当前位置:文档之家› 高中数学教学案例设计汇编

高中数学教学案例设计汇编

高中数学教学案例设计汇编
高中数学教学案例设计汇编

高中数学教学案例设计汇编

(下部)

19、正弦定理(2)

一、教学内容分析

本节内容安排在《普通高中课程标准实验教科书·数学必修5》(人教A版)第一章,正弦定理第一课时,是在高二学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,因而定理本身的应用又十分广泛。

根据实际教学处理,正弦定理这部分内容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。

二、学情分析

对普高高二的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。

三、设计思想:

本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。

四、教学目标:

1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。

2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探

A B

C

索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。

4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

五、教学重点与难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。 教学难点:正弦定理的猜想提出过程。

教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。 六、教学过程:

(一)结合实例,激发动机 师生活动:

教师:展示情景图如图1,船从港口B 航行到港口C ,测得BC 的距离为600m ,船在港口C 卸货后继续向港口A 航行,由于船员的疏忽没有测得CA 距离,如果船上有测角仪我们能否计算出A 、B 的距离?

学生:思考提出测量角A ,C

教师:若已知测得75B A C ∠=?, 45A C B ∠=?,要计算A 、B 两地距离,你 (图1)

有办法解决吗?

学生:思考交流,画一个三角形A B C ''',使得B C ''为6cm ,75B A C '''∠=?, 45A C B '''∠=? ,量得A B ''距离约为4.9cm ,利用三角形相似性质可知AB 约为 490m 。

老师:对,很好,在初中,我们学过相似三角形,也学过解直角三角形,大家还记得吗?

师生:共同回忆解直角三角形,①直角三角形中,已知两边,可以求第三边及两个角。②直角三角形中,已知一边和一角,可以求另两边及第三个角。

。 教师:引导,A B C ?是斜三角形,能否利用解直角三角形,精确计算AB 呢? 学生:思考,交流,得出过A 作A D B C ⊥于D 如图2,把A B C ?分为两个直角三角形,解题过程,学生阐述,教师板书。 解:过A 作A D B C ⊥于D 在R t A C D ?中,sin A D A C B A C

∠=

sin 6002

AD AC AC B ∴=∠=?

=

45AC B ∠=? ,75B A C ∠=?

18060

ABC ACB ACB ∴∠=-∠-∠=

在R t A B D ?中,sin A D A B C A B

∠=

A

B

C

D

(图2)

sin

2

AD

AB

ABC

∴===

教师:表示对学生赞赏,那么刚才解决问题的过程中,若A C b

=,A B c

=,能否用B、b、C表示c呢?

教师:引导学生再观察刚才解题过程。

学生:发现sin A D

C

b

=,sin

A D

B

c

=

sin sin

A D b C c B

∴==

sin

sin

b C

c

B

∴=

教师:引导,在刚才的推理过程中,你能想到什么?你能发现什么?

学生:发现即然有sin

sin

b C

c

B

=,那么也有

sin

sin

a C

c

A

=,

sin

sin

b A

a

B

=。

教师:引导sin

sin

b C

c

B

=,

sin

sin

a C

c

A

=,

sin

sin

b A

a

B

=,我们习惯写成对称形式sin sin

c b

C B

=,

sin sin

c a

C A

=,

sin sin

a b

A B

=,因此我们可以发现

sin sin

a b

A B

=

sin

c

C

=,是否任意三角形都有这种边角关系呢?

设计意图:兴趣是最好的老师。如果一节课有良好的开头,那就意味着成功的一半。因此,我通过从学生日常生活中的实际问题引入,激发学生思维,激发学生的求知欲,引导学生转化为解直角三角形的问题,在解决问题后,对特殊问题一般化,得出一个猜测性的结论——猜想,培养学生从特殊到一般思想意识,培养学生创造性思维能力。

(二)数学实验,验证猜想

教师:给学生指明一个方向,我们先通过特殊例子检验

sin sin

a b

A B

=

sin

c

C

=是否成立,举出特例。

(1)在△ABC中,∠A,∠B,∠C分别为?

60,?

60,?

60,对应的边长

a:b:c为1:1:1,对应角的正弦值分别为

2

3

2

3

2

3

,引导学生考

A

a

sin

B

b

sin

C

c

sin

的关系。(学生回答它们相等)

(2)、在△ABC中,∠A,∠B,∠C分别为?

