当前位置:文档之家› 化学仪器分析期末考试知识点总结(全面)..

化学仪器分析期末考试知识点总结(全面)..

化学仪器分析期末考试知识点总结(全面)..
化学仪器分析期末考试知识点总结(全面)..

分子光谱法:UV-VIS、IR、F

原子光谱法:AAS

电化学分析法:电位分析法、电位滴定

色谱分析法:GC、HPLC

质谱分析法:MS、NRS

⒈经典分析方法与仪器分析方法有何不同?

经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。

仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。

化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。

⒊简述三种定量分析方法的特点和应用要求

一、工作曲线法(标准曲线法、外标法)

特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白

应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。

二、标准加入法(添加法、增量法)

特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响

应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法

特点:可扣除样品处理过程中的误差

应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰

1、吸收光谱和发射光谱的电子能动级跃迁的关系

吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M*

2、带光谱和线光谱

带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。

线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。

2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。

3、谱线变宽的因素(P-131):

⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。Doppler宽度随温度升高和相对原子质量减小而变宽。

⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起

外界压力愈大,浓度越高,谱线愈宽。

⒈引起谱线变宽的主要因素有哪些?

⑴自然变宽:无外界因素影响时谱线具有的宽度

⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。

⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起

⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。

⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场)

⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?

①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。

②贫燃火焰:指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。

③富燃火焰:指燃气大于化学元素计量的火焰。其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。

④火焰高度:火焰高度不同,其温度也不同;每一种火焰都有其自身的温度分布;一种元素在一种火焰中的不同火焰高度其吸光度值也不同;因此在火焰原子化法测定时要选择适合被测元素的火焰高度。

⒊原子吸收光谱法中的干扰有哪些?如何消除这些干扰?

一.物理干扰:指试样在转移、蒸发和原子化过程中,由于其物理特性的变化而引起吸光度下降的效应,是非选择性干扰。

消除方法:①稀释试样;②配制与被测试样组成相近的标准溶液;③采用标准化加入法。二.化学干扰:化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化,是选择性干扰,一般造成A下降。

消除方法:(1)选择合适的原子化方法:提高原子化温度,化学干扰会减小,在高温火焰中P043-不干扰钙的测定。

(2)加入释放剂(广泛应用)

(3)加入保护剂:EDTA、8—羟基喹啉等,即有强的络合作用,又易于被破坏掉。

(4)加基体改进剂

(5)分离法

三. 电离干扰:在高温下原子会电离使基态原子数减少, 吸收下降, 称电离干扰,造成A减少。负误差

消除方法:加入过量消电离剂。(所谓的消电离剂, 是电离电位较低的元素。加入时, 产生大量电子, 抑制被测元素电离。)

四. 光谱干扰:

吸收线重叠:

①非共振线干扰:多谱线元素--减小狭缝宽度或另选谱线

②谱线重叠干扰--选其它分析线

五.背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。(分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。背景干扰,一般使吸收值增加。产生正误差。)

消除方法:

⑴用邻近非共振线校正背景

⑵连续光源校正背景(氘灯扣背景)

⑶Zeaman 效应校正背景

⑷自吸效应校正背景

第3章紫外-可见分光光度法(P21)

3.1.5 影响紫外-可见光谱的因素:溶剂的影响

极性:水>甲醇>乙醇>丙酮>正丁醇>乙酸乙酯>乙醚>氯仿>二氯甲烷>苯>四氯化碳>己烷>石油醚

3.2 光的吸收定律

Lambert-Beer 定律:A =k c l = -lgT = lgI0 / I

l—cm,c--mol/L,

k 值称为摩尔吸光系数—ε(L·mol-1·cm-1)

A =εlc

3.4 分析条件的选择

单光束分光光度计特点:只有一条光束

单波长双光束分光光度计特点:在同一台仪器中使用两个完全相同的光束。

双波长分光光度计:不需要参比溶液

透光率读数的影响:

1、分子光谱是如何产生的?它与原子光谱的主要区别是什么?

分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现形式为带光谱

它与原子光谱的主要区别在于表现形式为带光谱。

(原子光谱是由原子外层或内层电子能级的变化产生的,它的表现形式为线光谱。)

2、试说明有机化合物紫外光谱产生的原因。机化合物紫外光谱的电子跃迁有哪几种类型?吸收带有哪几种类型?

有机化合物分子的价电子在吸收辐射并跃迁到高能级后所产生的吸收光谱。

机化合物紫外光谱电子跃迁常见的4种类型:σ→σ*,n→σ* ,π→π*,n→π*

①饱和有机化合物:σ→σ* 跃迁,n→σ*跃迁

②不饱和脂肪族化合物:π→π*,n→π*

③芳香族化合物:E1和E2带,B带

3、在分光光度法测定中,为什么尽可能选择最大吸收波长为测量波长?

因为选择最大吸收波长为测量波长,能保证测量有较高的灵敏度,且此处的曲线较为平坦,吸光系数变化不大,对beer定律的偏离较小。

4、在分光光度测量中,引起对Lambrt-Beer定律偏离的主要因素有哪些?如何克服这些因素对测量的影响?

偏离Lambert-Beer Law 的因素主要与样品和仪器有关。

(1)与测定样品溶液有关的因素

浓度:当l不变,c > 0.01M 时, Beer定律会发生偏离。

溶剂:当待测物与溶剂发生缔合、离解及溶剂化反应时,产生的生成物与待测物具有不同的吸收光谱,出现化学偏离。

光散射:当试样是胶体或有悬浮物时,入射光通过溶液后,有一部分光因散射而损失,使吸光度增大,Beer定律产生正偏差。

(2)与仪器有关的因素

单色光:Beer定律只适用于单色光,非绝对的单色光,有可能造成Beer定律偏离。

谱带宽度:当用一束吸光度随波长变化不大的复合光作为入射光进行测定时,吸光物质的吸光系数变化不大,对吸收定律所造成的偏离较小。

对应克服方法:

①c ≤0.01M

②避免使用会与待测物发生反应的溶剂

③避免试样是胶体或有悬浮物

④在保证一定光强的前提下,用尽可能窄的有效带宽宽度。

⑤选择吸光物质的最大吸收波长作为分析波长

5、极性溶剂为什么会使π→π*跃迁的吸收峰长移,却使n→π*跃迁的吸收峰短移?

溶剂极性不同会引起某些化合物吸收光谱的红移或蓝移,称溶剂效应。在π→π*跃迁中,激发态极性大于基态,当使用极性溶剂时,由于溶剂与溶质相互作用,激发态π*比基态π能量下降更多,因而使基态与激发态间能量差减小,导致吸收峰红移。在n→π*跃迁中,基态n电子与极性溶剂形成氢键,降低了基态能量,使激发态与基态间能量差增大,导致吸收峰蓝移。

第五章分子发光分析法(P88)

1.荧光和磷光的产生:具有不饱和基团的基态分子受光照后,价电子跃迁产生荧光和磷光。

2.激发光谱和发射光谱:

激发光谱:将激发光的光源用单色器分光,测定不同波长照射下所发射的荧光强度(F),以F做纵坐标,激发光波长λ做横坐标作图。激发光谱反映了激发光波长与荧光强度之间的关系。

发射光谱:固定激发光波长,让物质发射的荧光通过单色器,测定不同波长的荧光强度,以荧光强度F做纵坐标,荧光波长λ做横坐标作图。荧光光谱反映了发射的荧光波长与荧光强度的关系。

3. 荧光和分子结构的关系

发射荧光的物质应同时具备以下两个条件:

物质分子必须具有能够吸收紫外或可见光的结构,并且能产生π→π* 或n→π* 跃迁。

荧光物质必须有较大的荧光量子产率。

(1)跃迁类型:π→π*较n→π*跃迁的荧光效率高。

(2)共轭结构:凡是能提高π电子共轭度的结构,都会增大荧光强度,并使荧光光谱长移。(3)刚性平面:分子的刚性及共平面性越大,荧光量子产率就越大。

(4)取代基效应:在芳香化合物的芳香环上,给电子基团增强荧光,吸电子基团减弱荧光。荧光分析法的特点

优点:灵敏度高(提高激发光强度,可提高荧光强度),达ng/ml;选择性强(比较容易排除其它物质的干扰),重现性好;取样少。

缺点:许多物质本身不能发射荧光,因此,应用不够广泛。

荧光分析法与UV-Vis法的比较

相同点:都需要吸收紫外-可见光,产生电子能级跃迁。

不同点:

荧光法测定的是物质经紫外-可见光照射后发射出的荧光的强度(F);

UV-Vis法测定的是物质对紫外-可见光的吸收程度(A) ;

荧光法定量测定的灵敏度比UV-Vis法高。

1、名词解释:

单重态:当基态分子的电子都配对时,S = 0,多重性M=1,这样的电子能态称为单重态。单重电子激发态:当基态分子的成对电子吸收光能之后,被激发到某一激发态上。如果它的自旋方向不变,S=0,M=1,这时的激发态叫单重电子激发态。

三重态:若通过分子内部的一些能量转移,或能阶间的跨越,成对电子中的一个电子自旋方向倒转,使两个电子自旋方向相同而不配对,这时S=1,M=3,这种电子激发态称三重电子激发态(三重态)

系间跨越:指的是不同多重度状态间的一种无辐射跃迁过程。

振动弛豫:

内转换:指的是相同多重度等能态间的一种无辐射跃迁过程。

量子产率:也称荧光效率或量子效率,其值在0~1之间,它表示物质发射荧光的能力。

荧光猝灭:指荧光物质分子与溶剂分子或其他溶质分子相互作用引起荧光强度降低或荧光强

度与浓度不呈线性关系的现象。

重原子效应:

第4章红外吸收光谱法( IR ) P53

IR 与UV-Vis 的比较

相同点:都是分子吸收光谱。

不同点:

UV-Vis 是基于价电子能级跃迁而产生的电子光谱;主要用于样品的定量测定。

IR 则是分子振动或转动能级跃迁而产生的吸收光谱;主要用于有机化合物的定性分析和结构鉴定。

★4.2 基本原理

吸收峰由何引起?每个基团或化学键能产生几个吸收峰?都出现在什么位置?不同吸收峰为什么有强有弱?

物质分子产生红外吸收的基本条件

(1)分子吸收的辐射能与其能级跃迁所需能量相等;

(2)分子发生偶极距的变化(耦合作用)。

只有发生偶极矩变化的振动才能产生可观测的红外吸收光谱,称红外活性。

分子振动自由度:多原子分子的基本振动数目,也是基频吸收峰的数目。

为什么实际测得吸收峰数目远小于理论计算的振动自由度?

①没有偶极矩变化的振动不产生红外吸收,即非红外活性;

②相同频率的振动吸收重叠,即简并;

③仪器分辨率不够高;

④有些吸收带落在仪器检测范围之外。

4.2.5 分子振动频率(基团频率)

1.官能团具有特征频率

基团频率:不同分子中同一类型的基团振动频率非常相近,都在一较窄的频率区间出现吸收谱带,其频率称基团频率。

基团频率区(也称官能团区):在4000~1300cm-1 范围内的吸收峰,有一共同特点:既每一吸收峰都和一定的官能团相对应,因此称为基团频率区。在基团频率区,原则上每个吸收峰都可以找到归属。

主要基团的红外特征吸收峰(P59~63)(4000 ~400 cm-1 )

★1900~1200cm-1:双键伸缩振动区羰基(C=O):1650~1900cm–1。在羰基化合物中,此吸收一般为最强峰。

红外谱图解析顺序:先看官能团区,再看指纹区。

1. 产生红外吸收光谱的条件

2. 分子基本振动类型和振动自由度

3. 影响吸收峰强度的因素

4. 基团频率及谱图解析

5. 影响基团频率的因素

干涉仪:是FT-IR光谱仪的核心部件,作用是将复色光变为干涉光。

4.5 红外光谱法的应用

一、定性分析

已知物的鉴定--谱图比对,未知物结构的确定,收集试样的有关数据和资料,确定未知物的不饱和度(P71)

不饱和度有如下规律:

链状饱和脂肪族化合物不饱和度为0;

一个双键或一个环状结构的不饱和度为1;

一个三键或两个双键及脂环的不饱和度为2;

一个苯环的不饱和度为4。

二、定量分析

理论依据:朗伯-比尔定律

优点:

(1)有许多谱带可供选择,有利于排除干扰;

(2)气、液、固均可测定。

1.分子产生红外吸收的条件是什么?

(1)分子吸收的辐射能与其能级跃迁所需能量相等;

(2)分子发生偶极距的变化(耦合作用)。

2.何谓特征吸收峰?影响吸收峰强度的主要因素是什么?

能代表基团存在、并有较高强度的吸收谱带称基团频率,其所在位置称特征吸收峰。

①与分子跃迁概率有关,②与分子偶极距有关(P59)

3.红外谱图解析的三要素是什么?

红外谱图解析三要素:位置、强度、峰形。

4.解释名词:基团频率区指纹区相关峰

5.如何利用红外吸收光谱区别烷烃、烯烃、炔烃?

利用基团的红外特征吸收峰区别:

烷烃:饱和碳的C-H吸收峰< 3000cm –1,约3000~2800 cm –1

烯烃、炔烃:不饱和碳的C-H吸收峰> 3000cm-1,

C = C 双键:1600~1670cm–1

C≡C-叁键:2100~2260 cm–1

6.红外光谱法对试样有哪些要求?

(1)单一组分纯物质,纯度> 98%;

(2)样品中不含游离水;

(3)要选择合适的浓度和测试厚度。

7.简述振动光谱的特点以及它们在分析化学中的重要性。

优点:特征性强,可靠性高、样品测定范围广、用量少、测定速度快、操作简便、重现性好。局限性:有些物质不能产生红外吸收;有些物质不能用红外鉴别;

有些吸收峰,尤其是指纹峰不能全部指认;定量分析的灵敏度较低。

第十九章质谱法(P400)

思考题

2.质谱仪由哪几部分组成?各部分的作用是什么?(划出质谱仪的方框示意图)

进样系统:高效重复地将样品引到离子源中并且不能造成真空度的降低。

离子源:将进样系统引入的气态样品分子转化成离子。

质量分析器:依据不同方式,将样品离子按质荷比m/z分开。

检测器:检测来自质量分析器的离子流并转化成电信号。

显示系统:接收来自检测器的电信号并显示在屏幕上。

真空系统:保证质谱仪离子产生及经过的系统处于高真空状态。

3.离子源的作用是什么?试述EI(电子电离源)和CI(化学电离源)离子源的原理及特点。离子源:将进样系统引入的气态样品分子转化成离子。

EI(电子电离源)原理:失去电子

特点:电离效率高,灵敏度高;离子碎片多,有丰富的结构信息;有标准质谱图库;但常常没分子离子峰;只适用于易气化、热稳定的化合物。

CI(化学电离源)原理:离子加合

特点:准分子离子峰强, 可获得分子量信息;谱图简单;但不能进行谱库检索, 只适用于易气化、热稳定的化合物

4.为何质谱仪需要高真空?

