当前位置:文档之家› 数据分析师的完整流程与知识结构体系

数据分析师的完整流程与知识结构体系

数据分析师的完整流程与知识结构体系
数据分析师的完整流程与知识结构体系

数据分析师的完整流程与知识结构体系

————————————————————————————————作者:————————————————————————————————日期:

1.数据采集

了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。比如:Omniture中的Prop变量长度只有100个字符,在数据采集部署过程中就不能把含有大量中文描述的文字赋值给Prop变量(超过的字符会被截断)。

在Webtrekk323之前的Pixel版本,单条信息默认最多只能发送不超过2K的数据。当页面含有过多变量或变量长度有超出限定的情况下,在保持数据收集的需求下,通常的解决方案是采用多个sendinfo方法分条发送;而在325之后的Pixel 版本,单条信息默认最多可以发送7K数据量,非常方便的解决了代码部署中单条信息过载的问题。(Webtrekk基于请求量付费,请求量越少,费用越低)。

当用户在离线状态下使用APP时,数据由于无法联网而发出,导致正常时间内的数据统计分析延迟。直到该设备下次联网时,数据才能被发出并归入当时的时间。这就产生了不同时间看相同历史时间的数据时会发生数据有出入。

在数据采集阶段,数据分析师需要更多的了解数据生产和采集过程中的异常情况,如此才能更好的追本溯源。另外,这也能很大程度上避免“垃圾数据进导致垃圾数据出”的问题。

2.数据存储

无论数据存储于云端还是本地,数据的存储不只是我们看到的数据库那么简单。比如:

数据存储系统是MySql、Oracle、SQL Server还是其他系统。

数据仓库结构及各库表如何关联,星型、雪花型还是其他。

生产数据库接收数据时是否有一定规则,比如只接收特定类型字段。

生产数据库面对异常值如何处理,强制转换、留空还是返回错误。

生产数据库及数据仓库系统如何存储数据,名称、含义、类型、长度、精度、是否可为空、是否唯一、字符编码、约束条件规则是什么。

接触到的数据是原始数据还是ETL后的数据,ETL规则是什么。

数据仓库数据的更新更新机制是什么,全量更新还是增量更新。

不同数据库和库表之间的同步规则是什么,哪些因素会造成数据差异,如何处理差异的。

在数据存储阶段,数据分析师需要了解数据存储内部的工作机制和流程,最核心的因素是在原始数据基础上经过哪些加工处理,最后得到了怎样的数据。由于数据在存储阶段是不断动态变化和迭代更新的,其及时性、完整性、有效性、一致性、准确性很多时候由于软硬件、内外部环境问题无法保证,这些都会导致后期数据应用问题。

3.数据提取

数据提取是将数据取出的过程,数据提取的核心环节是从哪取、何时取、如何取。从哪取,数据来源——不同的数据源得到的数据结果未必一致。

何时取,提取时间——不同时间取出来的数据结果未必一致。

如何取,提取规则——不同提取规则下的数据结果很难一致。

在数据提取阶段,数据分析师首先需要具备数据提取能力。常用的Select From 语句是SQL查询和提取的必备技能,但即使是简单的取数工作也有不同层次。第一层是从单张数据库中按条件提取数据的能力,where是基本的条件语句;第二层是掌握跨库表提取数据的能力,不同的join有不同的用法;第三层是优化SQL语句,通过优化嵌套、筛选的逻辑层次和遍历次数等,减少个人时间浪费和系统资源消耗。

其次是理解业务需求的能力,比如业务需要“销售额”这个字段,相关字段至少有产品销售额和产品订单金额,其中的差别在于是否含优惠券、运费等折扣和费用。包含该因素即是订单金额,否则就是产品单价×数量的产品销售额。

4.数据挖掘

数据挖掘是面对海量数据时进行数据价值提炼的关键,以下是算法选择的基本原则:

没有最好的算法,只有最适合的算法,算法选择的原则是兼具准确性、可操作性、可理解性、可应用性。

没有一种算法能解决所有问题,但精通一门算法可以解决很多问题。

挖掘算法最难的是算法调优,同一种算法在不同场景下的参数设定相同,实践是获得调优经验的重要途径。

在数据挖掘阶段,数据分析师要掌握数据挖掘相关能力。一是数据挖掘、统计学、数学基本原理和常识;二是熟练使用一门数据挖掘工具,Clementine、SAS或R

都是可选项,如果是程序出身也可以选择编程实现;三是需要了解常用的数据挖掘算法以及每种算法的应用场景和优劣差异点。

5.数据分析

数据分析相对于数据挖掘更多的是偏向业务应用和解读,当数据挖掘算法得出结论后,如何解释算法在结果、可信度、显著程度等方面对于业务的实际意义,如何将挖掘结果反馈到业务操作过程中便于业务理解和实施是关键。

6.数据展现

数据展现即数据可视化的部分,数据分析师如何把数据观点展示给业务的过程。数据展现除遵循各公司统一规范原则外,具体形式还要根据实际需求和场景而定。基本素质要求如下:

工具。PPT、Excel、Word甚至邮件都是不错的展现工具,任意一个工具用好都很强大。

形式。图文并茂的基本原则更易于理解,生动、有趣、互动、讲故事都是加分项。原则。领导层喜欢读图、看趋势、要结论,执行层欢看数、读文字、看过程。

场景。大型会议PPT最合适,汇报说明Word最实用,数据较多时Excel更方便。

最重要一点,数据展现永远辅助于数据内容,有价值的数据报告才是关键。

7.数据应用

数据应用是数据具有落地价值的直接体现,这个过程需要数据分析师具备数据沟通能力、业务推动能力和项目工作能力。

数据沟通能力。深入浅出的数据报告、言简意赅的数据结论更利于业务理解和接受,打比方、举例子都是非常实用的技巧。

业务推动能力。在业务理解数据的基础上,推动业务落地实现数据建议。从业务最重要、最紧急、最能产生效果的环节开始是个好方法,同时要考虑到业务落地的客观环境,即好的数据结论需要具备客观落地条件。

