当前位置:文档之家› 材料力学 论金属的断裂

材料力学 论金属的断裂

材料力学   论金属的断裂
材料力学   论金属的断裂

工程材料力学期中作业

班级成型2班

姓名陶帅

学号20113650

论述金属的断裂

一、基本介绍

概念:金属材料在外力作用下断裂成两部分的现象。

磨损、腐蚀和断裂是机件的三种主要失效形式,其中以断裂的危害最大。在应力作用下(有时还兼有热及介的共同作用),金属材料被分成两个或几个部分,称为完全断裂;内部存在裂纹,则为不完全断裂。实践证明,大多数金属材料的断裂过程都包括裂纹形成与扩展两个阶段。对于不同的断裂类型,这两个阶段的机理与特征并不相同。

二、断裂的基本类型

弹性变形→塑性变形→断裂

1,根据材料断裂前产生的宏观塑性变形量的大小来确定断裂类型,可分为韧性断裂和脆性断裂。

2,多晶体金属断裂时,按裂纹扩展路径可以分为穿晶断裂和沿晶断裂。

3,根据应力类型可分为纯剪切断裂和微孔聚集型断裂、解理断裂。

三、具体分析

1,韧性断裂

韧性断裂是金属材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量。韧性断裂的断裂面一

般平行于最大切应力并与主应力成45o角。用肉眼或放大镜观察时,端口呈纤维状,灰暗色。纤维状是苏醒变形过程中微裂纹不断扩展和相连造成的,灰暗色则是纤维断口表面对光反射能力很弱所致。

中、低强度钢的光滑圆柱试样在室温下的静拉伸断裂是典型的韧性断裂,其宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。

当光滑圆柱拉伸试样受拉伸力作用,在试验力达到拉伸力-伸长曲线最高点时,便在试样局部区域产生缩颈,同时试样的应力状态也由单向变为三向,且中心轴向应力最大。在中心三向拉应力作用下,塑性变形难于进行,致使试样中心部分的夹杂物或第二相质点本身碎裂,或使夹杂物质点与基体界面脱离而形成微孔。微孔不断长大和聚合就形成显微裂纹。早期形成的显微裂纹,其端部产生较大塑性变形,且集中于极窄的高变形带内。这些剪切变形带从宏观上看大致与径向呈50o~60o角。新的微孔就在变形带内成核、长大和聚合,当其与裂纹连接时,裂纹便向前扩展了一段距离。这样的过程重复进行就形成锯齿

形的纤维区。纤维区所在的平面垂直于拉伸应力方向。

韧性断裂的裂口形成与发展过程

均匀拉伸产生细颈在三向拉应力微孔长大合并

作用下产生微孔形成小裂口

方向断裂

裂口沿垂直于拉伸沿max

方向扩展接近表面形成杯锥状

纤维区中裂纹扩展是很慢的,当其达到临界尺寸后就快速扩展而形成放射区。放射区是裂纹做快速低能量撕裂形成的。放射区有放射花样特征。放射线平行于裂纹扩展方向而垂直于裂纹前端的轮廓线,并逆指向裂纹源。撕裂时塑性变形量越大,则放射线越粗。对于几乎不产生塑性变形的极脆材料,放射线消失。温度降低或再聊强度增加,由于塑性降低,放射线由粗变细乃至消失。

试样拉伸断裂的最后阶段形成杯状或锥状的剪切唇。剪切唇的表面光滑,与

拉伸轴呈45o。

断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及实验温度、加载速率和受力状态不同而变化。一般说来,材料强度提高,塑性降低,则放射区比例增大;试样尺寸加大,放射区增大明显,而纤维区变化不大。

综上韧性断裂的特点有:

①裂口生成、发展均很慢,断裂前能产生显著的塑性变形。

②断口粗糙,无光泽,呈暗灰色纤维状。

2,脆性断裂

脆性断裂是突然发生的断裂,断裂前基本没有任何塑性变形,没有明显征兆,因而危害性极大。脆性断裂的断裂面一般与正应力垂直,断口平齐而光亮,呈放射状或结晶状。

通常脆性断裂前也产生微量塑性变形。一般规定光滑拉伸试样的断面收缩率小于5%者为脆性断裂;反之,大于5%者为韧性断裂。

综上:脆性断裂的特点有

①裂口生成、发展都很快。断裂前没有明显的塑性变形。

②断口平整,有金属光泽。

3,穿晶断裂与沿晶断裂

穿晶断裂的裂纹穿过晶内--------河流状、舌状花纹

沿晶断裂的裂纹沿晶界扩展------------冰糖状、颗粒状

穿晶断裂沿晶断裂

从宏观上看,穿晶断裂可以是韧性断裂,也可以是脆性断裂;而沿晶断裂则大多数是脆性断裂。沿晶断裂是由晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏晶界的连续性所造成,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹等大都是沿晶断裂。

穿晶断裂和沿晶断裂有时可以混合发生。

4,纯剪切断裂与微孔聚集型断裂、解理断裂

剪切断裂是金属材料在切应力作用下沿滑移面分离而造成的滑移面分离断

裂,其中又分为滑断(纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常产生纯剪切断裂,其断口呈锋利的契形或刀尖形。这是纯粹由滑移流变所造成的断裂。微孔聚集型断裂是通过微孔形核、长大聚合而导致材料分离的。

解理断裂是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。解理面一般是低指数晶面或表面能最低的晶面。

通常解理断裂总是脆性断裂,但有时在解理断裂前也显示一定的塑性变形。

四、断裂强度

1,理论断裂强度

概念:将晶体的两个原子面沿垂直于外力方向拉断所需的应力。

假设一完整晶体受拉应力作用后,原子间结合力与原子间位移的关系曲线如图:

曲线上的最大值m σ即代表晶体在弹性状态下的最大结合力--------理论断裂强度 作为一级近似,该曲线可用正弦曲线表示

λ

πσσx

2sin

m =

式中 λ-------正弦曲线的波长 x-------原子间位移

如果原子位移很小,则λ

πλ

πx

x

22sin

,于是 λ

πσσx

m

2=

当原子间位移很小时,根据胡克定律

0a Ex

E ==εσ

式中 ε---------弹性应变

0a ---------原子间平衡距离(晶格常数) 合并上述二式,消去x 得

2a E m πλσ=

晶体脆性断裂时消耗的功用来供给形成两个表面所需之表面能。设裂纹面上单位面积的表面能为s γ。形成单位裂纹表面外力所作的功,应为σ-x 曲线下所包围的面积,即

?==2

02sin λ

π

λσλπσm m dx x

U

这个功应等于表面能s γ的两倍(断裂时形成两个新表面),即

s m

γπ

λσ2= 或

m

s

σπγλ2=

两式合并,消去λ得 2

10???