质谱仪需要在高真空下工作:10-4 ~10 -6 Pa

①大量氧会烧坏离子源的灯丝;

②用作加速离子的几千伏高压会引起放电;

③引起额外的离子-分子反应,改变裂解模型,谱图复杂化;

④影响灵敏度。

5.四极杆质量分析器如何实现质谱图的全扫描分析和选择离子分析?

①当U/V维持一个定值时,某一U或V值对应只有一个离子能稳定通过四极杆;

②连续改变U或V值,可得到一张全扫描图,此谱图可用于定性;

③固定一个或多个U值,可得到高灵敏度的分析结果,此方法用于定量分析。

第十五章色谱法引论(P300)

2.按固定相外形不同色谱法是如何分类的?

是按色谱柱分类:

①平面色谱法:薄层色谱法、纸色谱法

②柱色谱法:填充柱法、毛细管柱色谱法

6.分配系数在色谱分析中的意义是什么?

①K值大的组分,在柱内移动的速度慢,滞留在固定相中的时间长,后流出柱子;

②分配系数是色谱分离的依据;

③柱温是影响分配系数的一个重要参数。

7.什么是选择因子?它表征的意义是什么?

是A,B两组分的调整保留时间的比值α= t’r(B)/t’r(A)>1

意义:表示两组分在给定柱子上的选择性,值越大说明柱子的选择性越好。

8.什么是分配比(即容量因子)?它表征的意义是什么?

是指在一定温度和压力下,组分在两相分配达到平衡时,分配在固定相和流动相的质量比。K=ms/mm

意义:是衡量色谱柱对被分离组分保留能力的重要参数;

同一色谱柱对不同物质的柱效能是不一样的

15.分离度可作为色谱柱的总分离效能指标。

第十六章气相色谱法(P318)

1.气相色谱法适合分析什么类型的样品?

适用范围:热稳定性好,沸点较低的有机及无机化合物分离。

2.哪类固定液在气相色谱法中最为常用?

硅氧烷类是目前应用最广泛的通用型固定液。(使用温度范围宽(50~350℃),硅氧烷类经不同的基团修饰可得到不同极性的固定相。)

3.气相色谱法固定相的选择原则?

相似相溶原则

①非极性试样选用非极性固定液,组分沸点低的先流出;

②极性试样选用极性固定液,极性小的先流出

③非极性和极性混合物试样一般选用极性固定液,非极性组分先出;

④能形成氢键的试样一般选择极性大或是氢键型的固定液,不易形成氢键的先流出。

6.气相色谱法各检测器适于分析的样品?

热导检测器:通用浓度型所有

氢火焰检测器:通用质量型含碳

电子捕获检测器:选择浓度型电负性

火焰光度检测器:选择质量型硫、磷

7.气相色谱法常用的定量分析方法有哪些?各方法的适用条件。(1)外标法

适用条件:对进样量的准确性控制要求较高;操作条件变化对结果准确性影响较大;操作简单,适用于大批量试样的快速分析。

(2)归一化法

适用条件:仅适用于试样中所有组分全出峰的情况;操作条件的变动对测定结果影响不大;归一化法简便、准确。

(3)内标法(内标标准曲线法)

适用条件:试样中所有组分不能全部出峰时;定量分析中只要求测定某一个或几个组分;样品前处理复杂

第17章高效液相色谱法(HPLC) P348

2、现代高效液相色谱法的特点:

(1)高效;(2)高压;(3)高速;(4)高灵敏度

3、色谱分离的实质:

色谱分离的实质是样品分子(即溶质)与溶剂(即流动相或洗脱液)以及固定相分子间的作用,作用力的大小,决定色谱过程的保留行为。

5、高压输液泵

性能:⑴足够的输出压力

⑵输出恒定的流量

⑶输出流动相的流量范围可调节

⑷压力平稳,脉动小

6、在线脱气装置

在线脱气、超声脱气、真空脱气等

作用:脱去流动相中的溶解气体。流动相先经过脱气装置再输送到色谱柱。

脱气不好时有气泡,导致流动相流速不稳定,造成基线飘移,噪音增加。

7、梯度洗脱装置

以一定速度改变多种溶剂的配比淋洗,目的是分离多组容量因子相差较大的组分。

作用:缩短分析时间,提高分离度,改善峰形,提高监测灵敏度

8、影响分离的因素

影响分离的主要因素有流动相的流量、性质和极性。

9、选择流动相时应注意的几个问题:

(1)尽量使用高纯度试剂作流动相。

(2)避免流动相与固定相发生作用而使柱效下降或损坏柱子。

(3)试样在流动相中应有适宜的溶解度。

(4)流动相同时还应满足检测器的要求。

10、提高柱效的方法(降低板高):

①固定相填料要均一,颗粒细,装填均匀。

②流动相粘度低。

③低流速。

④适当升高柱温。

11、固定相的选择:

液相色谱的固定相可以是吸附剂、化学键合固定相(或在惰性载体表面涂上一层液膜)、离子交换树脂或多孔性凝胶;流动相是各种溶剂。被分离混合物由流动相液体推动进入色谱柱。根据各组分在固定相及流动相中的吸附能力、分配系数、离子交换作用或分子尺寸大小的差异进行分离。

12、高效液相色谱法的分离机理及分类

类型主要分离机理

吸附色谱吸附能,氢键

分配色谱疏水分配作用

尺寸排斥色谱溶质分子大小

离子交换色谱库仑力

13、反相色谱的优点

易调节k或a

易分离非离子化合物,离子化合物和可电离化合物

流动相便宜

可预言洗脱顺序

适宜梯度洗脱

第十章电分析化学引论(P218)

4、盐桥:

组成和特点:高浓度电解质溶液

正负离子迁移速度差不多

(饱和KCl溶液+3%琼脂所成凝胶)

盐桥的作用:

1)防止两种电解质溶液混和,消除液接电位,确保准确测定。

2)提供离子迁移通道(传递电子)。

5、被测电极的电极电位:以标准氢电极为负极,被测电极为正极组成电池,所测电池的电动势。

6、指示电极和参比电极应用:

测得电动势计算出待测离子的活度或浓度;主要用于测定过程中溶液本体浓度不发生变化的体系。

7、金属︱金属离子电极

(银、铜、锌、汞)√

(铁、钴、镍、铬)×

8、参比电极—甘汞电极:

特点:

a.制作简单、应用广泛;

b.使用温度较低且受温度影响较大;

c.当温度改变时,电极电位平衡时间较长;

d.Hg (Ⅱ)可与一些离子发生反应。

11、膜电极:

特点(区别以上三种——第一、二和三类电极):

1)无电子转移,靠离子扩散和离子交换生膜电位

2)对特定离子具有响应,选择性好

12、中性载体膜电极:

中性载体:电中性、具有中心空腔的紧密结构的大分子化合物。例如:颉氨霉素、抗生素、冠醚等;典型组成为:离子载体1%,非极性溶剂66%,PVC33%

13、酶电极:指示电极表面覆盖了一层酶活性物质,发生酶的催化反应。

应用:选择性相当高,用于有机及生物物质分析

缺点:酶的精制困难,且寿命较短

14、直接电位法的优点:

(1)设备简单、操作方便;

(2)电极响应快,直接显示离子的浓度;

