当前位置:文档之家› 660MW双背压机组凝汽器抽真空系统改造及效果

660MW双背压机组凝汽器抽真空系统改造及效果

660MW双背压机组凝汽器抽真空系统改造及效果

汽轮机凝汽器系统真空查漏

汽轮机凝汽器系统真空查漏 机组真空是火力发电厂重要的监视参数之一,真空变化对汽轮机安全、经济运行都有影响,运行经验表明,凝汽器真空降低直接影响循环效率,每降低1KPa真空会使汽轮机热耗增加0.94%,机组煤耗增加 3.2g/kwh。真空下降使循环效率下同时会造成汽轮机排汽温度的升高,引起汽轮机转子上移,轴承中心偏离,严重时会引起汽轮机的振动。此外,凝汽器真空降低时为保证机组出力不变,必须增加蒸汽流量,导致轴向推力增大,变化严重时会影响汽轮机安全运行。另一方面,空气漏入凝结水中会使凝结水溶氧超标,腐蚀汽轮机、锅炉设备,影响机组的安全运行。因此在汽轮机运行中必须严格控制机组真空下降。机组运行中真空主要与循环水量水温及系统严密性有关。如果出现真空下降,排除比较常见的故障外,真空系统的泄漏是造成下降的主要原因。其现象主要表现为真空数值下降、排汽温度升高、主汽流量增加及凝汽器端差增大等,直接影响到机组运行的安全经济性。 我厂凝汽器是由东方汽轮机厂生产制造N17660型表面式换热器,水室采用对分制,便于运行中对凝汽器进行半面清洗,凝汽器、凝结水泵、射水抽汽器、循环水泵及这些部件之间所连接的管道称为凝汽设备,凝汽器真空的高低对汽轮机运行的经济性有着直接的关系,所以要求真空系统(包括凝汽器本体)要有高度的严密性。一般是通过定期进行真空严密性试验来检验真空系统的严密程度。通过试

验,可掌握真空系统严密性的变化情况,鉴定凝汽器工作的好坏,以便采取对策查找及消除漏点,防止空气漏入影响传热效果及真空,不同机组对真空严密性有不同的要求,真空严密性用每分钟真空下降值表示。 凝汽器真空系统的密封点很多,包括与凝汽器连接的负压管道的焊口、膨胀节、疏水扩容器、减温水管道、多级水封、水位计等涉及汽机、热控等多个专业,检修工艺要求严格,检修工艺要求严格,涉及范围广,要求责任心强。真空系统严密性应在机组检修期间得以保证,如果由于密封不严、检修工艺不合理及查漏不全面等在机组运行一段时间后发生泄漏,仍应该采取各种措施,积极进行真空严密泄漏查找工作。为保证汽轮机真空系统查漏工作的顺利进行,确保机组的安全经济运行,特制定如下措施: 一组织措施 1、本工作的开展需要运行、点检、检修及热力试验组协调完成。 2、准备好查漏工作所需要的氦质谱检漏仪、氦气瓶、便携式气袋、喷射用铜管及连接用胶管、对讲机等工器具,保证合格足量的氦气。 3 、査漏工作要确定一个工作负责人,负责査漏工作中各部门的协调联系工作以及査漏工作的分工安排。 4、查漏工作由设备部组织进行,发电部专工、热试组人员、汽机车间检修班组人员配合,运行当值人员保证机组稳定运行并配合进行各阶段严密性试验。

燃机电厂凝汽器真空系统泄漏原因分析、处理

燃机电厂凝汽器真空系统泄漏原因分析、处理 发表时间:2019-09-17T11:05:14.663Z 来源:《电力设备》2019年第7期作者:沈思宇杨云龙 [导读] 摘要:凝汽器真空系统真空好坏与汽轮机的的安全和经济运行紧密相关,但影响机组真空的因素多、真空系统范围广,真空漏点排查困难。 (华能重庆两江燃机发电有限责任公司重庆 400700) 摘要:凝汽器真空系统真空好坏与汽轮机的的安全和经济运行紧密相关,但影响机组真空的因素多、真空系统范围广,真空漏点排查困难。本文结合华能重庆两江燃机电厂凝汽器真空系统泄漏排查、分析、处理案例,将燃机电厂真空泄漏现象、真空泄露原因分析、处理方案和轴封加热器疏水多级水封问题进行深入剖析,拟为其他公司机组凝汽器真空系统泄漏的处理解决提供参考。 关键词:真空泄露、原因分析、处理方案、多级水封 1 前言: 凝汽器真空下降,对机组振动,胀差,轴向位移,推力瓦温度和回油温度,低压缸的排汽温度等都会造成影响,关乎机组安全运行;同时,凝汽器在漏入空气后,排汽压力升高,蒸汽焓降减小,同时不凝结气体分压升高,对蒸汽换热、凝结的影响,加大了排汽损失。对机组经济运行也至关重要。 2 机组概况 华能重庆两江燃机发电有限责任公司两套2*470MW燃气-蒸汽联合循环蒸汽轮机为东方电气集团生产的联合循环冲动式、三压、再热、双缸、向下排汽、抽凝供热汽轮机,额定功率133.7MW。每台机组配备两台100%容量的水环式真空泵,型号:2BE1 253。启动时,两台真空泵并列运行,满足启动时间要求,正常运行时一台运行,一台备用。真空泵的排汽管连接方式为顶排式。 3 两江燃机电厂凝气器真空系统漏真空案例分析 按照DL/T932-2005《凝汽器与真空系统运行维护导则》【1】要求,机组正常运行时,每月进行一次真空严密性试验,机组容量>100 MW,真空严密合格标准为:凝汽器背压上升速率≤270pa/min(华能重庆两江燃机要求凝汽器背压上升率≤200pa/min合格)。华能重庆两江燃机电厂最近出现两次凝汽器真空系统漏真空问题,通过一系列的查漏消缺工作进行了消除。 案例一 2018年7月份,两江燃机电厂两台机组真空严密性试验均超过合格值,试验结果不合格。以一次实验结果为例,试验数据为:#1机背压上升率为600pa/min。针对#1机组真空严密性试验数值超标问题,进行相应的运行调整操作:增启循环水泵真空无明显变化;增启真空泵真空下降0.4kPa左右;调整轴封压力及轴加风机负压真空无明显变化。确认#1机组真空系统存在泄漏。针对这一问题,电厂进行了一系列查漏工作,如灌水查漏、法兰接头等喷肥皂水检漏、低压轴封系统割管检查等,最终通过氦质仪检漏查明漏点: 氦质谱仪器查漏:在真空泵排气管出口采用型氦质谱检漏仪监测氦气浓度,对#1机凝汽器抽真空系统管道法兰、阀门,与凝汽器疏水扩容器连接的疏水管道法兰、阀门,轴封系统管道阀门及轴封加热器、疏水管道阀门,凝汽器膨胀节,连通管及低压缸中分面结合面通过喷氦气进行检漏。检漏发现:低压缸进汽膨胀节处法兰处喷氦检测排气氦气含量高达3.2×10-4远高于检漏仪本底值2.0×10-7Pa/L.s。 1)针对漏点的解决方案: 针对喷氦查漏发现漏点,结合机组运行情况,机组连续启停时,采取了涂专用密封胶堵漏消缺方案;并于年底,利用机组停运检修机会,起吊汽轮机中低压缸连通管后更换了法兰垫片消缺(消缺方案见图1、图2)。 结合消缺后真空严密性试验数据比较,可以确认导致本次#1机真空严密性试验不合格的原因为低压缸进汽膨胀节处法兰垫片损坏漏真空所致。 图1:低压缸进汽膨胀节结构图(为1根螺栓带三密封垫形式,如果13两个密封垫损坏将出现内缸蒸汽外漏,14处密封垫损坏将导致外缸处漏真空) 图2:低压缸进汽法兰面实物图(检修时对此处下部法兰进行了改良:在精确控制两片垫片厚度一致的情况下,由齿形垫改型为压缩性、回弹性更好的缠绕垫,以保证内外均可严密密封) 2)缺陷处理效果: 在明确低压缸进汽膨胀节处法兰垫片损坏漏真空为主要漏点后,电厂采取了对泄露法兰缝隙涂胶堵漏临时消缺方案。临时堵漏后真空严密性试验,#1机真空严密性试验:凝汽器背压上升速率87pa/min ,合格。后续#1机利用检修机会更换低压缸进汽膨胀节处法兰垫片后做真空严密性试验,凝汽器背压上升率64.2pa/min,远优于合格值。至此两江燃机电厂#1机组漏真空问题圆满解决。 案例二 2019年1月28日,华能重庆两江燃机电厂#2机组做真空严密性试验,凝汽器背压上升率618 pa/min,不合格。针对#2机组真空严密性试验数值超标问题,两江电厂再次开展相关真空查漏工作: 氦质谱仪器查漏:结合之前真空系统查漏经验,首先对之前易出问题的漏点查起,运用氦质谱检漏仪对#2低压缸前、后轴封、低压缸