? ??=a E s

m

γσ

这就是理想晶体脆性(解理)断裂的理论断裂强度。由式可见,晶体弹性模量愈大、表面能愈大、原子间距愈小,即结合愈紧密,则理论断裂强度就愈大。 附:

断裂强度的裂纹理论(格雷菲斯裂纹理论)

假设:在实际晶体中存在各种缺陷(微裂口),在外力作用下,缺陷端部产生很大的应力集中,在平均应力未达到m σ时,缺陷处的应力集中已超过m σ,使裂口得以逐步发展,结果导致实际断裂强度大为下降。 格雷菲斯公式:

2

12??

?

??=a E s c

πγσ

c σ即为有裂纹物体的断裂强度(实际断裂强度)。其表明,在脆性材料中,

裂纹扩展所需之盈利c σ反比于裂纹半长的平方根。

格雷菲斯认为,对于一定尺寸的裂口存在一个临界应力值c σ 当σ<c σ时,裂口不能扩大

当σ>c σ时,裂口迅速扩大,导致断裂

格雷菲斯理论是根据热力学原理得出断裂发生的必要条件,但这并不意味着事实上一定要断裂。裂纹自动扩展的充分条件是其尖端应力要等于或大于理论断裂强度m σ。设材料中自然裂纹尖端曲率半径为ρ,根据弹性应力集中系数计算式,在此条件下裂纹尖端的最大应力为

21

21max

221???? ??≈????

?????????? ??+=ρσρσσa a 式中 σ--------名义拉应力。

由式可见,max σ随名义应力增大而增大,当max σ达到m σ时,断裂开始(裂纹扩展)。此时max σ=m σ,即

2

1021

a 2???

? ??=???? ??a E s γρσ

所以,断裂时的名义断裂应力为

2

1

0c 4????

?

?=aa E s ργσ

如果裂纹很尖,其尖端曲率半径小到原子面见距离0a 那样的尺寸,则上式为

2

1c

4??

? ??=a E s γσ

必须指出,格雷菲斯对长为2a 的中心穿透裂纹计算所得的断裂应力公式,对长为a 的表面半椭圆裂纹也是适用的,对于后一种裂纹,式中的a 就是裂纹长度。

格雷菲斯只适用于脆性固体,如玻璃、金刚石等,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。

格雷菲斯理论的前提是,承认时间金属材料中已经存在裂纹,不涉及裂纹

的来源问题。

裂纹可能是原材料在冶炼中或工件在铸、焊、热处理等加工过程中产生的;也可能是材料在受载过程中因塑性变形诱发而产生的。

该理论的不完善性:未能反映塑性变形在断裂中的作用 Griffith-Orowan 修正公式:

2

121

???

? ??≈???? ??+=c E c E p p c γγγσ

γρ :裂缝扩展时单位面积所需的塑性功 γ<<p γ , γ可忽略不计

五、裂口形核机理

基本思想:位错理论

在外力作用下,刃型位错的合并可构成裂口的胚芽

几种具体机理: 1.位错塞积机理

位错沿某一滑移面移动受阻,在障碍物前塞积,产生极大的应力集中,形成裂口。

2.位错反应机理

二位错发生反应生成不易移动的新位错,

使位错塞积,产生大的应力集中,形成裂口

3.位错消毁机理

在两个滑移面间距h<10个原子层的滑移面上,有着不同号的刃型位错,在切应力作用下,它们相遇、相消,产生孔穴,剩余的同号刃型位错进入穴中,造成严重的应力集中,形成裂口。

4.位错墙侧移机理

由于位错墙一部分侧移,使滑移面产生弯折,形成裂口。

结论:

刃型位错合并、堆积→应力集中→断裂源→达到σc条件→裂口扩展→脆断

六、塑性加工中金属的断裂

1,镦粗时的侧面开裂

产生原因

Ⅲ区鼓形处受有环向拉应力作用

T℃过高,晶界强度减弱,易沿晶界

拉裂

裂口⊥σ环,如图(a)

T℃较低,穿晶切断,沿τmax 断裂

裂口与σ环成45°角,如图(b),

2,锻压延伸时的内部裂纹

1)平锤头锻压方坯时产生X形内裂

产生原因

a) 锻压时,对角线方向金属流动发生错动每翻转90°,金属错动方向改变

b)铸造组织

钢锭中心及对角线是杂质和缺陷聚集的地方,为薄弱环节有柱状晶更易开裂 1

c)对角线方向ε最大

热效应大,温升高,对角线处易过烧,导致开裂若中心薄弱,裂纹如图c上若

角部薄弱,裂纹如图c下

2)平锤头锻压圆锭时产生的内裂

产生原因

锻压圆锭时,相当于压缩厚件。假若没有外端,则可自由地形成双鼓形,但由于外端的拉齐作用,使工件中心产生附加拉应力。

当翻转90°锻成方坯时,裂纹如图(d),十字形

当旋转锻造圆坯时,裂纹如图(e),放射状

3)锻压延伸及轧制时产生的内部裂纹

产生原因

当l/h<0.5时,在断面中心产生纵向拉应力。

4)锻压延伸及轧制时产生的角裂

产生原因

未及时倒棱,角部温降大,产生拉伸热应力角部变形抗力大,延伸小,产生附

加拉应力

七、金属材料的脆化现象

分两类:(1)在一定温度条件下出现的脆性,温度条件改变后,脆性自行消失,或者在一定温度条件下,经一定时间后出现的脆性。这种情况下,金属的组织变化不明显。有冷脆性,热脆性,红脆性及回火脆性。(2)由于应力的反复作用,介质的浸蚀以在高温下长期工作后,金属组织改变引起的脆化现象。这种脆性无法消除或要通过一定的特殊方法消除。如苛性脆化,氢脆,热疲劳,石墨化。

(1)冷脆性:金属材料在低温下呈现的冲击值明显降低的现象。影响因素:化学成分:1)含碳量;2)锰;3)镍;4)磷。

(2)热脆性:某些钢材长时间停留在400~500℃温度区间再冷却至室温,其冲击值有明显下降。影响因素:1)化学成分

含C量,铬锰钼磷等;2)保温时间不同钢产生热脆性所需的保温时间不同。3)热处理:调质处理可阻止热脆性产生。

(3)红脆性:含S较多的钢中,在800~900℃以上呈现较大脆性。S化物以网关分布在晶界上。消除方法:1)长时间高温退火,使网状S化物变为球状。2)加入锰,硫化锰以点状,球状存在于晶界上。

(4)回火脆性:对于一般钢回火可提高冲击韧性。但某些钢在回火后,冲击韧性反而降低。回火脆性:1)第一类回火脆性发生在合金结构钢中。但某些钢在250~400℃回火后,冲击韧性反而降低。实际遇到机会少。2)第二类回火脆性,在450~600℃长时间回火或在更高温度(600~700℃)回火后,出