(3)样品不需预处理;

(4)用于微量分析;

(5)实现连续和自动分析。

15、直接电位法的缺点:

(1)误差较大;

(2)电极的选择性不理想;

(3)电极的品种少;

(4)重现性差。

16、电位滴定法:利用电极电位的突跃指示滴定终点的滴定分析方法。关键:选择指示电极比较AAS与UV—VIS的异同。

相同点都是光谱的类型,实质也都是吸收光谱。

但是AAS是包含了紫外和可见波段,通过锐线光源发射特定波长的光,让物质吸收。UV —VIS是用氘灯或是钨灯发射连续波长的光,其中某个波长被待测物吸收。

AAS:原子光谱,线光谱UV—VIS:分子光谱,带光谱

1. 根据所学仪器分析方法,分析下列对象:(1)鱼肉中的Hg(~x ug/mL);(2) 废水中Fe、Mn、Al、Ni、Co、Cr(10-6~10-3);(3) 电厂用水中离子含量;(4)生物体中的电化学过程研究;(5) 萘和甲基萘;(6) 喹啉和异喹啉;(7)水果中的残留有机磷农药。

1. (1)冷原子蒸气法;(2)ICP-AES;(3)电导分析法或离子交换法;(4)伏安法;(5)液液相色谱或气液分配色谱;(6)液固色谱;(7)气相色谱—火焰光度检测器

高考理综化学知识点归纳整理

1 高中化学所有知识点整理 一.中学化学实验操作中的七原则 掌握下列七个有关操作顺序的原则,就可以正确解答“实验程序判断题”。 1.“从下往上”原则。以Cl2实验室制法为例,装配发生装置顺序是:放好铁架台→摆好酒精灯→根据酒精灯位置固定好铁圈→石棉网→固定好圆底烧瓶。 2.“从左到右”原则。装配复杂装置应遵循从左到右顺序。如上装置装配顺序为:发生装置→集气瓶→烧杯。 3.先“塞”后“定”原则。带导管的塞子在烧瓶固定前塞好,以免烧瓶固定后因不宜用力而塞不紧或因用力过猛而损坏仪器。 4.“固体先放”原则。上例中,烧瓶内试剂MnO2应在烧瓶固定前装入,以免固体放入时损坏烧瓶。总之固体试剂应在固定前加入相应容器中。 5.“液体后加”原则。液体药品在烧瓶固定后加入。如上例中浓盐酸应在烧瓶固定后在分液漏斗中缓慢加入。 6.先验气密性(装入药口前进行)原则。 7.后点酒精灯(所有装置装完后再点酒精灯)原则。 二.中学化学实验中温度计的使用分哪三种情况以及哪些实验需要温度计 1.测反应混合物的温度:这种类型的实验需要测出反应混合物的准确温度,因此,应将温度计插入混合物中间。 ①测物质溶解度。②实验室制乙烯。 2.测蒸气的温度:这种类型的实验,多用于测量物质的沸点,由于液体在沸腾时,液体和蒸气的温度相同,所以只要测蒸气的温度。①实验室蒸馏石油。②测定乙醇的沸点。 3.测水浴温度:这种类型的实验,往往只要使反应物的温度保持相对稳定,所以利用水浴加热,温度计则插入水浴中。 ①温度对反应速率影响的反应。②苯的硝化反应。 三.常见的需要塞入棉花的实验有哪些 需要塞入少量棉花的实验: 热KMnO4制氧气 制乙炔和收集NH3 其作用分别是:防止KMnO4粉末进入导管;防止实验中产生的泡沫涌入导管;防止氨气与空气对流,以缩短收集NH3的时间。 四.常见物质分离提纯的10种方法 1.结晶和重结晶:利用物质在溶液中溶解度随温度变化较大,如NaCl,KNO3。

武汉大学版仪器分析知识点总结(适用考中科院的同学)

第一部分:AES,AAS,AFS AES原子发射光谱法是根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素进行定性和定量测定的分析方法。 特点: 1.灵敏度和准确度较高 2.选择性好,分析速度快 3.试样用量少,测定元素范围广 4.局限性 (1)样品的组成对分析结果的影响比较显著。因此,进行定量分析时,常常需要配制一套与试样组成相仿的标准样品,这就限制了该分析方法的灵敏度、准确度和分析速度等的提高。 (2)发射光谱法,一般只用于元素分析,而不能用来确定元素在样品中存在的化合物状态,更不能用来测定有机化合物的基团;对一些非金属,如惰性气体、卤素等元素几乎无法分析。 (3)仪器设备比较复杂、昂贵。 术语: 自吸 自蚀 ?击穿电压:使电极间击穿而发生自持放电的最小电压。 ?自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电离,使放电持续。 ?燃烧电压:自持放电发生后,为了维持放电所必需的电压。 由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。 仪器: 光源的作用: 蒸发、解离、原子化、激发、跃迁。 光源的影响:检出限、精密度和准确度。 光源的类型: 直流电弧 交流电弧 电火花 电感耦合等离子体(ICP)

ICP 原理 当高频发生器接通电源后,高频电流I 通过感应线圈产生交变磁场(绿色)。 开始时,管内为Ar 气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP-AES 法特点 1.具有好的检出限。溶液光谱分析一般列素检出限都有很低。 2.ICP 稳定性好,精密度高,相对标准偏差约1%。 3.基体效应小。 4.光谱背景小。 5.准确度高,相对误差为1%,干扰少。 6.自吸效应小 进样: 溶液试样 气动雾化器 超声雾化器 超声雾化器:不连续的信号 气体试样可直接引入激发源进行分析。有些元素可以转变成其相应的挥发性化合物而采用气体发生进样(如氢化物发生法)。 例如砷、锑、铋、锗、锡、铅、硒和碲等元素。 固体试样 (1). 试样直接插入进样 (2). 电弧和火花熔融法 (3). 电热蒸发进样 (4). 激光熔融法 分光仪棱镜和光栅 检测器:目视法,摄谱法,光电法 干扰: 光源 蒸发温度 激发温度/K 放电稳定性 应用范围 直流电弧 高 4000~7000 较差 定性分析,矿物、纯物质、 难挥发元素的定量分析 交流电弧 中 4000~7000 较好 试样中低含量组分的定量分析 火花 低 瞬间10000 好 金属与合金、难激发元素的定量分析 ICP 很高 6000~8000 最好 溶液的定量分析

初三化学知识点总结归纳(完整版)