项目工作能力。数据项目工作是循序渐进的过程,无论是一个数据分析项目还是数据产品项目,都需要数据分析师具备计划、领导、组织、控制的项目工作能力。

数据结构与算法基础知识总结

数据结构与算法基础知识总结 1 算法 算法:是指解题方案的准确而完整的描述。 算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。 算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。特征包括: (1)可行性; (2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性; (3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义; (4)拥有足够的情报。 算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。 指令系统:一个计算机系统能执行的所有指令的集合。 基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。 算法的控制结构:顺序结构、选择结构、循环结构。 算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。 算法复杂度:算法时间复杂度和算法空间复杂度。 算法时间复杂度是指执行算法所需要的计算工作量。 算法空间复杂度是指执行这个算法所需要的内存空间。 2 数据结构的基本基本概念 数据结构研究的三个方面: (1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构; (2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。 数据结构是指相互有关联的数据元素的集合。 数据的逻辑结构包含: (1)表示数据元素的信息; (2)表示各数据元素之间的前后件关系。 数据的存储结构有顺序、链接、索引等。 线性结构条件:

(1)有且只有一个根结点; (2)每一个结点最多有一个前件,也最多有一个后件。 非线性结构:不满足线性结构条件的数据结构。 3 线性表及其顺序存储结构 线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。 在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。 非空线性表的结构特征: (1)且只有一个根结点a1,它无前件; (2)有且只有一个终端结点an,它无后件; (3)除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。结点个数n称为线性表的长度,当n=0时,称为空表。 线性表的顺序存储结构具有以下两个基本特点: (1)线性表中所有元素的所占的存储空间是连续的; (2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。 ai的存储地址为:adr(ai)=adr(a1)+(i-1)k,,adr(a1)为第一个元素的地址,k代表每个元素占的字节数。 顺序表的运算:插入、删除。(详见14--16页) 4 栈和队列 栈是限定在一端进行插入与删除的线性表,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。 栈按照“先进后出”(filo)或“后进先出”(lifo)组织数据,栈具有记忆作用。用top表示栈顶位置,用bottom表示栈底。 栈的基本运算:(1)插入元素称为入栈运算;(2)删除元素称为退栈运算;(3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。 队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。rear指针指向队尾,front指针指向队头。 队列是“先进行出”(fifo)或“后进后出”(lilo)的线性表。 队列运算包括(1)入队运算:从队尾插入一个元素;(2)退队运算:从队头删除一个元素。循环队列:s=0表示队列空,s=1且front=rear表示队列满

(完整版)非常实用的数据结构知识点总结

数据结构知识点概括 第一章概论 数据就是指能够被计算机识别、存储和加工处理的信息的载体。 数据元素是数据的基本单位,可以由若干个数据项组成。数据项是具有独立含义的最小标识单位。 数据结构的定义: ·逻辑结构:从逻辑结构上描述数据,独立于计算机。·线性结构:一对一关系。 ·线性结构:多对多关系。 ·存储结构:是逻辑结构用计算机语言的实现。·顺序存储结构:如数组。 ·链式存储结构:如链表。 ·索引存储结构:·稠密索引:每个结点都有索引项。 ·稀疏索引:每组结点都有索引项。 ·散列存储结构:如散列表。 ·数据运算。 ·对数据的操作。定义在逻辑结构上,每种逻辑结构都有一个运算集合。 ·常用的有:检索、插入、删除、更新、排序。 数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。 ·结构类型:由用户借助于描述机制定义,是导出类型。 抽象数据类型ADT:·是抽象数据的组织和与之的操作。相当于在概念层上描述问题。 ·优点是将数据和操作封装在一起实现了信息隐藏。 程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。算法取决于数据结构。 算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。 评价算法的好坏的因素:·算法是正确的; ·执行算法的时间; ·执行算法的存储空间(主要是辅助存储空间); ·算法易于理解、编码、调试。 时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。 渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。 时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O (n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

数据结构复习要点(整理版).docx

第一章数据结构概述 基本概念与术语 1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。 2. 数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。 (补充:一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。 ) 3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。(有时候也 叫做属性。) 4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 (1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。 数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。 依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种: 1. 集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。 2. 线性结构:结构中的数据元素之间存在“一对一“的关系。若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。 3. 树形结构:结构中的数据元素之间存在“一对多“的关系。若数据为非空集,则除了第一个元素 (根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。 4. 图状结构:结构中的数据元素存在“多对多”的关系。若结构为非空集,折每个数据可有多个(或零个)直接后继。 (2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。逻辑结构可以映射为以下两种存储结构: 1. 顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。 2. 链式存储结构:借助指针表达数据元素之间的逻辑关系。不要求逻辑上相邻的数据元素物理位置上也相邻。 5. 时间复杂度分析:1.常量阶:算法的时间复杂度与问题规模n 无关系T(n)=O(1) 2. 线性阶:算法的时间复杂度与问题规模 n 成线性关系T(n)=O(n) 3. 平方阶和立方阶:一般为循环的嵌套,循环体最后条件为i++ 时间复杂度的大小比较: O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )

数据结构基础知识大全

/** *名词解释1、数据:是信息的载体,能够被计算机识别、存储和加工处理。 *2、数据元素:是数据的基本单位,也称为元素、结点、顶点、记录。一个数据元素可以由若干个数据项组成,数据项是具有独立含义的最小标识单位。 *3、数据结构:指的是数据及数据之间的相互关系,即数据的组织形式,它包括数据的逻辑结构、数据的存储结构和数据的运算三个方面的内容。 *4、数据的逻辑结构:指数据元素之间的逻辑关系,即从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。 *5、数据的存储结构:指数据元素及其关系在计算机存储器内的表示。是数据的逻辑结构用计算机语言的实现,是依赖于计算机语言的。 *6、线性结构:其逻辑特征为,若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且其余每个结点只有一个直接前趋和一个直接后继。 *7、非线性结构:其逻辑特征为一个结点可能有多个直接前趋和直接后继。 *8、算法:是任意一个良定义的计算过程,它以一个或多个值作为输入,并产生一个或多个值作为输出;即一个算法是一系列将输入转换为输出的计算步骤。 *9、算法的时间复杂度T(n):是该算法的时间耗费,它是该算法所求解问题规模n趋向无穷大时,我们把时间复杂度T(n)的数量级(阶)称为算法的渐近时间复杂度。 *10、最坏和平均时间复杂度:由于算法中语句的频度不仅与问题规模n有关,还与输入实例等因素有关;这时可用最坏情况下时间复杂度作为算法的时间复杂度。而平均时间复杂度是指所有的输入实例均以等概率出现的情况下,算法的期望运行时间。 *11、数据的运算:指对数据施加的操作。数据的运算是定义在数据的逻辑结构上的,而实现是要在存储结构上进行。 *12、线性表:由n(n≥0)个结点组成的有限序列。其逻辑特征反映了结点间一对一的关系(一个结点对应一个直接后继,除终端结点外;或一个结点对应一个直接前趋,除开始结点外),这是一种线性结构。 *13、顺序表:顺序存储的线性表,它是一种随机存取结构。通过将相邻结点存放在相邻物理位置上来反映结点间逻辑关系。 *14、单链表:每个结点有两个域:一个值域data;另一个指针域next,用来指向该结点的直接后继结点。头指针是它的充分必要的信息。单链表是一种单向的结构。 *15、双链表:每个结点中增加了一个prior,用来指向该点的直接前趋结点。它是一种双向、对称的结构。 *16、循环链表:是一种首尾相接的链表。单循环链表形成一个next链环,而双循环链表形成next链环和prior链环。 *17、存储密度:是指结点数据本身所占的存储量和整个结点结构所占的存储量之比。顺序表的存储密度为1,而链表的存储密度小于1。 *18、栈:只允许在一端进行插入、删除运算的线性表,称为“栈”(stack)。 *19、LIFO表:即后进先出表,修改操作按后进先出的原则进行。譬如栈就是一种LIFO 表。 *20、顺序栈:采用顺序存储结构的栈,称为顺序栈。 *21、链栈:采用链式存储结构的栈,称为链栈。 *22、队列:只允许在一端进行插入、另一端进行删除运算的线性表,称为“队列”(queue)。*23、FIFO表:即先进先出表。譬如队列就是一种FIFO表。 *24、顺序队列:采用顺序存储结构的队列,称为顺序队列。 *25、循环队列:为克服顺序队列中假上溢现象,将向量空间想象为一个首尾相接的圆环,

数据结构复习提纲(整理)

复习提纲 第一章数据结构概述 基本概念与术语(P3) 1.数据结构是一门研究非数值计算程序设计问题中计算机的操作对象以及他们之间的关系和操作的学科. 2.数据是用来描述现实世界的数字,字符,图像,声音,以及能够输入到计算机中并能被计算机识别的符号的集合 2.数据元素是数据的基本单位 3.数据对象相同性质的数据元素的集合 4.数据结构包括三方面内容:数据的逻辑结构.数据的存储结构.数据的操作. (1)数据的逻辑结构指数据元素之间固有的逻辑关系. (2)数据的存储结构指数据元素及其关系在计算机内的表示 ( 3 ) 数据的操作指在数据逻辑结构上定义的操作算法,如插入,删除等. 5.时间复杂度分析 -------------------------------------------------------------------------------------------------------------------- 1、名词解释:数据结构、二元组 2、根据数据元素之间关系的不同,数据的逻辑结构可以分为 集合、线性结构、树形结构和图状结构四种类型。 3、常见的数据存储结构一般有四种类型,它们分别是___顺序存储结构_____、___链式存储结构_____、___索引存储结构_____和___散列存储结构_____。 4、以下程序段的时间复杂度为___O(N2)_____。 int i,j,x; for(i=0;i

2021年自考02331数据结构重点总结最终修订

自考02331数据构造重点总结(最后修订) 第一章概论 1.瑞士计算机科学家沃思提出:算法+数据构造=程序。算法是对数据运算描述,而数据构造涉及逻辑构造和存储构造。由此可见,程序设计实质是针对实际问题选取一种好数据构造和设计一种好算法,而好算法在很大限度上取决于描述实际问题数据构造。 2.数据是信息载体。数据元素是数据基本单位。一种数据元素可以由若干个数据项构成,数据项是具备独立含义最小标记单位。数据对象是具备相似性质数据元素集合。 3.数据构造指是数据元素之间互有关系,即数据组织形式。 数据构造普通涉及如下三方面内容:数据逻辑构造、数据存储构造、数据运算 ①数据逻辑构造是从逻辑关系上描述数据,与数据元素存储构造无关,是独立于计算机。 数据逻辑构造分类:线性构造和非线性构造。 线性表是一种典型线性构造。栈、队列、串等都是线性构造。数组、广义表、树和图等数据构造都是非线性构造。 ②数据元素及其关系在计算机内存储方式,称为数据存储构造(物理构造)。 数据存储构造是逻辑构造用计算机语言实现,它依赖于计算机语言。 ③数据运算。最惯用检索、插入、删除、更新、排序等。 4.数据四种基本存储办法:顺序存储、链接存储、索引存储、散列存储 (1)顺序存储:普通借助程序设计语言数组描述。 (2)链接存储:普通借助于程序语言指针来描述。 (3)索引存储:索引表由若干索引项构成。核心字是能唯一标记一种元素一种或各种数据项组合。 (4)散列存储:该办法基本思想是:依照元素核心字直接计算出该元素存储地址。 5.算法必要满足5个准则:输入,0个或各种数据作为输入;输出,产生一种或各种输出;有穷性,算法执行有限步后结束;拟定性,每一条指令含义都明确;可行性,算法是可行。 算法与程序区别:程序必要依赖于计算机程序语言,而一种算法可用自然语言、计算机程序语言、数学语言或商定符号语言来描述。当前惯用描述算法语言有两类:类Pascal和类C。 6.评价算法优劣:算法"对的性"是一方面要考虑。此外,重要考虑如下三点: ①执行算法所耗费时间,即时间复杂性; ②执行算法所耗费存储空间,重要是辅助空间,即空间复杂性; ③算法应易于理解、易于编程,易于调试等,即可读性和可操作性。