现常温冲击韧性下降。再次回火消除或加入钼钨防止。对于一般钢回火可提高冲击韧性。

(5)苛性脆化:金属材料的局部高应力区与具有一定浓度的氢氧化钠溶液相接触而发生的电化学晶间腐蚀脆化现象称为苛性脆化。材料在高应力作用下,晶粒本体与晶界产生电位差,当与具有一定浓度的氢氧化钢溶液相接触,晶界部位的铁离子将进入溶液中,与溶液中的氢氧根离子发生电化学反应。如果溶液中的氢氧化钠浓度较高,溶液中的氢氧根负离子较多,促使晶界部位的铁离子大量进入溶液,发生电化学反应,从而形成晶间裂纹,导致苛性脆化。

材料产生苛性脆化必须具备三个条件:1)在材料中需存在较高的局部应力,对于碳素钢高达250MPa ;2)需具有较高浓度的氢氧化钢溶液与材料的局部高应力区相接触,并且在溶液中需具有能加速反应的催化剂;3)需具有一定温度。在锅炉的铆接或胀接部位最易发生苛性脆化。应力:工作应力+联接应力+附加应力;化学成分:铆接或胀接处锅水渗漏,浓缩;温度:低压锅炉为200℃,中压锅炉为250℃,高压锅炉为300℃

(6)氢脆,金属在外加载荷的作用下,当应力达到断裂强度时,发生断裂。

金属材料-准静态断裂韧性测试的方法

ICS 77.040.10 Ref. No. ISO 12135:2002/Cor.1:2008(E) ? ISO 2008 – All rights reserved Published in Switzerland INTERNATIONAL STANDARD ISO 12135:2002 TECHNICAL CORRIGENDUM 1 Published 2008-06-01 INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ? МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ ? ORGANISATION INTERNATIONALE DE NORMALISATION Metallic materials — Unified method of test for the determination of quasistatic fracture toughness TECHNICAL CORRIGENDUM 1 Matériaux métalliques — Méthode unifiée d'essai pour la détermination de la ténacité quasi statique RECTIFICATIF TECHNIQUE 1 Technical Corrigendum 1 to ISO 12135:2002 was prepared by Technical Committee ISO/TC 164, Mechanical testing of metals , Subcommittee SC 4, Toughness testing — Fracture (F), Pendulum (P), Tear (T). Page 1, Clause 2 Replace the reference to ISO 7500-1:— with the following: ISO 7500-1, Metallic materials — Verification of static uniaxial testing machines — Part 1: Tension/compression testing machines — Verification and calibration of the force-measuring system Delete the reference to Footnote 1) and the footnote “To be published. (Revision of ISO 7500-1:1999)”. Page 13, Figure 6 Add “(not to scale)”. Move the note from under the title of Figure 6 to above the title. Page 16, Figure 9, Footnote d) Replace “on” with “or” to give d Edge of bend or straight compact specimen.

材料失效分析

材料失效分析 ——金属的疲劳破坏 1.1材料失效简介 材料失效分析在工程上正得到日益广泛的应用和普遍的重视。失效分析对改进产品设计、选材等提供依据,并可防止或减少断裂事故的发生;可以提高机械产品的信誉,并能起到技术反馈作用,明显提高经济效益。大力开展失效分析研究,无论对工业、民生、科技发展,都具有极其重要的作用。 所谓失效——主要指机械构件由于尺寸、形状或材料的组织与性能发生变化而引起的机械构件不能完满地完成指定的功能。亦可称为故障或事故。一个机械零部件被认为是失效,应根据是否具有以下三个条件中的一个为判据: (1)零件完全破坏,不能工作; (2)严重损伤,继续工作不安全; (3)虽能暂时安全工作,但已不能满意完成指定任务。 上述情况的任何一种发生,都认为零件已经失效。 机械零部件最常见的失效形式有以下几种: 1.断裂失效:通常包括塑性(韧性)断裂失效;低应力脆性断裂失效;疲劳断裂失效; 蠕变断裂失效;应力腐蚀断裂失效。 2.表面损伤失效:通常包括磨损失效;腐蚀失效;表面疲劳失效 3.变形失效:包括塑性变形失效;弹性变形失效,同一种零件可有几种不同失效形式。一个零件失效,总是由一种形式起主导作用,很少以两种形式主导失效的。但它们可以组合为更复杂的失效形式,例如腐蚀磨损、腐蚀疲劳等。 2.1疲劳破坏 飞机、船舶、汽车、动力机械、工程机械 、冶金、石油等机械以及铁路桥梁等的主要零件和构件,大多在循环变化的载荷下工作,疲劳是其主要的失效形式。 金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。当材料和结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。 2.2疲劳断裂的特征 1、疲劳断裂应力1σ(周期载荷中的最大应力 max σ)远比静载荷下材料的抗拉强度 b σ低,甚至比屈服强度s σ也低得多。 2、不管是脆性材料或延性材料,其疲劳断裂在宏观上均表现为无明显塑性变形的脆性突然断裂,故疲劳断裂一般表现为低应力脆断。 3、疲劳破断是损伤的积累,积累到一定程度,即裂纹扩展到一定程度后才突然断裂。 断裂前要经过较长时间的应力循环次数N (=104;105;106……)才断裂,所以疲劳断 裂是与时间有关的断裂。在恒应力或恒应变下,疲劳将由三个过程组成:裂纹的形成(形核);裂纹扩展到临界尺寸;余下断面的不稳定断裂。在宏观上可清楚看到后二个过程。 4、材料抵抗疲劳载荷的抗力比一般静载荷要敏感得多。疲劳抗力不仅决定于材料本 身,而且敏感地决定于构件的形状,尺寸、表面状态、服役条件和所处环境等。

断裂韧性实验报告

断裂韧性测试实验报告 随着断裂力学的发展,相继提出了材料的IC K 、()阻力曲线J J R 、)(阻力曲线CTOD R δ等一些新的力学性能指标,弥补了常规试验方法的不足,为工程应用提供了可靠的断裂判据和设计依据。下面介绍下这几种方法的测试原理及试验方法。 1、三种断裂韧性参数的测试方法简介 1. 1 平面应变断裂韧度IC K 的测试 对于线弹性或小范围的I 型裂纹试样,裂纹尖端附近的应力应变状态完全由应力强度因子I K 所决定。I K 是外载荷P ,裂纹长度a 及试样几何形状的函数。在平面应变状态下,当P 和a 的某一组合使I K =IC K ,裂纹开始失稳扩展。I K 的临界值IC K 是一材料常数,称为平面应变断裂韧度。测试IC K 保持裂纹长度a 为定值,而令载荷逐渐增加使裂纹达到临界状态,将此时的C P 、a 代入所用试样的I K 表达式即可求得IC K 。 IC K 的试验步骤一般包括: (1) 试样的选择和准备(包括试样类型选择、试样尺寸确定、试样方位选择、试样加工及疲 劳预制裂纹等); (2) 断裂试验; (3) 试验结果的处理(包括裂纹长度a 的测量、条件临界荷载Q P 的确定、实验测试值Q K 的 计算及Q K 有效性的判断)。