并不同意这一种说法,第一,按照当时项羽和刘邦两军兵力对比.项羽在解赵国之围后,收编了其他诸侯国的军队,兵力达到40万,而刘邦虽然占据了咸阳城,但是兵力只有10万,而且由刘邦军队把守着的函谷关已经被项羽攻破,可以讲,项羽消灭刘邦是指日可待.所以,鸿门宴,并不是唯一一次消灭刘邦的机会.第二,鸿门宴的出现的原因.由于当时项羽来到鸿门后,听到刘邦一个下属讲刘邦准备据关中为王,一怒之下便决定对刘邦发动一场军事行动,其实就是打击报复刘邦.但是由于项羽集团里面,一个人的出现,项伯.他和张良是老朋友.所以当他得知项羽要攻打刘邦时,连夜偷偷地跑到张良那里(当时张良跟随在刘邦的身边),叫张良快跑.而张良,则和刘邦在项伯面前演了一出戏,让刘邦在项伯面前诉冤,并告诉项伯,刘邦很希望化解这段误会,自己亲自到鸿门向项羽赔罪.而项伯这个糊涂虫,回去后把刘邦的”冤“告诉了项羽,项羽一听心软了,居然取消了第二天对刘邦的军事行动,从而催生了鸿门宴.第三,鸿门宴上的刺杀行动.此次刺杀行动的主谋,便是项羽手下谋士范增,此事还得到项羽的默许.当刘邦一见到项羽时,便对项羽大拍马屁,让项羽的虚荣心和骄傲得到最大的满足,此时的项羽居然还对刘邦有一点点悔意,压根就没有想过要刺杀刘邦.在宴席上,范增频频发出暗号示意项羽杀死刘邦,但是项羽却“不忍心”杀掉刘邦,而在项伯和樊哙的掩护下,项羽对刘邦的“悔意”越加严重.最后刘邦丢下张良和二百多随从,只带着四员大将,在陈平的协助下偷偷地逃出项羽的军营,回到自己的驻地灞上,从而结束了鸿门宴.所以,鸿门宴对于刘邦集团而言,是化解项羽对他的一场迫在眉睫的军事行动,而采取的一种妥协的行为,在项伯,张良和樊哙的精彩演出下,这场戏演的非常成功.而对项羽

仪器分析复习资料整理

第二章气相色谱分析 1、气相色谱仪的基本设备包括哪几部分?各有什么作用? 载气系统(气路系统) 进样系统: 色谱柱和柱箱(分离系统)包括温度控制系统(温控系统): 检测系统: 记录及数据处理系统(检测和记录系统): 2、当下列参数改变时,是否会引起分配系数的改变?为什么? (1)柱长缩短, 不会(分配比,分配系数都不变) (2)固定相改变, 会 (3)流动相流速增加, 不会 (4)相比减少, 不会 当下列参数改变时:,是否会引起分配比的变化?为什么? (1)柱长增加, 不会 (2)固定相量增加, 变大 (3)流动相流速减小, 不会 (4)相比增大, 变小 答: k=K/b(b记为相比),而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关. 3、试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些 因素的影响? A、涡流扩散项:气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成 类似“涡流”的流动,因而引起色谱的扩张。由于A=2λdp ,表明 A 与填充物的平均颗粒直径 dp 的大小和填充的不均匀性λ 有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 B、分子扩散项:由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很 小一段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产生纵向扩散。而 B=2rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质量较大的载气( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 C、传质阻力项:传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两 项。所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。对于填充柱: 液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交换,达到分配平衡,然后以返回气液界面的传质过程。这个过程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩张。液相传质阻力系数 C 1 为: 对于填充柱,气相传质项数值小,可以忽略。 在色谱分析中,理论塔板数与有效理论塔板数的区别就在于前者___没有考虑死时间(死

中考化学知识点汇总人教版

中考化学知识点汇总人教版 中考化学知识点总结 第1单元《走进化学世界》知识点 1、化学是研究物质的组成、结构、性质以及变化规律的基础科学。 2、物理变化和化学变化的本质区别:有无新物质生成 变化和性质的区别:性质中有“能”“可以”“容易”等字眼 3、绿色化学环境友好化学 (化合反应符合绿色化学反应) ①四特点P6(原料、条件、零排放、产品)②核心:利用化学原理从源头消除污染 4、蜡烛燃烧实验(描述现象时不可出现产物名称) (1)火焰:焰心、内焰(最明亮)、外焰(温度最高) (2)比较各火焰层温度:用一火柴梗平放入火焰中。现象:两端先碳化;结论:外焰温度最高 (3)检验产物 H2O:用干冷烧杯罩火焰上方,烧杯内有水雾 2:取下烧杯,倒入澄清石灰水,振荡,变浑浊 (4)熄灭后:有白烟(为石蜡蒸气),点燃白烟,蜡烛复燃 5、吸入空气及呼出气体的比较 结论:及吸入空气相比,呼出气体中O2的量减少,2和H2O的量增多(吸入空气及呼出气体成分是相同的) 6、学习化学的重要途径——科学探究 一般步骤:提出问题→猜想及假设→设计实验→实验验证→记录及结论→反思及评价 化学学习的特点:关注物质的性质、变化、变化过程及其现象; 7、化学实验(化学是一门以实验为基础的科学) 一、常用仪器及使用方法

(一)可以直接加热的仪器是--试管、蒸发皿、燃烧匙坩埚 只能间接加热的仪器是--烧杯、烧瓶、锥形瓶(垫石棉网—受热均匀)(二)测容器--量筒 量取液体体积时,量筒必须放平稳。 视线及刻度线及量筒内液体凹液面的最低点保持水平。 量筒不能用来加热,不能用作反应容器。量程为10毫升的量筒,一般只能读到0.1毫升。 选择合适的量程:所测液体不能超过量程,也不能比量程太小为宜 (三)称量器--托盘天平(用于粗略的称量,一般能精确到0.1克。) 注意点:(1)先调整零点 (2)称量物和砝码的位置为“左物右码”。 (3)称量物不能直接放在托盘上。 一般药品称量时,在两边托盘中各放一张大小、质量相同的纸,在纸上 称量。潮湿的或具有腐蚀性的药品(如氢氧化钠),放在加盖的玻璃器皿 (如小烧杯、表面皿)中称量。 (4)砝码用镊子夹取。添加砝码时,先加质量大的砝码,后加质量小的砝码(先大后小) (5)称量结束后,应使游码归零。砝码放回砝码盒。 (四)加热器皿--酒精灯 (1)酒精灯的使用要注意“三不”:①不可向燃着的酒精灯内添加酒精;②用火柴从侧面点燃酒精灯,不可用燃着的酒精灯直接点燃另一盏酒精灯;③熄灭酒精灯应用灯帽盖熄,不可吹熄。 (2)酒精灯内的酒精量不可超过酒精灯容积的2/3也不应少于1/4。 (3)酒精灯的火焰分为三层,外焰、内焰、焰心。用酒精灯的外焰加热物体。

高考化学重要知识点详细全总结

高 中 化 学 重 要 知 识 点 一、俗名 无机部分: 纯碱、苏打、天然碱、口碱:Na2CO3小苏打:NaHCO3大苏打:Na2S2O3石膏(生石膏):CaSO4.2H2O 熟石膏:2CaSO4·.H2O 莹石:CaF2重晶石:BaSO4(无毒)碳铵:NH4HCO3 石灰石、大理石:CaCO3生石灰:CaO 食盐:NaCl 熟石灰、消石灰:Ca(OH)2芒硝:Na2SO4·7H2O (缓泻剂) 烧碱、火碱、苛性钠:NaOH 绿矾:FaSO4·7H2O 干冰:CO2明矾:KAl (SO4)2·12H2O 漂白粉:Ca (ClO)2、CaCl2(混和物)泻盐:MgSO4·7H2O 胆矾、蓝矾:CuSO4·5H2O 双氧水:H2O2皓矾:ZnSO4·7H2O 硅石、石英:SiO2刚玉:Al2O3 水玻璃、泡花碱、矿物胶:Na2SiO3铁红、铁矿:Fe2O3磁铁矿:Fe3O4黄铁矿、硫铁矿:FeS2铜绿、孔雀石:Cu2 (OH)2CO3菱铁矿:FeCO3赤铜矿:Cu2O 波尔多液:Ca (OH)2