数据结构基础知识整理

数据结构基础知识整理 *名词解释1、数据:是信息的载体,能够被计算机识别、存储和加工处理。 *2、数据元素:是数据的基本单位,也称为元素、结点、顶点、记录。一个数据元素可 以由若干个数据项组成,数据项是具有独立含义的最小标识单位。 *3、数据结构:指的是数据及数据之间的相互关系,即数据的组织形式,它包括数据的 逻辑结构、数据的存储结构和数据的运算三个方面的内容。 *4、数据的逻辑结构:指数据元素之间的逻辑关系,即从逻辑关系上描述数据,它与数 据的存储无关,是独立于计算机的。 *5、数据的存储结构:指数据元素及其关系在计算机存储器内的表示。是数据的逻辑结 构用计算机语言的实现,是依赖于计算机语言的。 *6、线性结构:其逻辑特征为,若结构是非空集,则有且仅有一个开始结点和一个终端 结点,并且其余每个结点只有一个直接前趋和一个直接后继。 *7、非线性结构:其逻辑特征为一个结点可能有多个直接前趋和直接后继。 *8、算法:是任意一个良定义的计算过程,它以一个或多个值作为输入,并产生一个或 多个值作为输出;即一个算法是一系列将输入转换为输出的计算步骤。 *9、算法的时间复杂度T(n):是该算法的时间耗费,它是该算法所求解问题规模n趋向无穷大时,我们把时间复杂度T(n)的数量级(阶)称为算法的渐近时间复杂度。 *10、最坏和平均时间复杂度:由于算法中语句的频度不仅与问题规模n有关,还与输入实例等因素有关;这时可用最坏情况下时间复杂度作为算法的时间复杂度。而平均时间复杂度是指所有的输入实例均以等概率出现的情况下,算法的期望运行时间。 *11、数据的运算:指对数据施加的操作。数据的运算是定义在数据的逻辑结构上的,而 实现是要在存储结构上进行。 *12、线性表:由n(n≥0)个结点组成的有限序列。其逻辑特征反映了结点间一对一的关 系(一个结点对应一个直接后继,除终端结点外;或一个结点对应一个直接前趋,除开始结点外),这是一种线性结构。 *13、顺序表:顺序存储的线性表,它是一种随机存取结构。通过将相邻结点存放在相邻 物理位置上来反映结点间逻辑关系。 *14、单链表:每个结点有两个域:一个值域data;另一个指针域next,用来指向该结