1. 2 延性断裂韧度R J 的测试 J 积分延性断裂韧度是弹塑性裂纹试样受I 型载荷时,裂纹端点附近区域应力应变场强度力学参量J 积分的某些特征值。测试J 积分的根据是J 积分与形变功之间的关系: a B U J ??-= (1-1) 其中U 为外界对试样所作形变功,包括弹性功和塑性功两部分,a 为裂纹长度,B 为试样厚度。 J 积分测试有单试样法和多试验法之分,其中多试样法又分为柔度标定法和阻力曲线法。但无论是单试样法还是多试样柔度标定法,都须先确定启裂点,而困难正在于此。因此,我国GB2038-80标准中规定采用绘制R J 阻力曲线来确定金属材料的延性断裂韧度。这是一种多试样法,其优点是无须判定启裂点,且能达到较高的试验精度。这种方法能同时得到几个J 积分值,满足工程实际的不同需要。 所谓R J 阻力曲线,是指相应于某一裂纹真实扩展量的J 积分值与该真实裂纹扩展量的关系曲线。标准规定测定一条R J 阻力曲线至少需要5个有效试验点,故一般要58件试样。把按规定加工并预制裂纹的试样加载,记录?-P 曲线,并适当掌握停机点以使各试样产生不同的裂纹扩展量(但最大扩展量不超过0.5mm )。测试各试样裂纹扩展量a ?,计算相应的J 积分,对试验数据作回归处理得到R J 曲线。R J 阻力曲线的位置高低和斜率大小代表了材料对于启裂和亚临界扩展的抗力强弱。 R J 阻力曲线法测试步骤一般包括: (1) 试样准备

材料断裂理论与失效分析知识点

作业:(8)航空发动机涡轮盘-叶片结构 ◆材料为镍基高温合金,为什么? ◆服役环境的要素有哪些? ◆有可能发生的失效类型是什么? ◆如何设计实验确定失效的类型? ◆改进的建议和措施 一.涡轮叶片的材料 涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键。所以对涡轮叶片材料就有更高的要求。 涡轮叶片的材料一般选择镍基高温合金。镍基合金就是以镍为基础,加入其他的金属,比如钨、钴、钛、铁等金属,做成以镍为基础的合金。有的镍基高温合金含镍量达到70%左右,其次Cr含量也比较高。其性能主要有: 1.物理性能。具有较高的熔点和弹性模量;各温度下均有较低的热膨胀系数,且随温度变化不大;没有磁性。 2.耐腐蚀性。镍基合金由于含Cr,在氧化性的腐蚀环境中的耐腐蚀性优于纯镍。同时,由于Ni含量高,在还原性腐蚀环境下也能维持良好的耐腐蚀性能。还具有良好的耐应力腐蚀开裂性能,也能抵抗氨气和渗氮、渗碳气氛。 3.机械性能。镍基高温合金在零下、室温及高温时都具有很好的机械性能。 4.高温特性。高温下耐氧化性极佳,对氮、氢以及渗碳也具有极佳的耐受性。 5.热处理及加工、焊接性。高温镍基合金不能通过热处理进行失效硬化,但可以进行固溶热处理和退火处理等。高温镍基合金比较容易进行热加工,冷加工性能比奥氏体不锈钢好。焊接性能与标准奥氏体钢一样,可采用TIG焊接、MIG焊接以及手工电弧焊。 总的来说,镍基合金具有优良的热强热硬性能、热稳定性能及热疲劳性能,可以承受复杂应力,组织稳定,有害相少,高温时抗氧化热腐蚀性好,蠕变特性出色,能够在相当苛刻的高温环境下进行服役。所以涡轮叶片的材料选择高温镍基合金。 二.涡轮叶片的服役环境 涡轮处于燃烧室后面的一个高温部件,而涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,即涡轮叶片的服役环境特别的复杂与恶劣。总得来说,涡轮叶片服役环境的要素主要有: 1.不均匀的高温条件下工作。涡轮处于燃烧室后面的一个高温部件,涡轮工作叶片的工作温度大约在720℃~1120℃,其在工作时已达到红热状态,并且其温度场不均匀,随着飞行状态的变化而承受不同的温度,而且还存在高温氧化,这些都使得涡轮叶片的服役环境非常恶劣。 2.高转速条件下工作。涡轮发动机靠涡轮叶片快速旋转将燃气压缩排出,装化为机械能,为航天器提供动力。 3.高应力和复杂应力条件下工作。涡轮工作叶片承受很大的离心力及其弯矩,还要承受燃气施加的很高的弯曲载荷、热应力,还有振动应力和气动力等复杂的应力作用。 4.受到燃气高频脉动及燃气腐蚀的影响。涡轮工作叶片直接接触高温高压燃气,燃烧产生的燃气含有大量的Na,V,S等热腐蚀性元素,使得涡轮工作叶片的工作环境更为苛刻。 三.可能发生的失效类型 根据涡轮叶片的服役环境,可以推断出涡轮叶片的失效方式大概分为正常失效和非正常失效两种。 1.正常失效中的叶片损伤包括由磨损、掉块、内裂等构成的表观损伤和内部冶金组织损伤两类。其中,内部冶金组织损伤是指叶片在低于规定使用温度和应力的服役环境下发生的诸如γ'相粗化,晶界及晶界碳化物形貌的变化,脆性相生成等显微组织的变化。导致的主要失效形式是蠕变失效,但同时还有高温腐蚀、热疲劳和低周疲劳及其交互作用等。蠕变损伤主要表现为蠕变孔洞和蠕变裂纹的产生。 大多数涡轮叶片的失效方式为正常失效方式,即蠕变失效、蠕变-疲劳交互作用导致的失效和腐蚀失效。 2.非正常失效是由于叶片设计不当、制备缺陷或人员操作不当引起的失效行为,主要表现为高周疲劳、超温服役引起的过热甚至过烧等失效形式。 总的来说,涡轮叶片可能的失效类型主要为:疲劳失效、蠕变失效和过载断裂等。 四.设计实验确定失效的类型 1.疲劳失效。金属零件再使用中发生的疲劳断裂具有突发性、高度局部性及对各种缺陷的敏感性等特点;引起疲劳断裂的应力一般很低,端口上经常可观察到特殊的、反映断裂各阶段宏观及微观过程的特殊花样。典型的疲劳端口的宏观形貌结构可分为疲劳核心、疲劳源区、疲劳裂纹的选择发展区、裂纹的快速扩展区及瞬时断裂区等五个区域。 2.蠕变失效。蠕变断裂是材料在恒定应力(应力水平低于材料的断裂强度)作用下应变时间逐渐增加,最后发生断裂。明显的塑性变形是蠕变断裂的主要特征,在端口附近产生许多裂纹,使断裂件的表面呈现龟裂现象。