45,?

45,?

90,对应的

边长a:b:c为1:1:2,对应角的正弦值分别为

2

2

2

2

,1;(学生回

答它们相等)

(3)、在△ABC中,∠A,∠B,∠C分别为?

30,?

60,?

90,对应的

边长a :b :c 为1:3:2,对应角的正弦值分别为2

1,

2

3,1。(学生回答

它们相等)(图3)

B

B

B

C

(图3) 教师:对于R t A B C ?呢?

学生:思考交流得出,如图4,在Rt ?ABC 中,设BC=a,AC=b,AB=c,

则有=

sin a A

c

,=

sin b B

c

,又sin 1c C

c

==

,

sin sin sin a b c

c

A

B

C

=

=

=

从而在直角三角形ABC 中,

sin sin sin a

b

c

A

B

C

=

=

教师:那么任意三角形是否有

sin sin sin a b

c A

B

C

==

呢?学生按事先安排分组,

出示实验报告单,让学生阅读实验报告单,质疑提问:有什么不明白的地方或者有什

么问题吗?(如果学生没有问题,教师让学生动手计算,附实验报告单。)

学生:分组互动,每组画一个三角形,度量出三边和三个角度数值,通过实验数据计算,比较sin a A

sin b B

sin c C

的近似值。

教师:借助多媒体演示随着三角形任意变换,

sin a A

sin b B

sin c C

值仍然保持相

等。

我们猜想:

A

a sin =

B

b sin =

C

c sin

设计意图:让学生体验数学实验,激起学生的好奇心和求知欲望。学生自己进行实验,体会到数学实验的归纳和演绎推理的两个侧面。 (三)证明猜想,得出定理

师生活动:

教师:我们虽然经历了数学实验,多媒体技术支持,对任意的三角形,如何用数学的思想方法证明

sin sin sin a b c A

B

C

=

=

呢?前面探索过程对我们有没有启发?学生

分组讨论,每组派一个代表总结。(以下证明过程,根据学生回答情况进行叙述) 学生:思考得出

①在R t A B C ?中,成立,如前面检验。

②在锐角三角形中,如图5设B C a =,C A b =,A B c =

B

a

A C

c

b

(图4)

作:A D B C ⊥,垂足为D

在R t A B D ?中,sin A D

B A B

=

sin sin A D A B B c B

∴=?=? 在R t A D C ?中,sin A D C A C

=

sin sin A D A C C b C

∴=?=?

sin sin c B b C

∴=

sin sin c b

C B

∴=

同理,在A B C ?中,

sin sin a c A

C

=

sin sin sin a b c

A

B

C

=

=

③在钝角三角形中,如图6设C ∠为钝角,B C a =,C A b =,A B c = 作A D B C ⊥交B C 的延长线于D 在R t A D B ?中,sin A D

B A B

=

sin sin A D A B B c B

∴=?=?

在R t A D C ?中,sin A D AC D A C

∠=

sin sin A D A C A C D b A C B

∴=?∠=?∠

sin sin c B b A C B

∴?=?∠

sin sin c b

A C

B B

∴=∠ 同锐角三角形证明可知

sin sin a c A

C

=

sin sin sin a b c

A

B

A C B

=

=

教师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

sin sin sin a b c A

B

C

=

=

还有其它证明方法吗?

学生:思考得出,分析图形(图7),对于任意△ABC ,由初中所学过的面积公式可以得出:1112

2

2

ABC S A C B D C B A E B A C F

?=

?=

?=

?,

而由图中可以看出:sin B D B A C A B

∠=

,sin A E A C B A C

∠=,

sin C F A B C B C

∠=

sin ,sin ,sin BD AB BAC AE AC ACB CF BC ABC ∴=?∠=?∠=?∠

1112

2

2

ABC S A C B D C B A E B A C F

?∴=

?=

?=

?