大学数据结构期末知识点重点总结

第一章概论 1.数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算 2.数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系 可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R) 结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据 关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系 3.数据类型 a.基本数据类型 整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b.复合数据类型 复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型 4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多) 5.四种基本存储映射方法:顺序、链接、索引、散列 6.算法的特性:通用性、有效性、确定性、有穷性 7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化 8.渐进算法分析 a.大Ο分析法:上限,表明最坏情况 b.Ω分析法:下限,表明最好情况 c.Θ分析法:当上限和下限相同时,表明平均情况 第二章线性表 1.线性结构的基本特征 a.集合中必存在唯一的一个“第一元素” b.集合中必存在唯一的一个“最后元素” c.除最后元素之外,均有唯一的后继 d.除第一元素之外,均有唯一的前驱 2.线性结构的基本特点:均匀性、有序性 3.顺序表 a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度 b. 线性表中任意元素的存储位置:Loc(ki) = Loc(k0) + i * L(设每个元素需占用L个存储单元) c. 线性表的优缺点: 优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样 缺点:空间难以扩充 d.检索:ASL=【Ο(1)】 e.插入:插入前检查是否满了,插入时插入处后的表需要复制【Ο(n)】 f.删除:删除前检查是否是空的,删除时直接覆盖就行了【Ο(n)】 4.链表 4.1单链表 a.特点:逻辑顺序与物理顺序有可能不一致;属于顺序存取的存储结构,即存取每个数据元素所花费的时间不相等 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.链表的插入(q->next=p->next; p->next=q;)【Ο(n)】 d.链表的删除(q=p->next; p->next = q->next; delete q;)【Ο(n)】 e.不足:next仅指向后继,不能有效找到前驱 4.2双链表 a.增加前驱指针,弥补单链表的不足 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.插入:(q->next = p->next; q->prev = p; p->next = q; q->next->prev = q;) d.删除:(p->prev->next = p->next; p->next->prev = p->prev; p->prev = p->next = NULL; delete p;) 4.3顺序表和链表的比较 4.3.1主要优点 a.顺序表的主要优点 没用使用指针,不用花费附加开销;线性表元素的读访问非常简洁便利 b.链表的主要优点 无需事先了解线性表的长度;允许线性表的长度有很大变化;能够适应经常插入删除内部元素的情况 4.3.2应用场合的选择 a.不宜使用顺序表的场合 经常插入删除时,不宜使用顺序表;线性表的最大长度也是一个重要因素 b.不宜使用链表的场合 当不经常插入删除时,不应选择链表;当指针的存储开销与整个结点内容所占空间相比其比例较大时,应该慎重选择 第三章栈与队列 1.栈 a.栈是一种限定仅在一端进行插入和删除操作的线性表;其特点后进先出;插入:入栈(压栈);删除:出栈(退栈);插入、删除一端被称为栈顶(浮动),另一端称为栈底(固定);实现分为顺序栈和链式栈两种 b.应用: 1)数制转换 while (N) { N%8入栈; N=N/8;} while (栈非空){ 出栈; 输出;} 2)括号匹配检验 不匹配情况:各类括号数量不同;嵌套关系不正确 算法: 逐一处理表达式中的每个字符ch: ch=非括号:不做任何处理 ch=左括号:入栈 ch=右括号:if (栈空) return false else { 出栈,检查匹配情况, if (不匹配) return false } 如果结束后,栈非空,返回false 3)表达式求值 3.1中缀表达式: 计算规则:先括号内,再括号外;同层按照优先级,即先乘*、除/,后加+、减-;相同优先级依据结合律,左结合律即为先左后右 3.2后缀表达式: <表达式> ::= <项><项> + | <项><项>-|<项> <项> ::= <因子><因子> * |<因子><因子>/|<因子> <因子> ::= <常数> ?<常数> ::= <数字>|<数字><常数> <数字> ∷= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 3.3中缀表达式转换为后缀表达式 InfixExp为中缀表达式,PostfixExp为后缀表 达式 初始化操作数栈OP,运算符栈OPND; OPND.push('#'); 读取InfixExp表达式的一项 操作数:直接输出到PostfixExp中; 操作符: 当‘(’:入OPND; 当‘)’:OPND此时若空,则出错;OPND若 非空,栈中元素依次弹出,输入PostfixExpz 中,直到遇到‘(’为止;若为‘(’,弹出即 可 当‘四则运算符’:循环(当栈非空且栈顶不是 ‘(’&& 当前运算符优先级>栈顶运算符优先 级),反复弹出栈顶运算符并输入到 PostfixExp中,再将当前运算符压入栈 3.4后缀表达式求值 初始化操作数栈OP; while (表达式没有处理完) { item = 读取表达式一项; 操作数:入栈OP; 运算符:退出两个操作数, 计算,并将结果入栈} c.递归使用的场合:定义是递归的;数据结构是 递归的;解决问题的方法是递归的 2.队列 a.若线性表的插入操作在一端进行,删除操作 在另一端进行,则称此线性表为队列 b.循环队列判断队满对空: 队空:front==rear;队满: (rear+1)%n==front 第五章二叉树 1.概念 a. 一个结点的子树的个数称为度数 b.二叉树的高度定义为二叉树中层数最大的叶 结点的层数加1 c.二叉树的深度定义为二叉树中层数最大的叶 结点的层数 d.如果一棵二叉树的任何结点,或者是树叶, 或者恰有两棵非空子树,则此二叉树称作满二 叉树 e.如果一颗二叉树最多只有最下面的两层结点 度数可以小于2;最下面一层的结点都集中在 该层最左边的位置上,则称此二叉树为完全二 叉树 f.当二叉树里出现空的子树时,就增加新的、特 殊的结点——空树叶组成扩充二叉树,扩充二 叉树是满二叉树 外部路径长度E:从扩充的二叉树的根到每个 外部结点(新增的空树叶)的路径长度之和 内部路径长度I:扩充的二叉树中从根到每个内 部结点(原来二叉树结点)的路径长度之和 2.性质 a. 二叉树的第i层(根为第0层,i≥0)最多有 2^i个结点 b. 深度为k的二叉树至多有2k+1-1个结点 c. 任何一颗二叉树,度为0的结点比度为2的 结点多一个。n0 = n2 + 1 d. 满二叉树定理:非空满二叉树树叶数等于其 分支结点数加1 e. 满二叉树定理推论:一个非空二叉树的空子 树(指针)数目等于其结点数加1 f. 有n个结点(n>0)的完全二叉树的高度为 ?log2(n+1)?,深度为?log2(n+1)?? g. 