金属材料的断裂韧性

金属材料的断裂韧性 摘要不同的金属材料的断裂韧性是不一样的,对不同金属材料的断裂韧性进行研究并找出影响的因素对提高金属材料断裂韧性具有非常重要的意义。根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。 关键词金属材料;失效;断裂韧性;影响因素 0引言 随着现代社会经济的不断发展,对金属材料的使用也大大的增加,在工程构件设计和使用的过程中,最为严重的就是金属材料的断裂,金属材料一旦发生断裂就会发生生产安全事故,同时也会造成一定的经济损失。通过对以往发生的大量的金属材料的断裂事件的分析,得出构件的低应力脆断是由宏观裂纹扩展引起的,其中最为主要的是金属材料的断裂纹,裂纹一般是在金属加工和生产的过程中引起的[1]。 根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。 1影响金属材料断裂韧性的外部因素 1.1几何因素的影响 几何因素是影响金属材料断裂韧性的一个最为重要的外部因素。几何因素主要包括两个方面的内容,分别是试样厚度和试样取向等因素,下面对这两个因素进行分析: 1)试样厚度 目前在对金属材料的断裂韧性进行研究的过程中发现,不同厚度的金属材料会对会对裂纹前端的应力约束产生较大的影响,同样也会对金属材料的断裂韧性有一定的影响,所以我们分别用不同厚度的同一个金属材料进行断裂韧性的实验,在实验的过程中发现厚试样的断裂韧性值明显的比薄试样的断裂韧性值要低,换而言之,不同厚度的金属材料,其自身的断裂韧性也不同,厚度也是影响金属材料断裂韧性的一个重要的因素[2]。 2)试样的取向 在对金属材料进行取样测试的时候,试样的去向业余金属材料的断裂韧性之

断裂韧性KIC的测定

材料力学性能实验报告 姓名:刘玲班级:材料91 学号:09021004 成绩: 的测定 实验名称断裂韧性K IC 实验目的了解金属材料平面应变断裂韧性测试的一般原理和方法 实验设备 1.万能材料试验机一台(型号CSS-88100) 2.位移传感器及自动记录装置 3.游标卡尺一把 4.显微测试仪一台 5.三点弯曲试样四个 试样示意图

试样宏观断口示意图(韧断,脆断) 图1 20钢脆断 图2 40铬韧性断口

实验记录及Q P 的确定 表1 裂纹长度a 1a /mm 2a /mm 3a /mm 4a /mm 5a /mm a /mm 03 2.478 5.0085 5.5680 5.2430 3.1925 5.2432 09 2.757 3.9505 4.134 3.992 3.1790 4.0255 403 2.800 3.4065 3.7085 3.4915 2.9185 3.5355 407 1.986 2.6595 2.9970 2.5970 16810 2.7512 表2 试样各数据 试样编号 试样材料 屈服强度(MPa) 高度W(mm) 宽度B(mm) 03 40Cr800℃+ 100℃回火 1050 25.00 12.50 09 25.00 12.50 403 20#钢退火态 370 25.00 12.00 407 25.00 12.00 表3 各试样实验测得的Q P 值及max P 试样编号 Q P (N) max P (N) 03 13270.126 13270.126 09 26650.307 26650.307 403 407 14523.800 16479.500

金属材料及零部件的失效分析

金属材料及零部件失效分析 随着科学技术和工业生产的迅速发展,人们对机械零部件的质量要求也越来越高。材料质量和零部件的精密度虽然得到很大的提高,但各行业中使用的机械零部件的早期失效仍时有发生。通过失效分析,找出失效原因,提出有效改进措施以防止类似失效事故的重复发生,从而保证工程的安全运行是必不可少的。 相关行业 汽车零部件、精密零部件、模具制造、铸锻焊、热处理、表面防护等金属相关行业。 常见失效模式 断裂:韧性断裂、脆性断裂、疲劳断裂、应力腐蚀断裂、疲劳断裂、蠕变断裂、液态金属脆化、氢脆 腐蚀:化学腐蚀、电化学腐蚀 磨损:磨粒磨损、粘着磨损、疲劳磨损、微动磨损、变形磨损 其他:功能性失效、物理性能降级等等 金属失效分析的意义

1. 减少和预防产品同类失效现象重复发生,减少经济损失,提高产品质量; 2. 为裁决事故责任,制定产品质量标准等提供可靠的科学技术依据。 失效分析常用手段 (1)断口分析: 分析断裂源、断口特征形貌,并分析这些特征与失效过程的相互关系。 解理断裂沿晶断裂 (2)金相组织分析 评估组织级别、工艺匹配程度、缺陷等级等等。

(3)成分分析: SEM/EDS; ICP-OES; XRF; 火花直读光谱。 (4)痕迹分析: 分析失效件与成型、使用、环境交互影响留下的细微痕迹。

(5)热学分析:评判材料在热环境使用的合理性。 (6)机械性能分析:评估力学强度、硬度、热性能等指标是否符合使用要求。(7)微区分析:分析表面形貌及微区成分,为失效机理推断提供定性定量依据。(8)极表面分析:对极表面腐蚀产物、微量异物进行定性定量分析。

金属材料的断裂认识

金属材料的断裂 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。 4. 断口分析 断口分析是金属材料断裂失效分析的重要方法。记录了断裂产生原因,扩散的途径,扩散过程及影响裂纹扩散的各内外因素。所以通过断口分析可以找出断裂的原因及其影响因素,为改进构件设计、提高材料性能、改善制作工艺提供依据。断口分析可分为宏观断口分析和微观断口分析。 (1)宏观断口分析 断口三要素:纤维区,放射区,剪切唇。纤维区:呈暗灰色,无金属光泽,表面粗糙,呈纤维状,位于断口中心,是裂纹源。放射区:宏观特征是表面呈结晶状,有金属光泽,并具有放射状纹路,纹路的放射方向与裂纹扩散方向平行,而且这些纹路逆指向裂源。剪切唇:宏观特征是表面光滑,断面与外力呈45°,位于试样断口的边缘部位。 (2)微观断口分析(需要深入研究) 5. 脆性破坏事故分析 脆性断裂有以下特征: (1)脆断都是属于低应力破坏,其破坏应力往往远低于材料的屈服极限。(2)一般都发生在较低的温度,通常发生脆断时的材料的温度均在室温以下20℃。(3)脆断发生前,无预兆,开裂速度快,为音速的1/3。(4)发生脆断的裂纹源是构件中的应力集中处。