凝汽器水环真空泵

凝汽器水环式真空泵的原理与运行 庄国霖 摘要:简单介绍了大机组凝汽器配套的水环式真空泵的工作原理、特性及参数,同时还介绍了水环式真空泵与前置抽气器组成的联合抽真空装置的运行原理、操作程序和运行状况。 关键词:水环式真空泵; 结构; 工作原理; 运行状况 凝汽器抽真空的传统设备主要是采用射汽抽气器和射水抽气器,但这两种设备都存着效率低、噪声大的缺点。随着汽轮机组向高参数、大容量方向发展,使用这种设备就显得很不经济。如果采用水环式真空泵和前置抽气器组成的联合抽真空装置,就可以大大提高效率,降低能量消耗和噪声污染。这种水环式真空泵组在0.7~4kPa的吸入压力范围内可以经济运行。与前面两种抽气装置相比,可以节能约在70%以上。 北仑发电厂1号机组共设有4套水环式真空泵组,型号为200NVECM-302,高压凝汽器和低压凝汽器各两套。机组启动凝汽器需要建立真空时,4套水环式真空泵组同时投入运行。当凝汽器真空建立以后,停运两套水环式真空泵组,高、低压凝汽器各保持1套水环式真空泵组运行即可维持机组的正常运行。 1. 水环式真空泵的形式 水环式真空泵根据不同的特性要求,有各种不同的结构形式。常见的有:单级单作用水环式真空泵,单级双作用水环式真空泵和水环一前置抽气器真空泵组等。 北仑发电厂1号机采用单级单作用水环式真空泵与前置抽气器组成的联合抽真空装置。所谓单级单作用是指泵中只有1个叶轮,在叶轮旋转1周中吸气、排气各1次。其特点是:泵体截面为圆型,结构简单,制造容量,可获得较高的真空
度,运行平稳,噪声小,但径向力不能自动平衡。 2. 水环式真空泵的结构 北仑发电厂1号机组高压凝汽器和低压凝汽器配套的水环式真空泵均为单级单作用水环泵结构,叶轮两侧同时吸、排气。叶轮偏心地置于由侧盖和泵体组成的腔室中,叶轮叶片是前弯式的。轴的两端分别由装在轴承架内的滚动止推轴承支承。轴的一端用刚性联轴器与电动机连接。轴封装置为填料轴封,在轴与填料接触部位装有轴套,以防止泵轴腐蚀和磨损。 3. 水环试真空泵的工作原理 当径向式叶轮在部分充水的壳体中运转时,由于受离心力的作用,水被甩向四周,形成同心的水环,该水环被6片叶片等分成6个小水室,因此,小水室中的气体不会被扩展或压缩。然而,当叶轮装成偏心位置后,叶片小室1~3的容积是逐渐扩大的,这就产生了从连接点C开始,经吸入段S的吸气过程;另一方面,叶片小室4~6的容积则随着叶轮的转动而逐渐缩小,这就构成了气体通过压出段D的排气过程。可见,水环式真空泵的工作可分成吸气、压缩、排气3个过程。水环式真空泵就是靠这种叶片小室容积的变化来吸气和排气的。 4. 水环式真空泵组的联合工作原理