A

B

C

D

(图6)

A

B

C

D

(图5)

=

111sin sin sin 22

2

A C A

B B A

C C B C A A C B B A B C A B C

??∠=

??∠=

??∠

=111sin sin sin 2

2

2

b c B A C a b A C B c a A B C

???=

??∠=

??∠

等式111s i n s i n s i n 2

2

2

b c B A C a b A C B c a A B C ??∠=??∠=

??∠中均除以abc

21后

可得sin sin sin B A C

A B C

A C B

a b c ∠∠∠=

=

sin sin sin a

b c

B A

C A B C

A C B

=

=∠∠∠。

教师边分析边引导学生,同时板书证明过程。

在刚才的证明过程中大家是否发现三角形高sin sin A E c A B C a A B C =?∠=?∠,三角形

的面积:12

A B C S a A E

?=??,能否得到新面积公式

学生:111sin sin sin 22

2

ABC S b c B A C a b A C B c a A B C

?=

??∠=

??∠=

??∠

得到三角形面积公式111sin sin sin 2

2

2A B C S ab C ca B bc A

?===

教师:大家还有其他的证明方法吗?比如:sin a A

sin b B

sin c C

都等于同一个比

值k ,那么它们也相等,这个k 到底有没有什么特殊几何意义呢?

学生:在前面的检验中,R t A B C ?中,

s i n

s i n

s i n

a b c

c A B C =

=

=,c

恰为外接接圆的直径,即

2c k R

==,所以作A B C ?的外接圆O ,O 为圆心,连接

B O 并延长交圆O 于'B ,把一般三角形转化为直角三角形。

证明:连续B O 并延长交圆于'B

'90B AB ∴∠=?,'B C ∠=∠

(图7)

A

B C

D

E

F b

a c

(图7)

(图8)

在'R t B A B ?中,

sin '

A B B B

B '=

'2sin 'sin A B A B B B R

B C

=

==

2sin c R

C

=

同理可证:

2sin a

R

A =,

2sin b

R

B

=

2sin sin sin a b c R A B C

∴=== 教师:从刚才的证明过程中,

2sin sin sin a b c R

A

B

C

=

=

=,显示正弦定理的比值等

于三角形外接圆的直径2R ,我们通过“作高法”、“等积法”、“外接圆法”等平面几何方法证明正弦定理,能否利用其他知识来证明正弦定理?比如,在向量中,我也学

过cos a b a b θ

?=??

,这与边的长度和三角函数值有较为密切的联系,是否能够利用

向量积来证明正弦定理呢?

学生:思考(联系作高的思想)得出: 在锐角三角形A B C ?中,AB BC AC += ,作单位向量j

垂直于A C ,

AC j AB j BC j ?=?+?

即0cos(90)cos(90)c A a C =??-+??-

sin sin 0c A a C ∴?-?= sin sin c a C

A ∴

=

同理:sin sin b a B A ∴

= sin sin sin a b c A

B

C

=

=

对于钝角三角形,直角三角形的情况作简单交代。

教师:由于时间有限,对正弦定理的证明到此为止,有兴趣的同学回家再探索。 设计意图:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程。 (四)利用定理,解决引例

师生活动:

教师:现在大家再用正弦定理解决引例中提出的问题。 学生:马上得出

在A B C ?中,18060,

sin sin c b B A C C

B

∠=-∠-∠==

sin 600sin 45sin sin 60b C c B

???∴=

=

=?

A

(图9)

j

j

(五)了解解三角形概念

设计意图:让学生了解解三角形概念,形成知识的完整性

教师:一般地,把三角形的三个角A 、B 、C 和它们的对边a 、b 、c 叫做三角形的元素,已知,三角形的几个元素,求其他元素的过程叫做解三角形。

设计意图:利用正弦定理,重新解决引例,让学生体会用新的知识,新的定理,解决问题更方便,更简单,激发学生不断探索新知识的欲望。 (六)运用定理,解决例题

师生活动:

教师:引导学生从分析方程思想分析正弦定理可以解决的问题。 学生:讨论正弦定理可以解决的问题类型:

①如果已知三角形的任意两个角与一边,求三角形的另一角和另两边,如

sin sin b A a B

=

②如果已知三角形任意两边与其中一边的对角,求另一边与另两角,如

sin sin a

A B b

=

师生:例1的处理,先让学生思考回答解题思路,教师板书,让学生思考主要是突出主体,教师板书的目的是规范解题步骤。

例1:在A B C ?中,已知30A =?,45B =?,6a cm =,解三角形。

分析“已知三角形中两角及一边,求其他元素”,第一步可由三角形内角和为?180求出第三个角∠C ,再由正弦定理求其他两边。

例2:在A B C ?中,已知a =b =45A =?,解三角形。

例2的处理,目的是让学生掌握分类讨论的数学思想,可先让中等学生讲解解题思路,其他同学补充交流

学生:反馈练习(教科书第5页的练习)