陶瓷材料断裂韧性的测定

实验陶瓷材料断裂韧性的测定 一、前言 脆性材料的破坏往往是破坏性的,即材料中裂纹一旦扩展到一定程度,就会立即达到失稳态,之后裂纹迅速扩展。材料的断裂韧性可以用来衡量它抵抗裂纹扩展的能力,亦即抵抗脆性破坏的能力。它是材料塑性优劣的一种体现,是材料的固有属性。裂纹扩展有三种形式:掰开型(I型)、错开型(II型)、撕开型(III型),其中掰开型是最为苛刻的一种形式,所以通常采用这种方式来测量材料的断裂韧性,此时的测量值称作K IC。在平面应变状态下材料K IC 值不受裂纹和几何形状的影响。因此,K IC值对了解陶瓷这一多裂纹材料的本质属性,具有非常重要的意义。 目前,断裂韧性的测试方法多种多样,如:单边切口梁法(SENB)、双扭法(DT)、山形切口劈裂法、压痕法、压痕断裂法等。其中,有些方法技术难度较高,不太容易实现大规模实用化;有些方法会出现较大测量误差,应用起来存在一定困难。相对而言,比较普遍采用的SENB法,该方法试样加工较简单,裂纹的引入也较容易。 本实验采用SENB法进行。但是,这种方法存在裂纹尖端钝化、预制裂纹宽度不易做得很窄等缺陷;另外,它适用于粗晶陶瓷材料,对细晶陶瓷其所测的K IC值偏大。 二、仪器 测试断裂韧性所需仪器如下: 1.材料实验机 对测试材料施加载荷,应保证一定的位移加载速度,国标规定断裂韧性测试加载速度为0.05mm/min。 2.内圆切割机 用于试样预制裂纹,金刚石锯片厚度不应超过0.20mm。 3.载荷输出记录仪 输出并记录材料破坏时的最大载荷,负荷示值相对误差不大于1。本实验在材料实验机上配置了量程为980N的称重传感器输出载荷,采用电子记录仪记录断裂载荷。 4.夹具 保证在规定的几何位置上对试样施加载荷,试样支座和压头在测试过程中不发生塑性变形,材料的弹性模量不低于200GPa。支座和压头应有与试样尺寸相配合的曲率半径,长度应大于试样的宽度,与试样接触部分的表面粗糙度R a(根据规定不大于1.6μm)。试样支座为两根二硅化钼发热体的小圆柱,置于底座两个凹槽上。压头固定在材料实验机的横梁上。 5.量具 测量试样的几何尺寸和预制裂纹深度,精度为0.0lmm,需使用游标卡尺和读数显微镜。 三、试样的要求 试样的形状是截面为矩形的长条,试样表面要经过磨平、抛光处理,对横截面垂直度有一定的要求,边棱应作倒角。在试样中部垂直引入裂纹,深度大约为试样高度的一半,宽度应小于0.2mm。试样尺寸比例为: c/W=0.4~0.6 L/W=4 B≈W/2 式中:c-裂纹深度; W-试样高度;

工大金属材料失效分析(DOC)

3.刚的晶内偏析不可以通过热处理方法予以消除·······(×) 4.钢中氢含量偏高容易导致钢中出现气孔和白点·······(√) 5.魏氏组织会降低刚的强度,但是可以提高钢的韧性···(×) 6.钢中夹杂物会降低钢的塑性、韧性和疲劳强度·······(√) 7.钢的脱碳会降低钢的疲劳程度·····················(√) 8.焊缝延迟裂纹一般与焊缝中的含氢量有关···········(√) 9.焊缝淬火裂纹一般与焊缝中的马氏体有关···········(√) 10.磨损失效是金属构件失效的主要方式··············(×) 11.河流花样和舌状花样是脆性断口和典型微观形貌特征(√) 12.应力腐蚀开裂是应力和腐蚀共同作用的结果·······(√) 13.能谱成分分析技术可以用于钢中碳含量分析·······(×) 14.扫描电镜分析技术是建立在可见光反射原理基础之上的(×) 15.就金属断裂而言,正断可能是韧性的,而切断总是韧性的(√) 1、钢的晶内偏析可以通过何种热处理方法予以消除? 扩散退火钢加热到上临界点(Ac3或Accm)以上的较高温度(一般为1050~1250℃),经过较长时间的充分保温,然后缓冷的热处理叫扩散退火,也叫均匀化退火。这种退火的目的是,借原子在高温下可以较快的扩散,减少或消除各种合金元素及非合金元素在钢中的显微偏析,使化学成分趋于均匀化,以达到改善钢的组织,提高钢的力学性能的目的。 2、钢中S、P杂质元素容易造成哪些性能缺陷? S以Fes形态存在于钢中,Fes和Fe形成低共熔化合物,引起热脆。

P虽然可以提高钢的强度和硬度,但会引起塑性和冲击韧性的下降,使韧脆转变温度上升,引起冷脆。 3、钢中H元素容易造成哪些性能缺陷? 钢中溶解的氢会导致氢脆,白点和氢致延迟断裂等缺陷 一是引起氢脆,即在低于钢材极限应力的作用下,经一定的时间后,突然断裂。二是导致钢材内部产生大量细微裂纹缺陷,即白点,白点使钢材的冲击韧性降低得很多。在钢材纵端面上呈光滑的银白的斑点,在酸洗后的端面上呈较多的发丝状裂纹,白点使钢材的延伸率显著下降,尤其是端面收缩率和冲击韧性降低得更多,有时可能接近于零值。因此具有白点的钢是不能用的,这类缺陷主要发生在合金钢中。 4、魏氏组织对钢有哪些危害作用? (1).在最终热处理会有增大变形的倾向;(2).使钢的力学性能尤其是塑性和冲击韧性显著降低,同时使脆性转折温度升高。魏氏组织不仅晶粒粗大,而且由于大量铁素体针片形成的脆弱面,使金属的韧性急剧下降,屈服强度当然也会降低。 5、钢中夹杂物会降低钢的哪些性能? 钢中夹杂物包括C、Si、Mn、S、P、N、H、O等 C:随着钢中碳含量的增加,碳钢硬度上升,塑性和韧性降低。在亚共析范围内随着碳含量增加,抗拉强度不断提高。超过共析范围后,抗拉强度随碳含量的增加减缓,最后发展到随碳含量的增加抗拉强度降低。另外,含碳量增加时碳钢的耐蚀性降低,同时碳也使碳钢的焊接性能和冷加工(冲压、垃拔)性能变坏。 Si:硅含量的提高,钢的抗拉强度提高,屈服点提高,伸长率下降,钢的面缩率和冲击韧性显著降低。 Mn:锰对碳钢的力学性能有良好的影响,它能提高钢热轧后的硬度和强度,原因是锰溶入铁素体中引起固溶强化。 S:产生热脆

金属--断裂与失效分析刘尚慈

金属断裂与失效分析(刘尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I= Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y

(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC/Yσ)2/π 中低强度材料,当断裂前发生大范围屈服时,按弹塑性断裂力学提出的裂纹顶端张开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs)不发生断裂的条件为:δ<δC(临界张开位移) J积分判据:对一定材料在大范围屈服的情况下,裂纹尖端应力应变场强度由形变功差率J来描述。张开型裂纹不断裂的判据为: J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的内涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。