对于具有n个结点的完全二叉树,结点按层 次由左到右编号,则有: 1) 如果i = 0为根结点;如果i>0,其父结点 编号是(i-1)/2 2) 当2i+1∈N,则称k是k'的父结点,k'是 的子结点 若有序对∈N,则称k' k″互为兄弟 若有一条由k到达ks的路径,则称k是 的祖先,ks是k的子孙 2.树/森林与二叉树的相互转换 a.树转换成二叉树 加线: 在树中所有兄弟结点之间加一连线 抹线: 对每个结点,除了其最左孩子外, 与其余孩子之间的连线 旋转: 45° b.二叉树转化成树 加线:若p结点是双亲结点的左孩子,则将 的右孩子,右孩子的右孩子, 所有右孩子,都与p的双亲用线连起来 线 调整:将结点按层次排列,形成树结构 c.森林转换成二叉树 将各棵树分别转换成二叉树 将每棵树的根结点用线相连 为轴心,顺时针旋转,构成二叉树型结构 d.二叉树转换成森林 抹线:将二叉树中根结点与其右孩子连线,及 沿右分支搜索到的所有右孩子间连线全部抹 掉,使之变成孤立的二叉树 还原:将孤立的二叉树还原成树 3.周游 a.先根(次序)周游 若树不空,则先访问根结点,然后依次先根周 游各棵子树 b.后根(次序)周游 若树不空,则先依次后根周游各棵子树,然后 访问根结点 c.按层次周游 若树不空,则自上而下自左至右访问树中每个 结点 4.存储结构 “左子/右兄”二叉链表表示法:结点左指针指 向孩子,右结点指向右兄弟,按树结构存储, 无孩子或无右兄弟则置空 5. “UNION/FIND算法”(等价类) 判断两个结点是否在同一个集合中,查找一个 给定结点的根结点的过程称为FIND 归并两个集合,这个归并过程常常被称为 UNION “UNION/FIND”算法用一棵树代表一个集合, 如果两个结点在同一棵树中,则认为它们在同 一个集合中;树中的每个结点(除根结点以外) 有仅且有一个父结点;结点中仅需保存父指针 信息,树本身可以存储为一个以其结点为元素 的数组 6.树的顺序存储结构 a. 带右链的先根次序表示法 在带右链的先根次序表示中,结点按先根次序 顺序存储在一片连续的存储单元中 每个结点除包括结点本身数据外,还附加两个 表示结构的信息字段,结点的形式为: info是结点的数据;rlink是右指针,指向结点 的下一个兄弟;ltag是一个左标记,当结点没 有子结点(即对应二叉树中结点没有左子结点 时),ltag为1,否则为0 b. 带双标记位的先根次序表示法 规定当结点没有下一个兄弟(即对应的二叉树 中结点没有右子结点时)rtag为1,否则为0 c. 带双标记位的层次次序表示法 结点按层次次序顺序存储在一片连续的存储单 元中 第七章图 1.定义 a.假设图中有n个顶点,e条边: 含有e=n(n-1)/2条边的无向图称作完全图 含有e=n(n-1) 条弧的有向图称作有向完全图 若边或弧的个数e < nlogn,则称作稀疏图, 否则称作稠密图 b. 顶点的度(TD)=出度(OD)+入度(ID) 顶点的出度: 以顶点v为弧尾的弧的数目 顶点的入度: 以顶点v为弧头的弧的数目 c.连通图、连通分量 若图G中任意两个顶点之间都有路径相通,则 称此图为连通图 若无向图为非连通图,则图中各个极大连通子 图称作此图的连通分量 d.强连通图、强连通分量 对于有向图,若任意两个顶点之间都存在一条 有向路径,则称此有向图为强连通图 否则,其各个极大强连通子图称作它的强连通 分量 e.生成树、生成森林 假设一个连通图有n个顶点和e条边,其中n-1 条边和n个顶点构成一个极小连通子图,称该 极小连通子图为此连通图的生成树 对非连通图,则将由各个连通分量构成的生成 树集合称做此非连通图的生成森林 2.存储结构 a.相邻矩阵表示法 表示顶点间相邻关系的矩阵 若G是一个具有n个顶点的图,则G的相邻矩 阵是如下定义的n×n矩阵: A[i,j]=1,若(Vi, Vj)(或)是图G的边 A[i,j]=0,若(Vi, Vj)(或)不是图G的边 b.邻接表表示法 为图中每个顶点建立一个单链表,第i个单链表 中的结点表示依附于顶点Vi的边(有向图中指 以Vi为尾的弧)(建立单链表时按结点顺序建 立) 3.周游 a. 深度优先周游: 从图中某个顶点V0出发,访问此顶点,然后依 次从V0的各个未被访问的邻接点出发,深度优 先搜索遍历图中的其余顶点,直至图中所有与 V0有路径相通的顶点都被访问到为止 b. 广度优先周游: 从图中的某个顶点V0出发,并在访问此顶点之 后依次访问V0的所有未被访问过的邻接点,随 后按这些顶点被访问的先后次序依次访问它们 的邻接点,直至图中所有与V0有路径相通的顶 点都被访问到为止,若此时图中尚有顶点未被 访问,则另选图中一个未曾被访问的顶点作起 始点,重复上述过程,直至图中所有顶点都被 访问到为止 4.拓扑排序 拓扑排序的方法是:1)选择一个入度为0的顶 点且输出之 2)从图中删掉此顶点及所有的出边 3)回到第1步继续执行,直至图空或者图不空 但找不到无前驱(入度为0)的顶点为止 5.单源最短路径(Dijkstra算法) 6.每对顶点间的最短路径(Floyd算法) 7.最小生成树 a.Prim算法 b.Kruskal算法 c.两种算法比较:Prim算法适合稠密图, Kruskal算法适合稀疏图 第八章内排序 算法最大时间平均时间 直接插入排 序 Θ(n2) Θ(n2) 冒泡排序Θ(n2) Θ(n2) 直接选择排 序 Θ(n2) Θ(n2) Shell排序Θ(n3/2) Θ(n3/2) 快速排序Θ(n2) Θ(nlog n) 归并排序Θ(nlog n) Θ(nlog n) 堆排序Θ(nlog n) Θ(nlog n) 桶式排序Θ(n+m) Θ(n+m) 基数排序Θ(d·(n+r)) Θ(d·(n+r)) 最小时间S(n) 稳定性 Θ(n) Θ(1) 稳定 Θ(n) Θ(1) 稳定 Θ(n2) Θ(1) 不稳定 Θ(n3/2) Θ(1) 不稳定 Θ(nlog n) Θ(log n) 不稳定 Θ(nlog n) Θ(n) 稳定 Θ(nlog n) Θ(1) 不稳定 Θ(n+m) Θ(n+m) 稳定 Θ(d·(n+r)) Θ(n+r) 稳定 第十章检索 1.平均检索长度(ASL)是待检索记录集合中元 素规模n的函数,其定义为: ASL= Pi为检索第i个元素的概率;Ci为找到第i个元 素所需的比较次数 2.散列 a.除余法 用关键码key除以M(取散列表长度),并取余 数作为散列地址 散列函数为:hash(key) =key mod M b.解决冲突的方法 开散列方法:把发生冲突的关键码存储在散列 表主表之外(在主表外拉出单链表) 闭散列方法:把发生冲突的关键码存储在表中 另一个位置上 c.线性探查 基本思想:如果记录的基位置存储位置被占用, 就在表中下移,直到找到一个空存储位置;依 次探查下述地址单元:d0+1,d0+2,...,m-1, 0,1,...,d0-1;用于简单线性探查的探查 函数是:p(K, i) = i d.散列表的检索 1.假设给定的值为K,根据所设定的散列函数h, 计算出散列地址h(K) 2. 如果表中该地址对应的空间未被占用,则检 索失败,否则将该地址中的值与K比较 3. 若相等则检索成功;否则,按建表时设定的 处理冲突方法查找探查序列的下一个地址,如 此反复下去,直到某个地址空间未被占用(可 以插入),或者关键码比较相等(有重复记录, 不需插入)为止 e.散列表的删除:删除后在删除地点应加上墓 碑(被删除标记) f.散列表的插入:遇到墓碑不停止,知道找到真 正的空位置 第十一章索引技术 1.概念: a.主码:数据库中的每条记录的唯一标识 b.辅码:数据库中可以出现重复值的码 2.B树 a.定义:B树定义:一个m阶B树满足下列条 件: (1) 每个结点至多有m个子结点; (2) 除根和叶外 其它每个结点至少有??个子结点; (3) 根结点至少有两个子结点 例外(空树,or独根) (4) 所有的叶在同一层,可以有??- 1到m-1个 关键码 (5) 有k个子结点的非根结点恰好包含k-1个关 键码 b.查找 在根结点所包含的关键码K1,…,Kj中查找给 定的关键码值(用顺序检索(key少)/二分检索 (key多));找到:则检索成功;否则,确定要查 的关键码值是在某个Ki和Ki+1之间,于是取 pi所指结点继续查找;如果pi指向外部结点, 表示检索失败. c.插入 找到的叶是插入位置,若插入后该叶中关键码 个数