和CuSO4石硫合剂:Ca (OH)2和S 玻璃的主要成分:Na2SiO3、CaSiO3、SiO2过磷酸钙(主要成分):Ca (H2PO4)2和CaSO4重过磷酸钙(主要成分):Ca (H2PO4)2天然气、沼气、坑气(主要成分):CH4水煤气:CO和H2硫酸亚铁铵(淡蓝绿色):Fe (NH4)2 (SO4)2溶于水后呈淡绿色 光化学烟雾:NO2在光照下产生的一种有毒气体王水:浓HNO3与浓HCl按体积比1:3混合而成。 铝热剂:Al + Fe2O3或其它氧化物。尿素:CO(NH2) 2 有机部分: 氯仿:CHCl3电石:CaC2电石气:C2H2 (乙炔) TNT:三硝基甲苯酒精、乙醇:C2H5OH 氟氯烃:是良好的制冷剂,有毒,但破坏O3层。醋酸:冰醋酸、食醋CH3COOH 裂解气成分(石油裂化):烯烃、烷烃、炔烃、H2S、CO2、CO等。甘油、丙三醇:C3H8O3 焦炉气成分(煤干馏):H2、CH4、乙烯、CO等。石炭酸:苯酚蚁醛:甲醛HCHO 福尔马林:35%—40%的甲醛水溶液蚁酸:甲酸HCOOH 葡萄糖:C6H12O6果糖:C6H12O6蔗糖:C12H22O11麦芽糖:C12H22O11淀粉:(C6H10O5)n 硬脂酸:C17H35COOH 油酸:C17H33COOH 软脂酸:C15H31COOH 草酸:乙二酸HOOC—COOH 使蓝墨水褪色,强酸性,受热分解成CO2和水,使KMnO4酸性溶液褪色。 二、颜色 铁:铁粉是黑色的;一整块的固体铁是银白色的。Fe2+——浅绿色Fe3O4——黑色晶体Fe(OH)2——白色沉淀Fe3+——黄色Fe (OH)3——红褐色沉淀Fe (SCN)3——血红色溶液 FeO——黑色的粉末Fe (NH4)2(SO4)2——淡蓝绿色Fe2O3——红棕色粉末FeS——黑色固体 铜:单质是紫红色Cu2+——蓝色CuO——黑色Cu2O——红色CuSO4(无水)—白色CuSO4·5H2O ——蓝色Cu2 (OH)2CO3—绿色Cu(OH)2——蓝色[Cu(NH3)4]SO4——深蓝色溶液 BaSO4、BaCO3、Ag2CO3、CaCO3、AgCl 、Mg (OH)2、三溴苯酚均是白色沉淀 Al(OH)3白色絮状沉淀H4SiO4(原硅酸)白色胶状沉淀 Cl2、氯水——黄绿色F2——淡黄绿色气体Br2——深红棕色液体I2——紫黑色固体 HF、HCl、HBr、HI均为无色气体,在空气中均形成白雾 CCl4——无色的液体,密度大于水,与水不互溶KMnO4--——紫色MnO4-——紫色 Na2O2—淡黄色固体Ag3PO4—黄色沉淀S—黄色固体AgBr—浅黄色沉淀 AgI—黄色沉淀O3—淡蓝色气体SO2—无色,有剌激性气味、有毒的气体 SO3—无色固体(沸点44.8 0C)品红溶液——红色氢氟酸:HF——腐蚀玻璃 N2O4、NO——无色气体NO2——红棕色气体NH3——无色、有剌激性气味气体 三、现象: 1、铝片与盐酸反应是放热的,Ba(OH)2与NH4Cl反应是吸热的; 2、Na与H2O(放有酚酞)反应,熔化、浮于水面、转动、有气体放出;(熔、浮、游、嘶、红) 3、焰色反应:Na 黄色、K紫色(透过蓝色的钴玻璃)、Cu 绿色、Ca砖红、Na+(黄色)、K+(紫色)。 4、Cu丝在Cl2中燃烧产生棕色的烟; 5、H2在Cl2中燃烧是苍白色的火焰; 6、Na在Cl2中燃烧产生大量的白烟; 7、P在Cl2中燃烧产生大量的白色烟雾; 8、SO2通入品红溶液先褪色,加热后恢复原色; 9、NH3与HCl相遇产生大量的白烟;10、铝箔在氧气中激烈燃烧产生刺眼的白光; 11、镁条在空气中燃烧产生刺眼白光,在CO2中燃烧生成白色粉末(MgO),产生黑烟; 12、铁丝在Cl2中燃烧,产生棕色的烟;13、HF腐蚀玻璃:4HF + SiO2 =SiF4 + 2H2O 14、Fe(OH)2在空气中被氧化:由白色变为灰绿最后变为红褐色; 15、在常温下:Fe、Al 在浓H2SO4和浓HNO3中钝化; 16、向盛有苯酚溶液的试管中滴入FeCl3溶液,溶液呈紫色;苯酚遇空气呈粉红色。 17、蛋白质遇浓HNO3变黄,被灼烧时有烧焦羽毛气味; 18、在空气中燃烧:S——微弱的淡蓝色火焰H2——淡蓝色火焰H2S——淡蓝色火焰 CO——蓝色火焰CH4——明亮并呈蓝色的火焰S在O2中燃烧——明亮的蓝紫色火焰。 19.特征反应现象: 20.浅黄色固体:S或Na2O2或AgBr 21.使品红溶液褪色的气体:SO2(加热后又恢复红色)、Cl2(加热后不恢复红色) 22.有色溶液:Fe2+(浅绿色)、Fe3+(黄色)、Cu2+(蓝色)、MnO4-(紫色) 有色固体:红色(Cu、Cu2O、Fe2O3)、红褐色[Fe(OH)3] 黑色(CuO、FeO、FeS、CuS、Ag2S、PbS)蓝色[Cu(OH)2] 黄色(AgI、Ag3PO4)白色[Fe(0H)2、CaCO3、BaSO4、AgCl、BaSO3] 有色气体:Cl2(黄绿色)、NO2(红棕色) 四、考试中经常用到的规律:

(完整版)仪器分析知识点整理..

教学内容 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a. 若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一致性。 b. 被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c. 分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d. 分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合适。 e. 内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条非自吸谱线作为内标线,两条谱线构成定量分析线对。 通常为什么不用原子吸收光谱法进行物质的定性分析? 答:原子吸收光谱法是定量测量某一物质含量的仪器,是定量分析用的,不能将物质分离,因此不能鉴定物质的性质,因此不能。。。。 原子吸收光谱法,采用峰值吸收进行定量分析的条件和依据是什么? 为了使通过原子蒸气的发射线特征(极大)频率恰好能与吸收线的特征(极大)频率相一致,通常用待测元素的纯物质作为锐线光源的阴极,使其产生发射,这样发射物质与吸收物质为同一物质,产生的发射线与吸收线特征频率完全相同,可以实现峰值吸收。 朗伯比尔定律的物理意义是什么?偏离朗伯比尔定律的原因主要有哪些? 物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。A=kcL 偏离的原因是:1入射光并非完全意义上的单色光而是复合光。2溶液的不均匀性,如部分入射光因为散射而损失。3溶液中发生了如解离、缔合、配位等化学变化。 影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素有自然宽度Δf N、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。 原子吸收光谱法,采用极大吸收进行定量的条件和依据是什么? 答:原子吸收光谱法,采用极大吸收进行定量的条件:①光源发射线的半宽度应小于吸收线半宽度;②通过原子蒸气的发射线中心频率恰好与吸收线的中心频率ν0相重合。定量的依据:A=Kc 原子吸收光谱仪主要由哪几部分组成?各有何作用? 答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。