五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法 断口分析通常是一个从宏观到微观,从定性到定量的分析过程,并且是应用多种仪器联合测试检验的结果,是综合性很强的技术分析工作。因此需要严格的科学态度,精心地、有步骤地进行研究分析。 断口分析步骤: (1)所有试样的选择、鉴定、保存以及清洗; (2)宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象); (3)微观检验和分析; (4)金相剖面的检验和分析以及化学分析; (5)断口定量分析(断裂力学方法); (6)模拟试验。 1 断裂构件的处理及断口的保存 在确定了断裂的金属构件后,就要采取措施把断口保存好,尽快制定分析计划。通常金属构件的断裂不止一个断口,有时要立即判断主断口有困难,此时应该把所有断件收集好,在收集过程中切勿把断口碰伤或对接,也不要在断口上使用防蚀涂层。保护和清理断口是断口分析的一个重要前提。对断口和裂纹轨迹进行充分检查后方可进行清洗。 对于不同情况下的断口应该用不同方法处理: (1)大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗。 (2)对于带有油污的断口,首先用汽油,然后用丙酮、三氯甲烷、石油醚及苯等有机溶剂溶去油污,最后用无水乙醇清洗吹干。当浸没处理还不能去除油污时,可使用蒸汽或超声波方法进一步去除。 (3)在腐蚀环境下发生断裂的断口,通常在断口上覆盖一层腐蚀产物,这层产物对于分析断裂原因是非常有用的,但对断口形貌观察常常带来很大的麻烦。在这种情况下,需要用综合分析的方法来考虑。因为有许多腐蚀产物容易水解或分解,因此进行产物分析要抓紧时间,同时不要进行任何清洗和处理。通常把带

有腐蚀产物的断口试样,先用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后去掉产物再观察断口形貌。 去掉腐蚀产物有时可采用干剥法。用醋酸纤维纸(称AC纸,由7%的醋酸纤维素、丙酮溶液制成厚度0.1~1mm的均匀薄膜)复型进行清理是最有效的方法之一,尤其是断口表面已经受到腐蚀的时候。将一条厚约1mm合适的AC纸,放在丙酮中泡软,然后拿起来放在断口表面上,在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上,干燥后用小镊子把干复型从断口上揭下来。如果断口玷污得很厉害,可将复型操作重复进行,直到获得一个洁净无污染的复型为止。这种方法的一个优点,就是能将从断口上除去的碎屑保存下来,供以后鉴定碎屑使用。还可以用复型法达到长期保存断口的目的。 (4)断口表面不能用酸溶液清洗,以免影响断口分析的准确性。 (5)在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。若用一般有机溶液、超声波洗涤和复型都不能洁净断口表面时,可采用化学清洗。根据不同的金属材料及氧化层情况可采用不同的化学清洗液。 2 断口的宏观分析 用肉眼、放大镜和实体显微镜对断裂零件进行直接观察与分析的方法,称为宏观分析,其放大倍数通常为100倍以下。 宏观分析的优点是:(1)简便、迅速,试样尺寸不十分受限制,不必破坏断裂零件;(2)观察范围大,能够观察与分析断裂全貌,即裂缝和零件形状的关系、断口与变形方向的关系、断口与受力状态(主应力或切应力)的关系;(3)能够初步判断裂起源位置、断裂性质与原因,缩小进一步分析研究的范围,可为确定进一步分析的取样部位和数量提供线索和依据。因此宏观分析是断裂故障分析中最方便、最常用、最主要的不可缺少的步骤和方法,是整个断裂故障分析的基础。 断裂分析的一个主要内容,就是要确定断裂源的位置及裂纹的扩展方向。金属零件若已断裂成多块,则应把所有断块按原来形状拼起来,但要特别小心不能碰合,然后看其密合程度,密合得最差的为最早断裂,即主断口。分析断裂原因时,只需对主断口进行分析。

断裂力学与断裂韧性

断裂力学与断裂韧性 3.1 概述 断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。自从四五十年代之后,脆性断裂的事故明显地增加。例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧! 按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就 被认为是安全的了。而[σ],对塑性材料[σ]=σ s /n,对脆性材料[σ]=σ b /n, 其中n为安全系数。经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。 人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。 3.2 格里菲斯(Griffith)断裂理论 3.2.1 理论断裂强度 金属的理论断裂强度可由原子 间结合力的图形算出,如图3-1。 图中纵坐标表示原子间结合力,纵

轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。如金属受拉伸离开平衡位置,位移越大需克服的引力 时吸力最大以越大,引力和位移的关系如以正弦函数关系表示,当位移达到X m σc表示,拉力超过此值以后,引力逐渐减小,在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。可见理论断裂强度即相当于克服最大引力σ 。该力和位移的关系为 c 图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。分离后形成两个新表面,表面能为。 可得出。 若以=,=代入,可算出。 3.2.2 格里菲斯(Griffith)断裂理论 金属的实际断裂强度要比理论计算的断裂强度低得多,粗略言之,至少低一 陶瓷、玻璃的实际断裂强度则更低。 个数量级,即 。 实际断裂强度低的原因是因为材料内部存在有裂纹。玻璃结晶后,由于热应力产生固有的裂纹;陶瓷粉末在压制烧结时也不可避免地残存裂纹。金属结晶是紧密的,并不是先天性地就含有裂纹。金属中含有裂纹来自两方面:一是在制造工艺过程中产生,如锻压和焊接等;一是在受力时由于塑性变形不均匀,当变形受到阻碍(如晶界、第二相等)产生了很大的应力集中,当应力集中达到理论断裂强度,而材料又不能通过塑性变形使应力松弛,这样便开始萌生裂纹。

金属材料失效分析

失效分析 机电工程学院 何敏 U n R e g i s t e r e d

“失效分析”课程简介 对广大同学而言,失效和失效分析也许是一个陌生的概念。然而在我们的周围,大到各种机械零件,工程设备,运输机械,锅炉、压力容器等,小到生活、学习、娱乐场所的各类设施,我们手头的各种电子器件等等,不管你意识到没有,失效却总是在发生着。 失效——各类机电产品的机械零部件、微电子元件和仪器仪表等以及各种金属及其它材料形成的构件(工程上习惯地统称为零件,以下简称零件)都具有一定的功能,承担各种各样的工作任务,如承受载荷、传递能量、完成某种规定的动作等。当这些零件失去了它应有的功能时,则称该零件失效。失效给我们造成巨大的甚至是无法挽回的损失;而失效分析则可以有效地避免或减少这些损失。 U n R e g i s t e r e d

11 零件失效即失去其原有功能的含义包括三种情况: 失效failure “失效”与“事故” 要区分“失效”与“事故”,这是两个不同的概念。事故是一种 结果,其原因可能是失效引起的,也可能不是失效引起的。同样,失效可能导致事故的发生,但也不一定就导致事故。 (1)零件由于断裂、腐蚀、磨损、变形等而完全丧失其功能; (2)零件在外部环境作用下,部分的失去其原有功能,虽然能够工作,但不能完成规定功能,如由于磨损导致尺寸超差等; (3)零件虽然能够工作,也能完成规定功能,但继续使用时,不能确保安全可靠性。如经过长期高温运行的压力容器及其管道,其内部组织已经发生变化,当达到一定的运行时间,继续使用就存在开裂的可能。 U n R e g i s t e r e d

失效分析方法大汇总

失效分析简介 失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及,它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。 失效分析流程 图1 失效分析流程 各种材料失效分析检测方法 1 PCB/PCBA失效分析

PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。 图2 PCB/PCBA 失效模式 爆板、分层、短路、起泡,焊接不良,腐蚀迁移等。 常用手段 无损检测:外观检查,X射线透视检测,三维CT检测,C-SAM检测,红外热成像表面元素分析:扫描电镜及能谱分析(SEM/EDS)显微红外分析(FTIR)俄歇电子能谱分析(AES)X射线光电子能谱分析(XPS)二次离子质谱分析(TOF-SIMS)

热分析:差示扫描量热法(DSC)热机械分析(TMA)热重分析(TGA)动态热机械分析(DMA)导热系数(稳态热流法、激光散射法)电性能测试:击穿电压、耐电压、介电常数、电迁移破坏性能测试:染色及渗透检测 2 电子元器件失效分析 电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。 图3 电子元器件 失效模式 开路,短路,漏电,功能失效,电参数漂移,非稳定失效等 常用手段 电测:连接性测试电参数测试功能测试无损检测:开封技术(机械开封、化学开封、激光开封)去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层)微区分析技术(FIB、CP)制样技术:开封技术(机械开封、化学开封、激光开封)去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层)微区分析技术(FIB、CP)显微形貌分析:光学显微分析技术扫描电子显微镜二次电子像技术表面元素分析:扫描电镜及能谱分析(SEM/EDS)俄歇电子能谱分析(AES)X射线光电子能谱分析(XPS)二次离子质谱分析(SIMS)无损分析技术:X射线透视技术三维透视技术反射式扫描声学显微技术(C-SAM)3 金属材料失效分析 随着社会的进步和科技的发展,金属制品在工业、农业、科技以及人们的生活各个领域的运用越来越广泛,因此金属材料的质量应更加值得关注。

材料力学论金属的断裂

工程材料力学期中作业 班级成型2班 姓名陶帅 学号20113650

论述金属的断裂 一、基本介绍 概念:金属材料在外力作用下断裂成两部分的现象。 磨损、腐蚀和断裂是机件的三种主要失效形式,其中以断裂的危害最大。在应力作用下(有时还兼有热及介的共同作用),金属材料被分成两个或几个部分,称为完全断裂;内部存在裂纹,则为不完全断裂。实践证明,大多数金属材料的断裂过程都包括裂纹形成与扩展两个阶段。对于不同的断裂类型,这两个阶段的机理与特征并不相同。 二、断裂的基本类型 弹性变形→塑性变形→断裂 1,根据材料断裂前产生的宏观塑性变形量的大小来确定断裂类型,可分为韧性断裂和脆性断裂。 2,多晶体金属断裂时,按裂纹扩展路径可以分为穿晶断裂和沿晶断裂。 3,根据应力类型可分为纯剪切断裂和微孔聚集型断裂、解理断裂。 三、具体分析 1,韧性断裂 韧性断裂是金属材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量。韧性断裂的断裂面一般平行于最大切应力并与主应力成45o角。用肉眼或放大镜观察时,端口呈纤

维状,灰暗色。纤维状是苏醒变形过程中微裂纹不断扩展和相连造成的,灰暗色则是纤维断口表面对光反射能力很弱所致。 中、低强度钢的光滑圆柱试样在室温下的静拉伸断裂是典型的韧性断裂,其宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。 当光滑圆柱拉伸试样受拉伸力作用,在试验力达到拉伸力-伸长曲线最高点时,便在试样局部区域产生缩颈,同时试样的应力状态也由单向变为三向,且中心轴向应力最大。在中心三向拉应力作用下,塑性变形难于进行,致使试样中心部分的夹杂物或第二相质点本身碎裂,或使夹杂物质点与基体界面脱离而形成微孔。微孔不断长大和聚合就形成显微裂纹。早期形成的显微裂纹,其端部产生较大塑性变形,且集中于极窄的高变形带内。这些剪切变形带从宏观上看大致与径向呈50o~60o角。新的微孔就在变形带内成核、长大和聚合,当其与裂纹连接时,裂纹便向前扩展了一段距离。这样的过程重复进行就形成锯齿形的纤维区。纤维区所在的平面垂直于拉伸应力方向。

(完整版)断裂韧性KIC测试试验

实验五断裂韧性K IC测试试验 一、试样的材料、热处理工艺及该种钢材的σy 和KⅠC的参考值 本实验采用标准三点弯曲试样(代号SE(B)),材料为40Cr,其热处理工艺如下: ①热处理工艺:860℃保温1h,油淬;220℃回火,保温0.5~1h ;②缺口加疲劳裂纹总长:9~11mm (疲劳裂纹2~3.5mm)③不导角,保留尖角。 样品实测HRC50,从机械手册中关于40Cr 的热处理实验数据曲线上查得:σy=σ 0.2=1650MPa,σ b=1850MPa,δ 5=9%,ψ =34%,KⅠC=42MN · m -3/2。 二、试样的形状及尺寸 国家标准GB/T 4161-1984《金属材料平面应变断裂韧度KⅠC 试验方法》中规定了两种测试断裂韧性的标准试样:标准三点弯曲试样(代号SE(B))和紧凑拉伸试样(代号C(T))。 这两种试样的裂纹扩展方式都是Ⅰ型的。本实验采用标准三点弯曲试样(代号SE(B))。试样的形状及各尺寸之间的关系如图所示: 为了达到平面应变条件,试样厚度 B 必须满足下式: B≧2.5(KⅠC/ σy)2 a≧2.5(KⅠC/ σy)2 (W-a)≧ 2.5(KⅠC/σ y)2 式中:σ y—屈服强度σ 0.2 或σ s 。 因此,在确定试样尺寸时,要预先估计所测材料的KⅠC 和σ y 值,再根据上式确定试样 的最小厚度B。若材料的KⅠC 值无法估计,则可根据σ y/E 的值来确定B 的大小,然后再确定试样的其他尺寸。试样可从机件实物上切去,或锻、铸试样毛坯。在轧制钢材取样时,应注明裂纹面取向和裂纹扩展方向。 试样毛坯粗加工后,进行热处理和磨削,随后开缺口和预制裂纹。试样上的缺口一般在钼丝电切割机床上进行切割。为了使引发的裂纹平直,缺口应尽可能地尖锐。 开好缺口的试样,在高频疲劳试验机上预制裂纹。 疲劳裂纹长度应不小于2.5%W,且不小于1.5mm 。a/W 值应控制在0.45~0.55 范围内。本试样采用标准三点弯曲试样(代号SE(B)),其尺寸:宽W=19.92mm ,厚B=10.20mm 总长100.03mm 。 三、实验装置 制备好的试样,在MTS810 材料力学试验机上进行断裂试验。对于三点弯曲试样,其试验装置如图5-2 所示。可将采集的试验数据以文件形式(数据采集间隔0.1s)存储在计算机 中,同时利用3086-11 型X—Y 系列实验记录仪绘制P—V曲线。本实验跨距S为80mm ,弯曲压头速率0.01mm/s 。用15J型工具显微镜测量试样的临界裂纹(半)长度a。

相关主题
文本预览
相关文档 最新文档