮减速器和蜗杆减速器,也包括了各种专用传动装置,如增速装置、调速装置、以及包括柔性传动装置在内的各类复合传动装置等。产品服务领域涉及冶金、有色、煤炭、建材、船舶、水利、电力、工程机械及石化等行业。 我国减速器行业发展历史已有近40年,在国民经济及国防工业的各个领域, 减速机产品都有着广泛的应用。食品轻工、电力机械、建筑机械、冶金机械、 水泥机械、环保机械、电子电器、筑路机械、水利机械、化工机械、矿山机械、 输送机械、建材机械、橡胶机械、石油机械等行业领域对减速机产品都有旺盛 的需求。 2.装配体分析 2.1 整体分析 这次课程设计一级减速器总共有37个零件组成,分别为:反光片,小盖,螺钉,油面指示片,垫片,视孔盖,透气塞,螺母,螺栓,垫圈,螺塞,箱体,端盖1,毡圈,主动齿轮轴,端盖2,调整坏,滚动轴承,挡油坏,主动齿轮轴,轴套,端盖3,端盖4,从动齿轮轴,调整坏,键,齿轮。其中标准件有:螺栓,螺塞,螺钉,螺母,垫圈,垫片,齿轮。运动件有:齿轮,主动齿轮轴,从动轴。 工作原理:工作时,动力从主动齿轮轴31输入,再通过其上的小齿轮传递给齿轮37,经过键36将减速后的回转运动传递给从动轴34,由从动轴34输出,用以降低转速,传递动力。 减速器采用分体式结构,分成箱体21和箱盖7,从动轴34上装有两个单列向心轴承23,起着支撑作用,轴肩和轴套25顶住轴承内圈,端盖33和调整坏35压住轴承外圈,以防止轴向移动,同时利用调整坏来调整端盖和轴承外圈之

齿轮减速器使用说明书

齿轮减速器 使用说明书 西安重型机械研究所 二00二年十二月 1.一般情况 1.1减速器交货后即准许投入运转,但考虑到运输过程中的安全问题,所以没有加入润滑油。 2.运输 2.1减速器上半壳体上的吊钩(或吊环螺钉)决不可用于吊运整台减速器,该吊钩仅用于吊装减速器上半壳体(机盖)。 2.2吊运整台减速器时,用麻绳套入机体下方的吊钩即可进行。 3.联轴器等的安装 3.1如果准备用联轴器、皮带轮、传动齿轮、链轮等类似的零件同减速器配合,应当利用轴端的定位中心孔。对中误差应≤0.01mm。 3.2采用热装、冷缩等方法,应仔细安排工艺过程。 3.3决不能采用强行打击或冲击的装配方法,因为这样可能损坏挡圈、轴承等零件。 4.安装、调整齿面接触 4.1减速器必须刚性固定在坚实的水平基础上,所用的地脚螺栓见图纸。 4.2在调整与原动机和工作机相联时,必须使各轴处于精确的水平位置(可用减速器顶部的调整平面测量),不能有任何纵向或横向方向的倾斜,以确保正确的润滑。 应密切注视齿轮齿的啮合情况,可采用工程铅油(兰油)薄薄地涂抹于几个齿轮齿上,经过试运转后,就能够判定齿的啮合状况,齿

轮齿廓的偏一端接触可能是由于减速器体的变形造成的。最终的确切判别结论应当根据加载荷条件下的啮合情况而定。齿面接触率应达到设计要求,不允许偏一端接触。 在减速器输入输出轴伸装配悬臂齿轮或皮速带轮等时,更应正确地调整,必须校核轴强度。 为了保护联轴器和减速器,即使使用柔性联轴器,也需要进行认真仔细的调整。 为了消除减速器壳体变形的任何可能性,地基表面不平时,必须利用调整垫片非常认真地调平。 如果减速器安装在钢铁结构上或者受外力作用时,为安全可靠起见,建议利用销栓或水平制动装置锁紧减速器,以防止轴向移动。 4.4减速器安装于室外或置于其它不利环境中时(例如有灰尘、污物、热源,或水雾等等),如有可能必须进行遮蔽防护,但是不能影响空气沿减速器壳体表面的自由流动。 4.5在输出端为输出动力而装有链轮,传动齿轮和曲轴(柄)的减速器,在进行装配时应采用如下的方法,即作用在减速器上的(总负荷)合力方向应当指向地基。 5.润滑冷却方法与润滑油及注油 5.1在启动前,减速器必须注入润滑油,并且使其达到正确的油位。辅助装置安装就序。 5.2一般采用油池润滑,自然冷却。 当减速器工作平衡温度超过85 ℃时,可采用循环油润滑,或采用油池润滑加盘状管冷却。 对于停歇时间超过24小时,且满载起动的减速器应采用循环油润滑,并应在起动前给润滑油。 油池润滑的油量见油标。 循环润滑的油量按热平衡、胶合强度计算。 润滑油的牌号(粘度)按高速级齿轮圆周速度v或润滑方法选择:

相关主题
文本预览
相关文档 最新文档