凝汽器真空和严密性的分析及对机组运行的影响

凝汽器真空和严密性的分析及对机组运行的影响 (秦山核电公司运行部) 摘要:结合本厂分析了凝汽器内的真空高低对汽轮机的经济性、安全性的主要影响;凝汽器的汽侧真空严密性对于机组运行的影响及对汽轮发电机组真空系统漏空进行了分析。说明了在真空系统发生漏空后应采取的判断方法和措施。 关键词: 经济真空;极限真空;过冷度;真空严密性;分析真空用图;漏空点;分析。 汽轮机凝汽器内真空的产生,主要是依靠汽轮机排汽在凝汽器迅速凝结成水,体积急剧缩小而造成的。其次是依靠射汽(射水)抽汽器连续抽出凝汽器内的不凝结气体和空气。为了使汽轮机的排汽能够迅速冷却而凝结成水,必须向凝汽器不断通人大量的冷却用循环水。 A.真空变化对汽轮机的安全与经济都有较大的影响。真空低即排汽压力高,可以使汽轮机的耗汽量增加,经济性降低。真空高即排汽压力低,可以使汽轮机的耗汽量减少,经济性提高。所以,凝汽式机组运行时,应维持较高的真空。 1. 凝汽器内真空的升高 当主蒸汽压力和温度不变,凝汽器真空升高时,蒸汽在汽轮机内的总焓降增加,排汽温度降低,被循环水带走的热量损失减少,机组运行的经济性提高;但要维持较高的真空,在进入凝汽器的循环水温度相同的情况下,就必须增加循环水量,这时循环水泵就要消耗更多的电量。因此,机组只有维持在凝汽器的经济真空下运行才是最有利的。所谓经济真空,就是通过提高凝汽器真空,使汽轮发电机组多发的电量与循环水泵多消耗的电力之差达到最大值时凝汽器所达到的真空。另外,真空提高到汽轮机末级喷嘴的蒸汽膨胀能力达到极限时(此时的真空值称为极限真空),汽轮发电机组的电负荷就不再增加。所以凝汽器的真空超过经济真空并不经济,并且还会使汽轮机末几级的蒸汽湿度增加,使末几级叶片的湿汽损失增加,加剧了蒸汽对动叶片的冲蚀作用,缩短了叶片的使用寿命。因此,凝汽器真空升高过多,对汽轮机运行的经济性和安全性都是不利的。

凝汽器真空查漏

凝汽器真空查漏 1 凝汽器真空的成因 凝汽器中形成真空的成因是汽轮机的排汽被冷却成凝结水,其比容急剧缩小。如蒸汽在绝对压力4KPa时,蒸汽的体积比水容积大3万多倍。 当排汽凝结成水后,体积就大为缩小,使凝汽器汽侧形成高度真空,它是汽水系统完成循环的必要条件。 正是因为凝汽器内部为极高的真空,所以所有与之相连接的设备都有可能因为不严而往凝汽器内部漏入空气,加上汽轮机排汽中的不凝结气体,如果不及时抽出,将会逐渐升高凝汽器内的压力值,真空下降,导致蒸汽的排汽焓值上升,有效焓降降低,汽轮机蒸汽循环的效率下降。 有资料显示,真空每下降1KPa,机组的热耗将增加70kj/kw,热效率降低%。射水抽气器或水环真空泵的作用就是抽出凝汽器的不凝结气体,以维持凝器的真空。 2 真空严密性差的危害 汽轮机真空严密性差的危害主要表现在以下三个方面: 一是真空严密性差时,漏入真空系统的空气较多,射水抽气器或水环真空泵不能够将漏入的空气及时抽走,机组的排汽压力和排汽温度就会上升,这无疑要降低汽轮机组的效率,增加供电煤耗,并可能威胁汽轮机的安全运行,另一方面,由于空气的存在,蒸汽与冷却水的换热系数降低,导致排汽与冷却水出水温差增大。 二是当漏入真空系统的空气虽然能够被及时地抽出,但需增加射水抽气器的负荷,浪费厂用电及循环水。

三是由于漏入了空气,导致凝汽器过冷度过大,系统热经济性降低,凝结水溶氧增加,可造成低压设备氧腐蚀。 3 真空查漏的方法 1.通常用灌水法查找真空系统不严密的方法的优缺点 真空系统包含大量的设备及系统,连接的动静密封点多,在轻微漏空气的情况下很难发现漏点,因为空气往里吸,不够直观,传统的运行中用火焰检查法较繁琐且效果不好,多数情况下使用的方法是在机组停机后对真空系统进行灌水找漏。这种方法比较直观,漏点极易被发现,缺点是由于设备的原因,灌水高度最高只能到汽缸的最低轴封洼窝处,高于轴封洼窝的地方因为水上不去而不易发现,特别是与汽轮机汽缸相连接的管道系统。 2.使用氦质谱查找真空系统不严密的方法的优缺点 使用氦质谱方法通常是在可疑点喷氦气,然后在真空泵端检测,看是否能检测到氦气,如果检测到氦气则说明此可疑点泄漏。此方法能确定泄漏大体位置,并有一个相对值数据。但设备使用较费力,需要三到四人操作;氦质谱法受环境影响较大,空气流动性适度都对确定漏点造成麻烦;另外,空冷岛上使用氦质谱检漏难度较大。在管道较多的位置基本难以确定漏点。 3.使用超声波查找真空系统不严密的方法的优缺点 超声波检漏法是一种方便快捷的方法,首先操作简单,一人即可操作;而且能准确确定漏点的位置,使堵漏较方便;应用在空冷岛上更是方便、快捷、准确。缺点是使用时需要一定的操作经验。 火烛法,涂抹肥皂泡,卤素检测等方法较为原始,在此不多描述。

凝汽器真空对汽轮机工作的影响分析及对策(葛乃友)