中考必背化学知识点总结归纳

初中化学知识点总结 1、常见元素、原子图化合价口诀 正一氢锂钠钾银铵根;负一氟氯溴碘氢氧根;二价氧钙镁钡锌;三铝四硅五价磷;二三铁、二四碳,二四六硫都齐全;锰有二四六和七,铜汞二价最常见,单质为0永不变;酸根负,一价硝酸根,二价硫酸碳酸根,三价就是磷酸根。 一些常见元素、原子团(根)的化合价 2、初中常见物质的化学式

) 白色沉淀:CaCO3、BaCO3、Mg(OH)2、Al(OH)3、Zn(OH)2、AgCl、BaSO4(其中仅BaSO4、AgCl是不溶于HNO3的白色沉淀)微溶于水:Ca(OH)2、CaSO4、Ag2SO4 3、物质的学名、俗名及化学式 (1)金刚石、石墨:C (2)水银、汞:Hg (3)生石灰、氧化钙:CaO (4)干冰(固体二氧化碳):CO2 (5))盐酸、氢氯酸:HCl (6)亚硫酸:H2SO3 S (7)氢硫酸:H 2 (8)熟石灰、消石灰:Ca(OH)2 (9)苛性钠、火碱、烧碱:NaOH (10)纯碱、苏打:Na2CO3碳酸钠晶体、纯碱晶体:Na2CO3?10H2O (11)碳酸氢钠、酸式碳酸钠、小苏打:NaHCO3 (12)胆矾、蓝矾、硫酸铜晶体:CuSO4?5H2O (13)铜绿、孔雀石:Cu2(OH)2CO3(分解生成三种氧化物的物质) (14)甲醇(有毒、误食造成失明甚至死亡):CH3OH (15)酒精、乙醇:C2H5OH (16)醋酸、乙酸(具有酸的通性)CH3COOH(CH3COO—醋酸根离子) (17)氨气:NH3(碱性气体) (18)氨水、一水合氨:NH3?H2O(为常见的碱,具有碱的通性,是一种不含金 属离子的碱) (19)亚硝酸钠:NaNO2 (工业用盐、有毒) 4、常见物质的颜色 (1)固体物质颜色 A 、白色固体:氧化钙、氢氧化钙、碳酸钠、碳酸钙、氢氧化钠、五 氧化二磷、白磷、氧化镁、氯酸钾、氯化钾、氯化钠、 B、黄色固体:硫粉(S) C、红色固体:红磷(P)、氧化铁、铜(Cu)、氧化汞(HgO) .5H2O D、蓝色固体:胆矾CuSO 4 E、黑色固体:木炭、石墨、氧化铜、二氧化锰、四氧化三铁、铁粉、 F 、绿色固体:碱式碳酸铜Cu2(OH)2CO3、锰酸钾K2MnO4 G、紫黑色固体:高锰酸钾 H、无色固体:冰,干冰,金刚石 I 、银白色固体:银、铁、镁、铝、锌等金属。

高中高考化学知识点总结

高中高考化学知识点总结 高中高考化学知识点总结化学是一门历史悠久而又富有活力的学科,与人类进步和社会发展的关系非常密切,它的成就是社会文明的重要标志。以下是为你整理的全国高考化学知识点的总结和归纳,希望能帮到你。 低价态的还原性 2SO2 + O2 === 2SO3 2SO2 + O2 + 2H2O === 2H2SO4 (这是SO2在大气中缓慢发生的环境化学反应) SO2 + Cl2 + 2H2O === H2SO4 + 2HCl SO2 + Br2 + 2H2O === H2SO4 + 2HBr SO2 + I2 + 2H2O === H2SO4 + 2HI SO2 + NO2 === SO3 + NO 2NO + O2 === 2NO2 NO + NO2 + 2NaOH === 2NaNO2 (用于制硝酸工业中吸收尾气中的NO和NO2) 2CO + O2 === 2CO2 CO + CuO === Cu + CO2 3CO + Fe2O3 === 2Fe + 3CO2 CO + H2O === CO2 + H2 2020高考化学必考知识点总结:氧化性 SO2 + 2H2S === 3S + 2H2O SO3 + 2KI === K2SO3 + I2

NO2 + 2KI + H2O === NO + I2 + 2KOH (不能用淀粉KI溶液鉴别溴蒸气和NO2) 4NO2 + H2S === 4NO + SO3 + H2O 2NO2 + Cu === 4CuO + N2 CO2 + 2Mg === 2MgO + C (CO2不能用于扑灭由Mg、Ca、Ba、Na、K等燃烧的火灾) SiO2 + 2H2 === Si + 2H2O SiO2 + 2Mg === 2MgO + Si 2020高考化学必考知识点总结:与水的作用 SO2 + H2O === H2SO3 SO3 + H2O === H2SO4 3NO2 + H2O === 2HNO3 + NO N2O5 + H2O === 2HNO3 P2O5 + H2O === 2HPO3 P2O5 + 3H2O === 2H3PO4 (P2O5极易吸水、可作气体干燥剂 P2O5 + 3H2SO4(浓)=== 2H3PO4 + 3SO3) CO2 + H2O === H2CO3高考化学知识点大全1.碱金属元素原子半径越大,熔点越高,单质的活泼性越大 错误,熔点随着原子半径增大而递减 2.硫与白磷皆易溶于二硫化碳、四氯化碳等有机溶剂,有机酸则较难溶于水 3.在硫酸铜饱和溶液中加入足量浓硫酸产生蓝色固体

仪器分析知识总结(改进版)

仪器分析复习资料(改进版) 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 校准曲线包括工作曲线和标准曲线: 工作曲线:配置4到6个不同浓度的标准溶液,加入与实际样品类似的基体中制成加标模拟样品采用和实际样品相同的分析方法测定(经过预处理的),以加标模拟样品的浓度为横坐标,响应信号为纵坐标绘制的标准曲线。 没有经过预处理的为标准曲线 标准参考物质法:取与待测试样相似的一定量标准参考物质,在规定的实验条件下进行检测根据测量值与给定的标准参考量值计算相对误差,越小越准确。 加标回收法:没有标准参考物质的条件下,向样品中加入一定量的被测成分的纯物质或者已知量的标准物质,两份试样同时按照相同的分析步骤加标的一份所得结果减去未加标的一份,差值同标准物质的理论值只比即加标回收率。(越接近100%越好) 注意事项:加标物质不能过多,一般为测量物含量的0.5-2.0倍,加标后的总含量不应超过方法测定的总含量。加标物质的浓度应该高,体积小,不超过原始试样体积的1% 标准方法比较法:和国标(已知方法)得到的结果比较。至少设计9组,分浓度的高,中,低三个浓度。 线性:被测物信号值与试样中被测物浓度直接呈正比关系的程度 线性范围:待测物质的浓度或量和测量信号值呈线性关系的浓度或者量的范围。(从测定的最低浓度扩展到校正曲线偏离线性浓度的范围。) ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv 的关系时,将产生吸收光谱。M+hv→M* 发射光谱:物质通过激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或某态时产生发射光谱。M*→M+hv 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 第6章原子吸收光谱法(P130) 1、定义:它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。 原子吸收光谱位于光谱的紫外区和可见区。 优点:灵敏度高,准确度高,选择性好,分析速度块,试样用量少,应用范围光 缺点:换等频率频繁,不可同时测定多个元素,对于难溶解元素有困难。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): 自然宽度:由原子本身性质引起,在无外界因素影响情况下谱线仍有一定宽度,这种宽度为自然宽度△VN ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 4、对原子化器的基本要求:①使试样有效原子化;②使自由状态基态原子有效地产生吸收; ③具有良好的稳定性和重现形;④操作简单及低的干扰水平等。 锐线光源:指发射线的半宽度比吸收线半宽度窄得多,且发射中心频率与吸收线中心频率相一致的光源。 石墨炉原子化法的过程:干燥,灰化,原子化,净化 1.测量条件选择 ⑴分析线:一般用共振吸收线。 ⑵狭缝光度:W=DS没有干扰情况下,尽量增加W,增强辐射能。 ⑶灯电流:按灯制造说明书要求使用 ⑷原子条件:燃气:助燃气、燃烧器高度石墨炉各阶段电流值 ⑸进样量:(主要指非火焰方法) 2.分析方法 (1).工作曲线法 最佳吸光度0.1---0.5,工作曲线弯曲原因:各种干扰效应。 ⑵. 标准加入法 标准加入法能消除基体干扰,不能消背景干扰。使用时,注意要扣除背景干扰。 Boltman分布定律:(Nj,N0分别代表单位体积内激发态原子数和基态原子数)1,Nj/N0值温度越高,比值越大2,在同一温度下,不同元素电子跃迁的能级Ej值越小,共振波长越长,比值越大。 习题 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶.压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起