用实物投影仪展示学生中解题步骤规范的解答。

设计意图:自己解决问题,提高学生学习的热情和动力,使学生体验到成功的愉悦感,变“要我学”为“我要学”,“我要研究”的主动学习。 (七)尝试小结:

教师:提示引导学生总结本节课的主要内容。 学生:思考交流,归纳总结。

师生:让学生尝试小结,教师及时补充,要体现:

(1)正弦定理的内容(

2sin sin sin a b c R

A

B

C

=

=

=)及其证明思想方法。

(2)正弦定理的应用范围:①已知三角形中两角及一边,求其他元素;②已知三角形中两边和其中一边所对的角,求其他元素。 (3)分类讨论的数学思想。

设计意图:通过学生的总结,培养学生的归纳总结能力和语言表达能力。 (八)作业设计

作业:第10页[习题1.1]A 组第1、2题。

思考题:例2:在A B C

A=?,解三角形。例2中b=

?中,已知a=b=,45

分别改为b=b=

的原因。

课外链接:课后通过查阅相关书籍,上网搜索,了解关于正弦定理的发展及应用(相关网址:https://www.doczj.com/doc/638339433.html,)

七、设计思路:

本节课,学生在不知正弦定理内容和证明方法的前提下,在教师预设的思路中,学生积极主动参与一个个相关联的探究活动过程,通过“观察——实验——归纳——猜想——证明”的数学思想方法发现并证明定理,让学生经历了知识形成的过程,感受到创新的快乐,激发学生学习数学的兴趣。其次,以问题为导向设计教学情境,促使学生去思考问题,去发现问题,让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。

1、结合实例,激发动机

数学源于现实,从学生日常生活中的实际问题引入,激发学生学习的兴趣,引导启发学生利用已有的知识解决新的问题,方法一通过相似三角形相似比相等进行计算,方法二转化解直角三角形。让学在解决问题中发现新知识,提出猜想,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。

2、数学实验,验证猜想

通过特例检验,让学生动手实验,提高了学生实验操作、分析思考和抽象概括的能,激发学生的好奇心和求知欲望,体会到数学实验的归纳和演绎推理的两个侧面。

3、证明猜想,得出定理

引导启发学生从角度进行证明定理,展示自己的知识,培养学生解决问题的能力,增强学习的兴趣,爱好,在知识的形成、发展过程中展开思维,培养推理的意识。

福安一中陈桢仔林旭

点评:

本节定理教学课,教师把重点放在定理的发现与证明上,符合新课标

重视过程与方法的理念,克服了传统教学只注重结论的倾向。首先,利

用解决一个可测量两角一对边,求另一对边的实际问题引入,在解决实

际问题中,引导学生发现“三角形三边与其对应角的正弦值的比相等”

的规律;通过对特殊三角形的验证,大胆猜想对任意三角形成立;接着

证明了这个定理。在课堂上展示了定理的发现过程,使学生感受到创新

的快乐,激发学生学习数学的兴趣,同时让学生体验了“观察—实验—

归纳—猜想—证明”的数学思想方法,经历了知识形成的过程,符合新

课标重视过程与方法的理念。其次,在解决引例中的测量问题时利用用

初中相似三角形知识、正弦定理的不同证法(转化为直角三角形、辅助

以三角形外接圆、向量)等,都体现了“在已有知识体系的基础上去建

构新的知识体系”的理念,加强了知识间的联系,培养了学生思维的灵

活性。定理证明的方法一、方法二,参透了分类、转化的数学思想。但

是,本节课的教学内容还是偏多,在时间分配上要有规划,突出重点,

删繁就简;引入的例题要注意条件更加明确直接,以免产生歧义,冲淡

主体,浪费时间。

总之,本节课有效地采用了探究式教学,在教师的启发引导下,以

学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正

弦定理的发现和证明”为基本探究内容,为学生提供充分自由表达、质

疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——实验——猜想——证明——应用”等环节,教学过程流畅,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。

20、正弦定理(3)

一、教学内容分析

“正弦定理”是《普通高中课程标准数学教科书·数学(必修5)》(人教版)第一章第一节的主要内容,它既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量等知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。为什么要研究正弦定理?正弦定理是怎样发现的?其证明方法是怎样想到的?还有别的证法吗?这些都是教材没有回答,而确实又是学生所关心的问题。