数据结构基本知识.

数据结构基本知识 数据(Data) 数据是信息的载体。它能够被计算机识别、存储和加工处理,是计算机程序加工的"原料"。随着计算机应用领域的扩大,数据的范畴包括: 整数、实数、字符串、图像和声音等。 数据元素(Data Element) 数据元素是数据的基本单位。数据元素也称元素、结点、顶点、记录。 一个数据元素可以由若干个数据项(也可称为字段、域、属性)组成。 数据项是具有独立含义的最小标识单位。 数据结构(Data Structure) 数据结构指的是数据之间的相互关系,即数据的组织形式。 1.数据结构一般包括以下三方面内容: ①数据元素之间的逻辑关系,也称数据的逻辑结构(Logical Structure); 数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。数据的逻辑结构可以看作是从具体问题抽象出来的数学模型。 ②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构(Storage Structure); 数据的存储结构是逻辑结构用计算机语言的实现(亦称为映象),它依赖于计算机语言。对机器语言而言,存储结构是具体的。一般,只在高级语言的层次上讨论存储结构。 ③数据的运算,即对数据施加的操作。 数据的运算定义在数据的逻辑结构上,每种逻辑结构都有一个运算的集合。最常用的

检索、插入、删除、更新、排序等运算实际上只是在抽象的数据上所施加的一系列抽象的操作。 所谓抽象的操作,是指我们只知道这些操作是"做什么",而无须考虑"如何做"。只有确定了存储结构之后,才考虑如何具体实现这些运算。 为了增加对数据结构的感性认识,下面举例来说明有关数据结构的概念。 【例1.1】学生成绩表,见下表。 注意:在表中指出数据元素、数据项、开始结点和终端结点等概念 (1)逻辑结构 表中的每一行是一个数据元素(或记录、结点),它由学号、姓名、各科成绩及平均成绩等数据项组成。 表中数据元素之间的逻辑关系是:对表中任一个结点,与它相邻且在它前面的结点(亦称为直接前趋(Immediate Predecessor))最多只有一个;与表中任一结点相邻且在其后的结点(亦称为直接后继(Immediate Successor))也最多只有一个。表中只有第一个结点没有直接前趋,故称为开始结点;也只有最后一个结点没有直接后继。故称之为终端结点。例如,表中"马二"所在结点的直接前趋结点和直接后继结点分别是"丁一"和"张三"所在的结点,上述结点间的关系构成了这张学生成绩表的逻辑结构。

小学语文各年级学习知识结构图

小学语文各年级知识结构图 一年级 一、拼音 1.声母 2.韵母 (1)。单韵母 (2)复韵母 (3)前鼻音韵母 (4)后鼻音韵母 (5)特殊韵母 3.整体认读音节 4.大小字母 5声调 二、字 1.笔顺 2.识字 a。形近字 b.会意字 c.形声字 d.多音字 e.多义字 3.生字组词

1.反义词 2.量词 3.叠词(AABB式) 三、句 1.看拼音写句子 2.关联词 ……因为……所以…..、……一边……一边……3造句 …….像……、……..从……、……来……. 3.疑问句 四段 1.认识自然段. 2.在自然段前面加序号 五、口语交际 1看图 2.按顺序说 a.从上到下 b.从左到右 c.从中间到两边 d.从景到人 六积累

2.对子 3.儿童诗歌 4.谚语 二年级一字 1.识字 a。形近字 b.会意字 c.形声字 d.多音字 e.多义字 2.熟练识字方法 3.生字组词 二词 1.写 a看拼音写词语 b多音字组词 2词语搭配 3积累词语 a.四字词语 b.成语 三句