凝汽器真空对汽轮机工作的影响分析及对策 葛乃友 (芦岭阳光能源综合利用有限公司煤矸石发电厂;安徽宿州234113) [摘要]浅析凝汽器真空对汽轮机工作的影响、保真空方法、真空下降及处理及案例分析。 [关键词]汽轮机;真空;影响;对策 1 引言 以前总以为通过增加凝汽器的真空度能提高汽轮机的效率,其实则不然,真空度越高,机组的效率并不越高。特别在北方,冬季循环水一般都在10℃以下,虽然真空度较高,但汽轮机凝结水温度却大大降低。过冷度的增加,导致了综合热效率的降低,经济性就差。所以应根据机组负荷、季节等情况确定,加上合理调整循环水泵运行数量与方式。只有汽轮机排汽压力达到最佳真空时才行。 2 凝汽器真空对汽轮机工作的影响 安全经济发供电是电力生产的基本原则,为提高生产运行可靠性和经济性,应积极开展节能技术改造,推广运用四新技术,充分挖掘设备潜力,力求降耗增效。提高系统经济运行质量,首先就要加强经济指标的管理,对影响机组经济运行的凝汽器问题,如汽轮机背压、凝汽器端差、过冷度、循环水入口温度,循环水温升等参数,都与经济运行有关,特别是初压力、初温度和排汽压力影响最大。降低汽轮机的排汽压力,使循环放热过程的平均温度降低,是提高热经济性的主要方法之一。排汽压力还与冷却水温度和流量、凝汽器的冷却面积和构造、汽轮机末级的通流面积、汽轮机的负荷等有关。在蒸汽初参数和循环形式已定的情况下,循环热效率随排汽压力的降低而提高。 为提高机组效率,一般可通过提高凝汽器真空这个途径。真空越高,效率也越高,但不能无限制的提高。汽轮机末极叶片的通流能力是一定的,当蒸汽在末极叶片中膨胀达最大值时与之对应的真空称为极限真空,此时再提高真空,蒸汽就在叶片外膨胀,不做功了。凝汽器的最佳真空是:提高凝汽器的真

凝汽器工作原理

凝汽器工作原理 凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被 蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热 器、给水泵等输送进锅炉,从而保证整个热力循环的连续进行。为防止 凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还 设有真空除氧器。 凝汽器的主要作用: 1)在汽轮机排汽口造成较高真空,使蒸汽在汽轮机中膨胀到最低压力,增大蒸汽在汽轮机中的可用焓降,提高循环热效率; 2)将汽轮机的低压缸排出的蒸汽凝结成水,重新送回锅炉进行循环; 3)汇集各种疏水,减少汽水损失。 4)凝汽器也用于增加除盐水(正常补水) 表面式凝汽器的工作原理:凝汽器中装有大量的铜管,并通以循环冷却水。当汽轮机的排汽与凝汽器铜管外表面接触时,因受到铜管内水流的冷却,放出汽化潜热变成凝结水,所放潜热通过铜管管壁不断的传给循环冷却水并被带走。 这样排汽就通过凝汽器不断的被凝结下来。排汽被冷却时,其比容急剧缩小,因此,在汽轮机排汽口下凝汽器内部造成较高的真空。 凝汽器是火力发电厂的大型换热设备。图1为表面式凝汽器的结构示意图。

凝汽器运行时,冷却水从前水室的下半部分进来,通过冷却水管(换热管)进入后水室,向上折转,再经上半部分冷却水管流向前水室,最后排出。低温蒸汽则由进汽口进来,经过冷却水管之间的缝隙往下流动,向管壁放热后凝结为水。真空度定义: 从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,即: 真空度=大气压强—绝对压强 凝汽器中真空的形成主要原因 在启动过程中凝汽器真空是由主、辅抽汽器将汽轮机和凝汽器内大量空气抽出而形成的。 在正常运行中,凝汽器真空的形成是由于汽轮机排汽在凝汽器内骤然凝结成水时其比容急剧缩小而形成的。如蒸汽在绝对压力4kpa时蒸汽的体积比水的体积大3万倍,当排汽凝结成水后,体积就大为缩小,使凝汽器内形成高度真空。凝结器的真空形成和维持必须具备三个条件: 1)凝汽器铜管必须通过一定的冷却水量; 2)凝结水泵必须不断地把凝结水抽走,避免水位升高,影响蒸汽的凝结; 3)抽汽器必须把漏入的空气和排汽中的其它气体抽走。 真空降低的原因: (1)循环水量减少或中断: ①循环水泵跳闸、循进阀门误关、循环水泵出口蝶阀阀芯落、循进滤网堵:水量中断,进水压力下降,出水真空至零,循泵电流至零或升高,须不破坏真空停机;若未关死,立即减负荷恢复; ②循出阀门误关、凝汽器水侧板管堵塞、收球大网板不在运行位置:循环水压上升,温升增大; ③进水不畅:循泵电流晃动,进水压力下降,出水真空降低,循环水温升增大,水量不足;. |4 Q1 j- {3 u ④虹吸破坏(进水压力低、板管堵塞、出水侧漏空气):虹吸作用减小时,会使水量减少,却又提高了循环水母管压力,而压力高对维持水量是有利的,所以虹吸破坏必然是个过程。出水真空晃动且缓慢下降,温升增大。操作:提高循环水压力(关小出水门),对循出放空气,重新建立出水真空。 (2)轴封汽压力低:提高压力,关小轴加排汽风机进气门;冷空气会使转子收缩,负差胀增大。 (3)凝汽器水位高:排汽温度升高同时,凝水温度下降,过冷度增加。端差增大;水位﹥抽汽口高度、运行凝泵跳闸、管路堵、备用泵逆止门坏、系统主要

凝汽器真空分析

凝汽器真空分析 排汽真空度对汽轮机正常运行起着非常重要的作用。真空度下降, 会使汽轮机的汽耗和最后几级叶片的反动度增加、轴向推力增大.随着排汽温度升高, 会引起汽轮机转子旋转中心漂移而产生振动, 甚至引起汽缸变形及动静间隙增大。如因冷水量不足而引起故障的, 还会导致铜管过热而产生振动及破裂, 缩短凝汽器的使用寿命。 凝汽器传热端差值的变化标志着凝汽器运行状况的好坏, 可作 为判别凝汽器运行状态的依据。运行中端差值越小, 则运行情况越好,机组的热效率越高。凝汽器的传热端差是指凝汽器排汽温度与冷却水出口温度的差值。影响凝汽器传热端差的因素比较复杂, 主要包括凝汽器传热性能、热负荷、清洁系数、空气量及循环水系统的特性等。 1.空气量 凝汽器的空气来源有二个,一是由新蒸汽带入汽轮机的, 由于锅炉给水经过除氧, 这项来源极少;二是处于真空状态下的各级与相应的回热系统、排汽缸、凝汽设备等不严密处漏入的, 这是空气的主要来源。空气严密性正常时进入凝汽器的空气量不到蒸汽量的万分之一, 虽然少但危害很大。主要是空气阻碍蒸汽放热, 使传热系数减小, 端差增大从而使真空下降。空气的第二大危害是使凝结水的过冷度增大。降低空气量主要从真空严密性和真空泵的工作性能考虑。 2.真空严密性 真空严密性差是造成汽轮机真空低的主要原因, 在根据工程调 试的经验, 真空系统易泄漏空气的薄弱环节有:

1)凝汽器热井、低压加热器玻璃管水位计经常出现漏点、缺陷, 漏 入空气, 造成严密性下降。 2)轴封加热器水位自动调节失灵导致水位偏低, 水封无法建立, 导 致空气漏入。 3)采用迷宫式水封的给水泵, 其密封水排至凝汽器, 水封无法有效 建立, 导致空气漏入。 4)低压缸防爆门、小汽机排汽管防爆门、凝汽器入孔门等也经常由 于密封不严, 或防爆门出现裂缝, 导致空气漏入。 5)大机、小机低压轴封由于轴封压力不能满足需要, 造成轴封泄漏, 另外, 汽封间隙的大小、汽封的完好程度也是造成轴封泄漏的重要因素。 6)凝结水泵进口法兰、凝泵水封泄漏也经常导致凝结水溶氧不合格。 7)管道安装。目前的新建机组, 安装质量较好, 压力管道均进行水 压试验, 真空管道均进地灌水试验, 由于法兰, 阀门盘根等原因导致泄漏的情况较小。 8)部分低压管道上的疏水阀、排汽阀, 关闭不严, 导致真空泄漏。 根据实际情况及分析研究, 可采用以下处理措施: 机组运行过程中维持轴封系统各疏水、U形水封的正常工作。 1)机组运行过程中维持好轴封加热器的正常水位。 2)按设计要求调整汽轮机轴端汽封间隙, 减小轴端漏汽量。 3)运行中严格控制低压汽封供汽压力、温度, 遇到汽封系统运行不 正常, 应及时进行分析,不可随意提高汽封供汽压力、温度。

凝汽器与真空系统运行维护导则

凝汽器与真空系统运行维护导则 1范围 本标准规定了火力发电厂表面式水冷凝汽器和真空系统运行维护的一般原则及要求。 本标准适用于水冷凝汽式机组,空冷机组可参照使用。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修改版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 5248铜及铜合金无缝管涡流探伤方法 GB/T 7735钢管涡流探伤检验方法 GB/T 12969.2钛及钛合金管材涡流检验方法 DL/T 561火力发电厂水汽化学监督导则 DL/T 581凝汽器胶球清洗装置和循环水二次过滤装置 DL/T 712火力发电厂凝汽器管选材导则 DL/T 957火力发电厂凝汽器化学清洗及成膜导则 JB/T 3344凝汽器性能试验规程 ASME PTC12.2—1998表面式凝汽器性能试验规程 3总则 3.1制订本标准的目的是规范运行操作及检修维护,指导凝汽器性能诊断试验和冷端优化运行,使凝汽器和真空系统经常处于良好的工作状态。 3.2本标准为通用性、原则性的技术规定,对凝汽器性能参数计算和真空严密性指标等作了明确的规定,对运行维护内容、经常性故障处理等提出了原则性建议。 3.3电厂编制运行规程时,应附有下列技术资料: a)机组背压对热耗的影响曲线; b)机组背压对功率的影响曲线; c)凝汽器变工况特性曲线; d)循环水泵运行特性曲线; e)抽气设备性能与冷却水温度或者工作蒸汽参数的变化曲线。 3.4设计、制造和安装单位要为实施本标准创造条件。 4运行维护要求 4.1一般要求 4.1.1真空系统严密性试验合格。 4.1.2凝汽器清洁状态良好。 4.1.3冷却水流量满足设计要求。 4.1.4轴封蒸汽压力正常。 4.1.5凝结水过冷度合格。 4.1.6传热端差良好。 4.1.7凝结水水质合格。 4.1.8热井水位正常。 4.1.9抽气设备工作正常。 4.1.10水封系统运行正常。 4.1.11仪表指示及连锁保护正常。

凝汽器真空低的原因分析危害及采取的措施

凝汽器真空低的原因分析危害及采取的措施 【摘要】凝汽器真空度对机组运行安全性和热经济性有很大影响,在机组运行中,凝汽器工作状态恶化将直接引起汽轮机热耗、汽耗增大和出力降低;另外,真空下降会引起汽轮机排汽缸温度升高、汽机轴承中心偏移,严重时还会引起汽轮机组振动。 【关键词】凝汽器真空度;热经济性 0.前言 本厂#5、#6机组为330MW亚临界、反动式、单轴、一次中间再热、双缸双排汽、抽汽凝汽式供热汽轮机组。采用单背压、单壳体、对分双流程表面式凝汽器。凝汽器其作用是使汽轮机排汽受冷却凝结成水,形成高度真空,使汽机内的蒸汽膨胀到低于大气压力从而多做功。凝汽器真空度对机组运行安全性和热经济性有很大影响,在机组运行中,凝汽器工作状态恶化将直接引起汽轮机热耗、汽耗增大和出力降低;另外,真空下降会引起汽轮机排汽缸温度升高、汽机轴承中心偏移,严重时还会引起汽轮机组振动。 1.凝汽器真空低的原因分析 1.1 真空系统空气渗漏空气通过两个渠道漏入凝汽器:一是由机组真空系统的不严密处漏入,二是随同蒸汽一起进入凝汽器。由于锅炉给水经过多重除氧,所以由后一种渠道渗入的空气数量不多,约占从凝汽器抽空气总量的百分之几,抽出的空气主要是由机组负压状态部件的不严密处漏入。除了凝汽器自身的严密性外,真空系统的气密性,包括了给水加热器、低压缸、汽轴封、向空排气气密性等也会影响到凝汽器的真空度管道的。 1.2 循环水系统凝汽器真空除了受空气渗漏的影响外,还与循环水流量、进水温度及传热效果等有关。(1)冷却水进口温度。在其它条件相同。冷却倍率不变时,冷却水进口温度越低,排汽温度也越低,即凝汽器真空就越高。(2)冷却水量。当汽机负荷、冷却水温度不变时,增加冷却水量,冷却水温升必然减小。冷却水温升的大小反映冷却水量情况,当其温差大于8℃~12℃时,应增加冷却水量,以增强换热效果,提高凝汽器真空。(3)凝汽器端差δt的影响。凝汽器压力下的饱和温度与凝汽器冷却水出口温度之差称为端差。端差是反映凝汽器热交换状况的指标,其主要与凝汽器铜管表面的清洁程度有关,即铜管传热越强端差越小。相同条件下,端差增大,说明凝汽器铜管结垢增多,热交换性能降低,使循环水出口温度降低,凝汽器的传热端差增大,从而造成凝汽器的真空下降,因此必须尽量减小凝气器端差,以提高凝汽器真空。 1.3 真空系统真空泵工作水压力低、水量不足或增加过多,都可能导致真空泵抽吸能力的下降,造成凝汽器真空的降低。因此必须对真空泵工作水压力和流量进行合理控制,以维持正常的抽吸能力,保证凝汽器的正常真空。