高考化学知识点归纳总结

高考化学知识点归纳总结 氧气 【常考点】①性质:(物理性质)通常情况下,氧气是一种无色无味的气体,密度比空气密度略大,不易溶于水。一定条件下,可液化成淡蓝色液体或固化成淡蓝色固体。(化学性质)氧气的化学性质比较活泼,是一種常见的氧化剂。 ②常见制法:加热高锰酸钾;过氧化氢(双氧水)分解,二氧化锰催化;加热氯酸钾,二氧化锰催化。实验室制取氧气时,需要从药品、反应原理、制取装置、收集装置、操作步骤、检测方法等多方面考虑。 氯气 【常考点】①性质:(化学性质)氯气在常温常压下为黄绿色,是有强烈刺激性气味的有毒气体,密度比空气大,可溶于水,易压缩,可液化为金黄色液态氯,可作为强氧化剂。 ②常见制法:二氧化锰与浓盐酸共热;高锰酸钾与稀盐酸反应;氧气通入浓盐酸的饱和食盐溶液制备氯气。实验室制取氯气时,需要了解氯气的验满方法,还需要了解在制取氯气时尾气的处理。 电解质与非电解质 【常考点】①概念:电解质是在水溶液或熔融状态下能导电的化合物,如酸、碱、盐、金属氧化物等:非电解质是在水溶液或熔融状态下不能导电的化合物,如有机物、非金属氧化物等。 ②性质:电解质和非电解质都是化合物,单质和混合物既不是电解质也不是非电解质;电解质本身可能不导电,在水或熔融状态下能导电即可;能导电的物质不一定是电解质;难溶性化合物不一定就是弱电解质。 ③常见易溶强电解质:三大强酸(H2SO4、HCI、HNO3),四大强碱NaOH、KOH、Ba(OH)2、Ca(OH)2],可溶性盐。 金属 【常考点】①共性与特性:(共性)多数金属有金属光泽,密度和硬度较大,熔沸点较高,具有良好的延展性和导电、导热性。(特性)铁、铝等多数金属呈银白色,铜呈紫红色,金呈黄色;常温下多数金属都是固体,汞却是液体;各种金属的导电性、导热性、密度、熔点、硬度等差异较大。

仪器分析知识点总结

1、光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法; 光分析法的三个基本过程:(1)能源提供能量;(2)能量与被测物之间的相互作用;(3)产生信号。 光分析法的基本特点:(1)所有光分析法均包含三个基本过程;(2)选择性测量,不 涉及混合物分离(不同于色谱分析);(3)涉及大量光学元器件。 光谱仪器通常包括五个基本单元:光源;单色器;样品;检测器;显示与数据处理; 2、原子发射光谱分析法:以火焰、电弧、等离子炬等作为光源,使气态原子的外层电子受激发射出特征光谱进行定量分析的方法。 原子发射光谱分析法的特点: (1)可多元素同时检测各元素同时发射各自的特征光谱; (2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪); (3)选择性高各元素具有不同的特征光谱; (4)检出限较低(5)准确度较高10?0.1 g x g-1(—般光源);ng x g-1(ICP ) 5%?10% (一般光源) ; <1% (ICP) ; (6)ICP-AES性能优越线性范围4?6数量级,可测高、中、低不同含量试样; 缺点:非金属元素不能检测或灵敏度低。 3、原子吸收光谱分析法:利用特殊光源发射出待测元素的共振线,并将溶液中离子转变成气态原子后,测定气态原子对共振线吸收而进行的定量分析方法。 特点: (1)检出限低,10-10 ?10-14 g; (2)准确度高,1%?5%; (3)选择性高,一般情况下共存元素不干扰; (4)应用广,可测定70多个元素(各种样品中) ; 局限性:难熔元素、非金属元素测定困难、不能同时多元素测量 4、多普勒效应:一个运动着的原子发出的光,如果运动方向离开观察者(接受器)则在观察者看来,其频率较静止原子所发的频率低,反之,高。 5、原子荧光分析法:气态原子吸收特征波长的辐射后,外层电子从基态或低能态跃迁到高能态,在10-8s 后跃回基态或低能态时,发射出与吸收波长相同或不同的荧光辐射,在与光源成90 度的方向上,测定荧光强度进行定量分析的方法。 6、分子荧光分析法:某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。 特点: (1)灵敏度高 比紫外-可见分光光度法高2? 4 个数量级;为什么? 检测下限:0.1?0.1 g/cm -3 相对灵敏度:0.05mol/L 奎宁硫酸氢盐的硫酸溶液。 (2)选择性强 既可依据特征发射光谱,又可根据特征吸收光谱; (3)试样量少 缺点:应用范围小。 7、分子磷光分析法:处于第一最低单重激发态分子以无辐射弛豫方式进入第一三重激发态,再跃迁返回基态发出磷光。测定磷光强度进行定量分析的方法。 8、X射线荧光分析法:原子受高能辐射,其内层电子发生能级跃迁,发射出特征X射

初中化学知识点总结归纳

初中化学知识点总结归 纳 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

化学知识点的归纳总结。 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学之三 1、我国古代三大化学工艺:造纸,制火药,烧瓷器。 2、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。 3、构成物质的三种微粒:分子,原子,离子。 4、不带电的三种微粒:分子,原子,中子。 5、物质组成与构成的三种说法: (1)、二氧化碳是由碳元素和氧元素组成的; (2)、二氧化碳是由二氧化碳分子构成的; (3)、一个二氧化碳分子是由一个碳原子和一个氧原子构成的。 6、构成原子的三种微粒:质子,中子,电子。 7、造成水污染的三种原因: (1)工业“三废”任意排放, (2)生活污水任意排放 (3)农药化肥任意施放 8、收集气体的三种方法:排水法(不容于水的气体),向上排空气法(密度比空气大的气体),向下排空气法(密度比空气小的气体)。 9、质量守恒定律的三个不改变:原子种类不变,原子数目不变,原子质量不变。 10、不饱和溶液变成饱和溶液的三种方法:增加溶质,减少溶剂,改变温度(升高或降低)。 11、复分解反应能否发生的三个条件:生成水、气体或者沉淀 12、三大化学肥料:N、P、K

相关主题
文本预览
相关文档 最新文档