本节课是“正弦定理”教学的第一课时,其主要任务是引入并证明正弦定理,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且通过对定理的探究,能使学生体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。

二、学生学习情况分析

学生在初中已经学习了解直角三角形的内容,在必修4中,又学习了三角函数的基础知识和平面向量的有关内容,对解直角三角形、三角函数、平面向量已形成初步的知识框架,这不仅是学习正弦定理的认知基础,同时又是突破定理证明障碍的强有力的工具。正弦定理是关于任意三角形边角关系的重要定理之一,《课程标准》强调在教学中要重视定理的探究过程,并能运用它解决一些实际问题,可以使学生进一步了解数学在实际中的应用,从而激发学生学习数学的兴趣,也为学习正弦定理提供一种亲和力与认同感。

三、设计思想

图 1

C

B

A

培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。

四、教学目标

1、知识与技能:通过对任意三角形的边与其对角的关系的探索,掌握正弦定理的内容及其证明方法。

2、过程与方法:让学生从已有的知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察、归纳、猜想、证明,由特殊到一般得到正弦定理等方法,体验数学发现和创造的历程。

3、情感态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。

五、教学重点与难点

重点:正弦定理的发现和推导 难点:正弦定理的推导

六、教学过程设计

(一)设置情境

利用投影展示:如图1,一条河的两岸平行,河宽1d km =。因上游暴发特大洪水,在洪峰到来之前,急需将码头A 处囤积的重要物资及留守人员用船尽快转运到正对岸的码头B 处或其下游

1km

的码头C 处,请你确定转运方案。已知船在静水中

的速度15/v km h =,水流速度13/v km h =。

【设计意图】培养学生的“数学起源于生活,运用于生活”的思想意识,同时情境问题的图形及解题思路均为研究正弦定理做铺垫。

(二)提出问题

师:为了确定转运方案,请同学们设身处地地考虑有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。

待各小组将问题交给老师后,老师筛选了几个问题通过投影向全班展示,经大家归纳整理后得到如下的五个问题:

1、船应开往B 处还是C 处?

2、船从A 开到B 、C 分别需要多少时间?

F

E

D

v v 2v 1图 2

C

B A 3、船从A 到B 、

C 的距离分别是多少? 4、船从A 到B 、C 时的速度大小分别是多少? 5、船应向什么方向开,才能保证沿直线到达B 、C ?

【设计意图】通过小组交流,提供一定的研究学习与情感交流的时空,培养学生合作学习的能力;问题源于学生,突出学生学习的主体性,能激发学生学习的兴趣;问题通过老师的筛选,确定研究的方向,体现教师的主导作用。

师:谁能帮大家讲解,应该怎样解决上述问题?

大家经过讨论达成如下共识:要回答问题1,需要解决问题2,要解决问题2,需要先解决问题3和4,问题3用直角三角形知识可解,所以重点是解决问题4,问题4与问题5是两个相关问题。因此,解决上述问题的关键是解决问题4和5。

师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。

生1:船从A 开往B 的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小||v 及1v 与2v 的夹角θ:

||4v =

=

=,

12||3sin ,||

5v v θ=

=

用计算器可求得37θ≈?

船从A 开往C 的情况如图3,1||||5AD v ==,

2||||||3D E AF v ===,易求得45A E D E A F ∠=∠=?,还

需求D AE ∠及v ,我还不知道怎样解这两个问题。

师:请大家思考,这两个问题的数学实质是什么? 部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。

【设计意图】将问题数学化,有助于加深学生对问题的理解,有助于培养学生的数学意识。

师:请大家讨论一下,如何解决这两个问题? 生3:不知道。

师:图2的情形大家都会解,但图3的情形却有困难,那么图2与图3有何异同点?

生4:图2和图3的情形都是已知三角形的两边和其中一边的对角,求另一边的对角和第三边。但图2中AD E ?是直角三角形,而图3中AD E ?不是直角三角形,不能象在直角三角形中可直接利用边角的关系求解。

F E D v v 2v 1图 3

C

B

A

师:图3的情形能否转化成直角三角形来解呢?