凝汽器端差

凝汽器端差 Document number:PBGCG-0857-BTDO-0089-PTT1998

凝汽器端差 凝汽器压力下的饱和温度(凝结水温)与循环冷却水出口温度之差称为端差。 理论上,端差越低越小,但实现困难,实际上综合循泵耗功(电)、复水器换热体积,最佳换热流速(及流量),确定出一定(4-6、6-8度)的经济控制指标。 对一定的凝汽器,端差的大小与凝汽器冷却水入口温度、凝汽器单位面积蒸汽负荷、凝汽器铜管的表面洁净度,凝汽器内的漏入空气量以及冷却水在管内的流速有关。一个清洁的凝汽器,在一定的循环水温度和循环水量及单位蒸汽负荷下就有一定的端差值指标,一般端差值指标是当循环水量增加,冷却水出口温度愈低,端差愈大,反之亦然;单位蒸汽负荷愈大,端差愈大,反之亦然。实际运行中,若端差值比端差指标值高得太多,则表明凝汽器冷却表面铜管污脏,致使换热条件恶化。 端差增加的原因有:①凝器铜管水侧或汽侧结垢;②凝汽器汽侧漏入空气;③冷却水管堵塞;④冷却水量增加等(增加太多,端差低了,但循泵耗电多,综合比较定35万以上4-6度,以下为6-8度为经济)。 最佳答案 1.凝汽器铜管或钛管结垢、堵塞、脏污,影响换热效果。 2.汽轮机排汽温度高。 3.凝汽器真空系统泄露等原因造成的真空度低。 4.凝汽器循环水流量不足。 循环水流量增大后,凝结器端差减小,循环水流量减小后,凝结器端差减大.

5.凝汽器水侧上部积空气未排出。 6.凝汽器集水井水位高,淹没铜管。 7.表计误差等其它原因。 以上原因均可造成凝汽器端差偏大。 真空系统严密性下降后,凝汽器的传热端差为什么增大 引起凝结器内真空下降的主要原因是: 1)冷却水温由于环境温度而升高,夏天较低,冬天较佳。 2)凝汽器冷却面积污脏,影响传热效果,引起真空下降。 3)冷却水供水中断或水量不足引起冷却水温升高,引起真空下降。 4)由于真空系统严密性不佳或轴封供汽中断,抽气器工作失常等原因,使漏气量增加而影响排汽压力,降低真空。 5)凝汽量水位升高,使部分调管淹没而减少传热面积,进而影响真空。 6)凝汽器水位过高,超过空气管口。 7)增加负荷或停用抽汽改为纯凝运行。 凝汽器水侧换热面上经长时间运行会造成污垢积聚,不但恶化了真空,降低了汽轮机的经济性,而且能引起铜管的腐蚀、泄漏,威胁汽轮机的安全运行,所以在力求防止凝汽器铜管结垢的同时,还要对形成的污垢定期进行清洗。凝汽器冷却水管一般清洗方法有反冲洗法、机械清洗法、干洗、高压冲洗以及胶球清洗法。目前应用最多的是胶求清洗法。对我有帮助 1 凝汽器设备系统介绍 2真空形成基础理论 1、凝汽器设备系统主要有循环水泵和凝汽器以及冷却塔,汽轮机的排汽进入凝汽器后,被循环水泵送来的循环水冷却成凝结水,体积大大缩小,压力降低。从而在凝汽器汽侧形成高度真空。 2、真空的形成有两个因素: 一是人为建立:没开机时,通过真空泵或者射水臭气系统抽出凝汽器的空气从而建立真空。 二是冷凝形成:汽轮机的排汽被循环水冷却成凝结水,体积大大缩小从而形成真空。 关于发电厂汽机和凝汽器的,什么叫排汽压力,背压,真空,真空度,之间的区别排汽压力:汽轮机做完功后的蒸汽余压。 背压:即汽轮机排汽压力,指低压缸中做完功后还有一定压力和温度的蒸汽,然后排入凝汽器; 真空:当容器中的压力低于大气压力时,把低于大气压力的部分叫做真空,而容器内的压力叫绝对压力,均可以以水银柱高度表示。 真空度:真空用百分比表示就叫做真空度,即真空水银柱高度除以相当于大气压力的水银柱高度,再化为百分数表示,在凝汽器内绝对压力不变的情况下,真空度随着大气压力的变化而变化。所以,在理论计算上使用绝对压力来表示汽轮机凝汽器内的真空较为妥善。 凝汽器真空度对发电煤耗是怎么影响的,请各位详细说明一下。