.- 1认识句子 a比喻句 b拟人句 c.反问句 3.写句子 a.运用标点符号写句子(逗号、句号、问号、感叹号。) b.联系上下文写句子 四段 1.背诵片段 2.理解段落内容 五口语交际 1制定计划 2.听别人讲 3.学会转述 六习作 1.培养写作兴趣 2.学写 把看到的,听到的,想到的记录下来 3.拓展 学写日记 七积累 1.儿歌

2.谚语 3.古典诗词 4.名言警句 三年级 一、字 1.学写钢笔字 a.练字必须有正确的姿势 b.练字必须有正确的执笔和运笔方法 c. 注意钢笔字的笔法 2.识字 a.形近字 b.多音字 3.生字组词 二词 1写 a看拼音写词语 b生字组词 c多音字组词 d近义词反义词 2.积累词语 a.成语 b.ABB式词语

数据结构知识点整理

数据是信息的载体,是描述客观事物的数、字符、以及所有能输入到计算机中,被计算机程序识别和处理的符号(数值、字符等)的集合。 数据元素(数据成员)是数据的基本单位。在不同的条件下,数据元素又可称为元素、结点、顶点、记录等 数据对象具有相同性质的数据元素(数据成员)的集合 数据结构由某一数据对象及该对象中所有数据成员之间的关系组成。记为Data_Structure = {D, R}其中,D是某一数据对象,R是该对象中所有数据成员之间的关系的有限集合。 数据类型是指一种类型,以及定义在这个值集合上的一组操作的总称。 判断一个算法的优劣主要标准:正确性、可使用性、可读性、效率、健壮性、简单性。 算法效率的衡量方法:后期测试,事前估计 算法分析是算法的渐进分析简称 数据结构包括“逻辑结构”和“物理结构”两个方面(层次): 逻辑结构是对数据成员之间的逻辑关系的描述,它可以用一个数据成员的集合和定义在此集合上的若干关系来表示物理结构是逻辑结构在计算机中的表示和实现,故又称“存储结构” 线性表的定义:n(≥ 0)个表项的有限序列L =(a1, a2, …, an)ai是表项,n是表长度。第一个表项是表头,最后一个是表尾。 线性表的特点:表中元素的数据类型相同;线性表中,结点和结点间的关系是一对一的,有序表和无序表线性表的存储方式。一,顺序存储方式,二,链表存储方式。 顺序表的存储表示有2种方式:静态方式和动态方式。 顺序表的定义是:把线性表中的所有表项按照其逻辑顺序依次存储到从计算机存储中指定存储位置开始的一块连续的存储空间中。 顺序表的特点:用地址连续的一块存储空间顺序存放各表项,各表项的逻辑顺序与物理顺序一致,对各个表项可以顺序访问,也可以随机访问。 单链表是一种最简单的链表表示,也叫线性链表,用她来表示线性表时,用指针表示结点间的逻辑关系。特点:是长度可以很方便地进行扩充。 连续存储方式(顺序表)特点:存储利用率高,存取速度快缺点:插入、删除等操作时需要移动大量数据: 链式存储方式(链表)特点:适应表的动态增长和删除。缺点:需要额外的指针存储空间 单链表的类定义:多个类表达一个概念(单链表)。分为:链表结点(ListNode)类,链表(List)类。 循环链表的概念:是另一种形式的表示线性表的链表,它的结点结构与单链表相同,与单链表不同的是链表中表尾结点的LINK域中不是NULL,而是存放了一个指向链表开始结点的指针,这样,只要知道表中任何一个结点的地址,就能遍历表中其他任何一结点。 双向链表的概念:在双向链表的没饿结点中应有两个链接指针作为它的数据成员:1LINK指示它的前驱结点,RLINK 指示它的后继结点,因此,双向链表的每个结点至少有3个域:1LINK(前驱指针) DADA(数据)RLINK(后继指针)。栈:定义为只允许在表的末端进行插入和删除的线性表。特点是:后进先出。 递归的定义:若一个对象部分地包含它自己,或用它自己给自己定义, 则称这个对象是递归的;若一个过程直接地或间接地调用自己, 则称这个过程是递归的过程。以下三种情况常常用到递归方法一。定义是递归的二。数据结构是递归的三问题的解法是递归的。 队列:队列是只允许在一端删除,在另一端插入的顺序表允许删除的一端叫做队头,允许插入的一端叫做队尾。特性:先进先出。 优先级队列:是不同于先进先出队列的另一种队列。每次从队列中取出的是具有最高优先权的元素。多维数组是一维数组的推广。 多维数组是一维数组的推广。多维数组的特点是每一个数据元素可以有多个直接前驱和多个直接后继。数组元素的下标一般具有固定的下界和上界,因此它比其他复杂的非线性结构简单。 字符串是n ( ≥ 0 ) 个字符的有限序列,记作S : “c1c2c3…cn”其中,S 是串名字c1c2c3…cn”是串值ci 是串中字符n 是串的长度,n = 0 称为空串。 广义表是n ( ≥0 ) 个表元素组成的有限序列,记作LS (a1, a2, a3, …, an),LS 是表名,ai 是表元素,可以是表(称为子表),可以是数据元素(称为原子)。n为表的长度。n = 0 的广义表为空表。n > 0时,表的第一个表元素称为广义表的表头(head),除此之外,其它表元素组成的表称为广义表的表尾(tail 有根树:一棵有根树T,简称为树,它是n (n≥0) 个结点的有限集合。当n = 0时,T 称为空树;否则,T 是非空树,记作T={ 空集n=0 {r,T1,T2….Tn},n>0

相关主题
文本预览
相关文档 最新文档