【设计意图】通过教师的问题引导,启发学生将问题进行转化,培养学生的化归思想,同时为下一步用特例作为突破口来研究正弦定理以及用作高的方法来证明正弦定理做好铺垫。

生5:能,过点D 作D G AE ⊥于点G (如图4),

1||||sin ||sin DG v DAG DE AED

∴=∠=∠

1||||cos AG v D AG =∠,||||cos EG DE AED =∠

1||sin 3sin 45sin ||

5

10

D E AED

D AG v ∠?

∴∠=

=

=

||||||v AG GE =+=???

师:很好!采取分割的方法,将一般三角形化为两个直角三角形求解。但在生活中有许多三角形不是直角三角形,如果每个三角形都划分为直角三角形求解,很不便。能不能象直角三角形一样直接利用边角关系求解呢?三角形中,任意两边与其对角之间有怎样的数量关系?

【设计意图】通过教师对学生的肯定评价,创造一个教与学的和谐环境,既激发学生的学习兴趣,使紧接着的问题能更好地得到学生的认同,又有利于学生和教师的共同成长。

(三)解决问题 1、正弦定理的引入

师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 众学生:先从特殊事例入手,寻求答案或发现解法。可以以直角三角形为特例,先在直角三角形中试探一下。

师:如果一般三角形具有某种边角关系,对于特殊的三角形——直角三角形也是成立的,因此我们先研究特例,请同学们对直角三角形进行研究,寻找一般三角形的各边及其对角之间有何关系?同学们可以参与小组共同研究。

(1)学生以小组为单位进行研究;教师观察学生的研究进展情况或参与学生的研究。

(2)展示学生研究的结果。

【设计意图】教师参与学生之间的研究,增进师生之间的思维与情感的交流,并通过教师的指导与观察,及时掌握学生研究的情况,为展示学生的研究结论做准备;同时通过展示研究结论,强化学生学习的动机,增进学生的成功感及学习的信心。

师:请说出你研究的结论? 生7:

sin sin sin a b c A

B

C

=

=

G F

E

D v

v 2

v 1图 4

C

B

A

师:你是怎样想出来的?

生7:因为在直角三角形中,它们的比值都等于斜边c 。

师:有没有其它的研究结论?(根据实际情况,引导学生进行分析判断结论正确与否,或留课后进一步深入研究。)

师:

sin sin sin a b c A

B

C

=

=

对一般三角形是否成立呢?

众学生:不一定,可以先用具体例子检验,若有一个不成立,则否定结论:若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。

师:这是个好主意。那么sin sin sin a b c A

B

C

=

=

对等边三角形是否成立呢?

生9:成立。 师:对任意三角形

sin sin sin a b c A

B

C =

=

是否成立,现在让我们借助于《几何画板》

做一个数学实验,……

【设计意图】引导学生的思维逐步形成“情境思考”——“提出问题”——“研究特例”——“归纳猜想”——“实验探究”——“理论探究”——“解决问题”的思维方式,进而形成解决问题的能力。

2、正弦定理的探究 (1)实验探究正弦定理

师:借助于电脑与多媒体,利用《几何画板》软件,演示正弦定理教学课件。边演示边引导学生观察三角形形状的变化与三个比值的变化情况。

结论:

sin sin sin a b c A

B

C

=

=

对于任意三角形都成立。

【设计意图】通过《几何画板》软件的演示,使学生对结论的认识从感性逐步上升到理性。

师:利用上述结论解决情境问题中图3的情形,并检验与生5的计算结果是否一致。

生10:(通过计算)与生5的结果相同。

师:如果上述结论成立,则在三角形中利用该结论解决“已知两边和其中一边的对角,求另一边的对角和第三边。”的问题就简单多了。

【设计意图】与情境设臵中的问题相呼应,间接给出了正弦定理的简单应用,并强化学生学习探究、应用正弦定理的心理需求。

(2)点明课题:正弦定理 (3)正弦定理的理论探究

师:既然是定理,则需要证明,请同学们与小组共同探究正弦定理的证明。 探究方案:

直角三角形——已验证; 锐角三角形——课堂探究; 钝角三角形——课后证明。

【设计意图】通过分析,确定探究方案。课堂只让学生探究锐角三角形的情形,有助于在不影响探究进程的同时,为探究锐角三角形的情形腾出更多的时间。钝角三角形的情形以课后证明的形式,可使学生巩固课堂的成果。

师:请你(生11)到讲台上,讲讲你的证明思

路?