凝汽器真空的影响因素及常见故障分析

凝汽器真空的影响因素及常见故障分析 王友强(山东电力建设第二工程公司西固项目部) 【摘 要】现代大型电厂凝汽式汽轮机组的热力循环中,凝汽设备起着冷源的作用,其主要任务是将汽轮机排汽凝结成水并在汽轮机排汽口建立与维持一定的真空度。凝汽器的真空度对汽轮机装置的效率、功率有重大影响,直接影响到整个汽轮机组的热经济性。本文从凝汽器端差、循环水温升和凝汽器入口水温的角度,分析了影响凝汽器真空的因素,通过查找资料并参考一些机组的实际问题的处理方法,研究了造成凝汽器真空缓慢下降的原因。 【关键词】汽轮机冷端 传热端差 循环水温升 真空严密性 轴端漏气 引言 目前,我国发电能源构成中还是以煤为主(占80%),虽然正大力开发西部水电资源,并且加快了核电项目的建设,但目前以煤为主的结构还不会改变。目前中小机组效率低、煤耗高,对环境污染严 重[1]。 电能是最洁净最便于使用的二次能源。生产电能要消耗大量的一次能源,我国生产电力用煤接近全国煤产量的三分之一,西方国家进口的煤绝大部分用于生产电能。据美国电力研究所(EPRI)90年代初的一份跟踪调查报告表明,电厂平均实际供电热耗率高出设计值1000h kW kJ ?/ 以上,当时就把电厂节能降耗列为重大科研项目。随着国民经济的发展,提高火电机组运行效率,降低能耗,并进一步提高机组运行的安全性、可靠性越来越受到重视。我国政府充分认识到走可持续发展道路的重要性后,由粗放型经济向集约型经济转轨,电厂节能问题越来越受到国家和电力行业的普遍重视。另外,随着电力体制改革的深入,电力行业各大公司都已经挂牌运营,现在国家电力公司出台的竞价 上网进一步促进了节能降耗工作的展开。 在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备起着冷源的作用,其主要任务是将汽轮机排汽凝结成水并在汽轮机排汽口建立与维持一定的真空度。以凝汽器为核心,内连汽轮机低压缸,外连循环水系统,构成了电站热力系统“冷端”。根据汽轮机工作原理,凝汽器的真空度对汽轮机装置的效率、功率有重大影响,因此凝汽器的工作效能直接影响到整个汽轮机组的热经济性。 汽轮机组冷端系统性能不良,严重影响整个机组的热经济性,使供电煤耗率增加[1]。例如300MW 等级机组是目前我国电力生产的主力机组约半数以上机组凝汽器的运行真空低于设计值1kPa ~2kPa ,而凝汽器真空降低l kPa ,机组热耗率约上升0.8%,煤耗率增约2.5h kW g ?/。因此,汽轮机组冷端系统性能差的问题是电力行业关注的焦点之一。分析冷端系统性能不良的原因以及对经济性的影响,提高凝汽器性能,维持机组经济真空运行,直接影响到整个汽轮机组的热经济性。 1 汽轮机冷端系统简述 汽轮机冷端系统主要由汽轮机低压缸、表面式凝汽器、抽气设备、胶球清洗装置、凝结水泵 、循环水泵和循环水水源,以及这些部件之间的连接管道和管件等组成。 一个简单的汽轮机冷端系统原则性系统图如图1-1。

1空气抽出及凝汽器真空系统详解

1空气抽出及凝汽器真空系统? (1)作用? 建立和维持汽轮机机组的低背压和凝汽器的真空;正常运行时不断地抽出由不同途径漏入汽轮机及凝汽器的不凝结气体。 (2)组成? 凝汽器、真空泵、汽水分离器、冷却器等。 (3)流程? 由凝汽器抽吸来的气体通过气动蝶阀进入真空泵,由真空泵排出的气体经管道进入汽水分离器,分离后的气体经止回阀从气体排出口排向大气,分离出来的水与汽水分离器的补充水一起进入冷却器,冷却后的工作水,一路经孔板喷入真空泵进口,使即将抽入真空泵内气体中的可凝结部分凝结,提高了真空泵的抽吸能力;另一路直接进入泵体,维持真空泵的水环和降低水环的温度。 2凝汽器? ?两侧的设置: 凝汽器壳体两侧设有本体疏水扩容器和高加紧急疏水扩容器,以接收设备及管道疏放水。 ?凝汽器的水室设有分隔板,循环水能通过一侧的进出口单侧运行,此时汽轮机能达到75% TRL的出力。 ?凝汽器上接有一个真空破坏阀,在机组出现紧急事故危及机组安全时,以达到破坏真空的需要。 ?真空的形成: 凝汽器内真空的形成分为两种。 ——启动或停机过程中,凝汽器内的真空是由真空泵将其内的空气抽出而形成的。 ——在正常运行中,凝汽器内真空的形成是由于汽轮机排汽在凝汽器内骤然凝结水时,其比容急剧缩小而形成的;另外由于汽轮机蒸汽中含有少量的不凝结气体,同时凝 汽器本身及其连接系统也存在漏气处,使有部分空气漏入凝汽器内,所以在正常运 行中也要用真空泵将气体连续不断地从凝汽器中抽出,以维持凝汽器在真空下连续 运行,真空泵在汽轮机的正常运行中,维持凝汽器内真空的作用。 ?保护: ——压力: 为了保护凝汽器,以防止压力和温度超过规定,采取了快速关闭蒸汽转换阀的预防 措施。经过三个对应的压力真空监视器(24)、(25)、(42),把它们安排成三中取一, 控制和管理凝汽器的压力。 汽轮机排汽带入冷凝器的空气和漏入冷凝器的空气,如果不及时抽出,就会影响传热,恶化真空,从而增高汽轮机的排汽温度,这不仅影响汽轮机效率而且危及汽轮机安全运行。 3水环式真空泵? (1)作用? ?在机组启动初期或停机过程中建立凝汽器真空。 ?在机组正常运行中保持凝汽器真空,确保机组的安全经济运行。 (2)设置?

汽轮机凝汽器真空查漏要点汇总

汽轮机凝汽器真空查漏要点汇总 1凝汽器真空的成因 凝汽器中形成真空的成因是汽轮机的排汽被冷却成凝结水,其比容急剧缩小。如蒸汽在绝对压力4KPa时,蒸汽的体积比水容积大3万多倍。 当排汽凝结成水后,体积就大为缩小,使凝汽器汽侧形成高度真空,它是汽水系统完成循环的必要条件。 正是因为凝汽器内部为极高的真空,所以所有与之相连接的设备都有可能因为不严而往凝汽器内部漏入空气,加上汽轮机排汽中的不凝结气体,如果不及时抽出,将会逐渐升高凝汽器内的压力值,真空下降,导致蒸汽的排汽焓值上升, 有效焓降降低,汽轮机蒸汽循环的效率下降。 有资料显示,真空每下降1KPa,机组的热耗将增加70kj/kw,热效率降低1.1%。射水抽气器或水环真空泵的作用就是抽出凝汽器的不凝结气体,以维持凝器的真空。 2真空严密性差的危害 汽轮机真空严密性差的危害主要表现在以下三个方面: 一是真空严密性差时,漏入真空系统的空气较多,射水抽气器或水环真空泵不能够将漏入的空气及时抽走,机组的排汽压力和排汽温度就会上升,这无疑要降低汽轮机组的效率,增加供电煤耗,并可能威胁汽轮机的安全运行,另一方面,由于空气的存在,蒸汽与冷却水的换热系数降低,导致排汽与冷却水出水温差增大。 二是当漏入真空系统的空气虽然能够被及时地抽出,但需增加射水抽气器的负荷,浪费厂用电及循环水。 三是由于漏入了空气,导致凝汽器过冷度过大,系统热经济性降低,凝结水溶氧增加,可造成低压设备氧腐蚀。 3真空查漏的方法 1.通常用灌水法查找真空系统不严密的方法的优缺点 真空系统包含大量的设备及系统,连接的动静密封点多,在轻微漏空气的情况下很难发现漏点,因为空气往里吸,不够直观,传统的运行中用火焰检查法较繁琐且效果不好,多数情况下使用的方法是在机组停机后对真空系统进行灌水找漏。这种方法比较直观,漏点极易被发现,缺点是由于设备的原因,灌水高度最高只能到汽缸的最低轴封洼窝处,高于轴封洼窝的地方因为水上不去而不易发现,特别是与汽轮机汽缸相连接的管道系统。

凝汽器水环式真空泵的原理与运行

凝汽器水环式真空泵的原理与运行 凝汽器抽真空的传统设备主要是采用射汽抽气器和射水抽气器,但这两种设备都存着效率低、噪声大的缺点。随着汽轮机组向高参数、大容量方向发展,使用这种设备就显得很不经济。如果采用水环式真空泵就可以大大提高效率,降低能量消耗和噪声污染。这种水环式真空泵组在0.7~4kPa的吸入压力范围内可以经济运行。与前面两种抽气装置相比,可以节能约在70%以上。 1、水环式真空泵的形式 水环式真空泵根据不同的特性要求,有各种不同的结构形式。常见的有:单级单作用水环式真空泵,单级双作用水环式真空泵和水环一前置抽气器真空泵组等。 北仑发电厂1号机采用单级单作用水环式真空泵与前置抽气器组成的 联合抽真空装置。所谓单级单作用是指泵中只有1个叶轮,在叶轮旋转1周中吸气、排气各1次。其特点是:泵体截面为圆型,结构简单,制造容量,可获得较高的真空 度,运行平稳,噪声小,但径向力不能自动平衡。 2、水环式真空泵的结构 水环式真空泵均为单级单作用水环泵结构,叶轮两侧同时吸、排气。叶轮偏心地置于由侧盖和泵体组成的腔室中,叶轮叶片是前弯式的。轴的两端分别由装在轴承架内的滚动止推轴承支承。轴的一端用刚性联轴器与电动机连接。轴封装置为填料轴封,在轴与填料接触部位装有轴套,以防止泵轴腐蚀和磨损。 3 、水环式真空泵的工作原理 水环式真空泵的工作原理可用图1来具体说明。当径向式叶轮在部分充水的壳体中运转时,由于受离心力的作用,水被甩向四周,如图1(b)所示,形成同心的水环,该水环被6片叶片等分成6个小水室,因此,小水室中的气体不会被扩展或压缩。然而,当叶轮装成如图1(c)所示的偏心位置后,叶片小室1~3的容积是逐渐扩大的,这就产生了从连接点C开始,经吸入段S的吸气过程;另一方面,叶片小室4~6的容积则随着叶轮的转动而逐渐缩小,这就构成了气体通过压出段D的排气过程。可见,水环式真空泵的工作可分成吸气、压缩、排气3个过程。水环式真空泵就是靠这种叶片小室

凝汽器真空下降的原因分析及预防措施

凝汽器真空下降的原因分析及预防措施 摘要:本文详细分析了凝汽器真空下降的原因,指出了影响凝汽器真空的因素,进而提出了凝冷管低真空的一些办法和措施; 关键词:凝汽器真空下降现象原因预防措施 引言:汽器真空度是汽轮机运行的重要指标,也是反映凝汽器综合性能的一项主要指标,保持凝汽器良好的运行工况,保证凝汽器最有利的真空,是每个发电厂节能的重要内容。而影响凝汽器真空的因素来自很多方面:设计、安装、制造、运行管理等,需要我们对可能引起凝汽器真空系统故障的因素定期检查,及时发现问题,及时查明原因,采取相应措施予以解决,确保机组的安全经济运行。凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。而凝汽器真空度是汽轮机运行的重要指标,也是反映凝汽器综合性能的一项主要考核指标。凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如果机组真空下降1%,机组热耗将要上升0.6%~1%,煤耗将增加大约为1-2%。因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空,是每个发电厂节能的重要内容。而凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度和流量、机组的排汽量及真空泵的工作状况等因素制约。 第一章凝汽器的理论概括 第二章凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热器、给水泵

等输送进锅炉,从而保证整个热力循环的连续进行。为防止凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还设有真空除氧器。 第一节凝汽器的结构 结构说明 凝汽器结构为单壳体、对分、单流程、表面式。 凝汽器为单壳体对分单流程表面式凝汽器,它在低压缸下部横向布置。凝汽器壳体置于弹簧支座上,其上部与汽机排汽缸采用刚性连接。循环水流经凝汽器管束使凝汽器壳体内汽机排汽凝聚,凝聚水聚集在热井内并由凝聚水泵排走。 凝汽器壳体内布置管束,热井置于壳体下方,正常水位时其水容积为不少于4分钟凝聚水泵运行时流量。 凝汽器由外壳和管束组成单流程,管子为铜合金管,用淡水冷却。 凝汽器管束布置为带状管束,又称“将军帽”式布置 凝汽器喉部和汽轮机低压缸排汽管连接,上接径口尺寸:7532×6352分两半制造,即7890×3355×1980,接颈壁板用厚16mm、20g钢板。内焊肋板(δ16)加强,侧板间用18号角钢,20a槽钢φ102--φ159的20号钢管加强,使之有足够的刚度。 接颈下部呈截锥四方形,分三段制造,左右两段尺寸是12100×2600×3841,中间段尺寸是12100×2300×3841,接颈下部侧板用厚20mm的20g钢板,内焊肋板,管斜支撑加强。接颈下部右侧(冷却水进水管侧)装有两个减温器。属低压旁路装置供货范围。 汽轮机六七八段抽汽管道,经由接颈右侧(冷却水出口管侧)向外引出。管道热补偿采用伸缩节。

相关主题
文本预览
相关文档 最新文档