生11:(走上讲台),设法将问题转化成直角三

角形中的问题进行解决。通过作三角形的高,与生

5的办法一样,如图5作BC 边上的高AD ,则

sin sin A D c B b C ==,所以

sin sin b c B

C

=

,同理可得sin sin a b A

B

=

师:因为要证明的是一个等式,所以应从锐角三角形的条件出发,构造等量关系从而达到证明的目的。注意: sin sin c B b C =表示的几何意义是三角形同一边上的高不变。这是一个简捷的证明方法!

【设计意图】点明此证法的实质是找到一个可以作为证明基础的等量关系,为后续两种方法的提出做铺垫,同时适时对学生作出合情的评价。

师:在三角形中还有哪些可以作为证明基础的等量关系呢? 学生七嘴八舌地说出一些等量关系,经讨论后确定如下一些与直角三角形有关的等量关系可能有利用价值:①三角形的面积不变;②三角形外接圆直径不变。在教师的建议下,学生分别利用这两种关系作为基础又得出了如下两种证法:

证法二:如图6,设AD 、BE 、CF 分别是A B C ?的三条高。则有

sin A D b A C B =?∠, sin BE c BAC =?∠, sin C F a A B C

=?∠。

a

b

c

图 5 锐角三角形

D

C B

A

F E a b

c

图 6

D

C

B

A

∴1sin 2

A B C S a b A C B ?=??∠1sin 2

b c B A C =??∠1sin 2

c a A B C

=??∠

sin sin sin a

b c

B A

C A B C

A C B

=

=

∠∠∠

证法三:如图7,设2BD r =是A B C ?外接圆的

直径,则90B A D ∠=?,A C B A D B ∠=∠

2sin sin c c

B D r

A C B

A D

B ∴

=

==∠∠

同理可证:2sin sin a b

r

B A

C A B C ==∠∠

sin sin sin a b c B A C

A B C A C B

=

=

∠∠∠

【设计意图】在证明正弦定理的同时,将两边及其夹角的三角形面积公式 及

2sin sin sin a b c r

A

B

C

=

=

=一并牵出,使知识的产生自然合理。

师:前面我们学习了平面向量,能否运用向量的方法证明呢?

师:任意A B C ?中,三个向量AB

、BC 、C A

间有什么关系?

生12:0AB BC CA ++=

师:正弦定理体现的是三角形中边角间的数量关系,由0AB BC CA ++=

转化成

数量关系?

生13:利用向量的数量积运算可将向量关系转化成数量关系。

师:在AB BC CA ++ 两边同乘以向量j ,有()0AB BC C A j ++?= ,这里的向量j

否任意?又如何选择向量j

?

生14:因为两个垂直向量的数量积为0,可考虑让向量j

与三个向量中的一个向

量(如向量BC

)垂直,而且使三个项的关系式转化成两个项的关系式。

师:还是先研究锐角三角形的情形,按以上思路,请大家具体试一下,看还有什么问题?

教师参与学生的小组研究,同时引导学生注意两个向量的夹角,最后让学生通过小组代表作完成了如下证明。

证法四:如图8,设非零向量j

与向量BC 垂直。

因为0AB BC CA ++= ,

所以()0AB BC C A j ++?=

即0A B j C A j ?+?=

||||cos ,||||cos ,0AB j AB j C A j C A j ??<>+??<>=

||cos(90)||cos(90)0c j B b j C ???++???-=

||(sin )||sin 0c j B b j C ??-+??=

图 7 三角形外接圆

c

b

a

D

C

B

A

j

图 8 向量

C

B

A

a

b

c

所以

sin sin b c B

C

=

,同理可得

sin sin a b A

B

=

师:能否简化证法四的过程?(留有一定的时间给学生思考)

师:0A B j C A j ?+?=

有什么几何意义?

生15:把0A B j C A j ?+?= 移项可得C A j BA j ?=?

,由向量数量积的几何意义可

知C A 与BA

在j 方向上的投影相等。

生16:我还有一种证法

师:请你到讲台来给大家讲一讲。(学生16上台板书自己的证明方法。)

证法五:如图9,作A D B C ⊥,则AB

与A C 在

AD

方向上的投影相等,即AB AD AC AD ?=?

||||cos(90)||||cos(90)

AB AD B AC AD C ∴???-=???-

s i n s i n c B b C ∴?=?

sin sin b c B

C

=

,同理可得sin sin a b A

B

=

师:利用向量在边上的高上的射影相等,证明了正弦定理,方法非常简捷明了!

【设计意图】利用向量法来证明几何问题,学生相对比较生疏,不容易马上想出来,教师通过设计一些递进式的问题给予适当的启发引导,将很难想到的方法合理分解,有利于学生理解接受。

(四)小结

师:本节课我们是从实际问题出发,通过猜想、实验,归纳等思维方法,最后发现了正弦定理,并从不同的角度证明了它。本节课,我们研究问题的突出特点是从特殊到一般,利用了几何画板进行数学实验。我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。

(五)作业

1、回顾本节课的整个研究过程,体会知识的发生过程;

2、思考:证法五与证法一有何联系?

3、思考:能否借助向量的坐标的方法证明正弦定理?

4、当三角形为钝角三角形时,证明正弦定理。

【设计意图】为保证学生有充足的时间来完成观察、归纳、猜想、探究和证明,小结的时间花得少且比较简单,这将在下一节课进行完善,因此作业的布臵也为下节课做一些必要的准备。

七、教学反思

为了使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。我想到了

a b c

D 图 9 向量

C

B

A

“情境——问题”教学模式,即构建一个以情境为基础,提出问题与解决问题相互引发携手并进的“情境——问题”学习链,并根据上述精神,结合教学内容,具体做出了如下设计:①创设一个现实问题情境作为提出问题的背景(注:该情境源于《普通高中课程标准数学教科书·数学(必修4)》(人教版)第二章习题2.5 B 组第二题,我将其加工成一个具有实际意义的决策型问题);②启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题4与5时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?③为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后使用几何画板对猜想进行验证,进而引导学生对猜想进行严格的逻辑证明。

总之,整个过程让学生通过自主探索、合作交流,亲身经历了“情境思考”——“提出问题”——“研究特例”——“归纳猜想”——“实验探究”——“理论探究”——“解决问题”——“反思总结”的历程,使学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐,从而使三维教学目标得以实现。

大田一中 陈永民

点评:

本节课是典型合作探究课,教师先设计一个实际问题引导学生讨论问题解决方案,将方案数学化,归纳出一类数学问题“在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边”,顺利地引入新课,实现了从“现象”到“本质”的飞跃,培养了学生提出问题、分析问题、数学建模的能力。为寻求解决问题的普遍方法,对三角形的边角关系进行探索,在特殊情况(直角三角形)下得到正弦定理

sin sin sin a b c A

B

C

=

=

又在等边三角形和一般三角形中验证,坚定了结论成立的猜想,最后通过严格证明,得到了正弦定理,再返回到前面的引例中,利用正弦定理问题迎仞而解。从而使学生亲身经历了“情境思考”—“提出问题”—

“研究特例”—“归纳猜想”—“实验探究”—“理论探究”—“解决问题”—“反思总结”的历程,学会研究数学问题的方法,学生成为正弦定理的“发现者”和“创造者”,切身感受了创造的苦和乐。在对具体的一般三角形验证

sin sin sin a b c A

B

C

=

=

成立的过程中,利用《几何画板》软

件,不断变换三角形,观察上式成立,提高了效率,现代教育技术的运用恰到好处。

21、余 弦 定 理

一、教学内容分析

人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

二、学生学习情况分析

本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。

三、设计思想

新课程的数学提倡学生动手实践,自主探索,合作交流,深刻地理解基本结论的本质,体验数学发现和创造的历程,力求对现实世界蕴涵的一些数学模式进行思考,

高中数学教学设计案例分析

高中数学教学设计案例分析 对数学概念的反思——学会数学的思考 对于学生来说,学习数学的一个重要目的是要学会数学的思考,用数学的 眼光去看世界去了解世界。而对于数学教师来说,他还要从“教”的角度 去看数学去挖掘数学,他不仅要能“做”、“会理解”,还应当能够教会 别人去“做”、去“理解”,因此教师对教学概念的反思应当从逻辑的、历史的、关系、辨证等方面去展开。 以函数为例: 从逻辑的角度看,函数概念主要包含定义域、值域、对应法则三要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如:指数函数、对数函数等这些内容是函数教学的基础,但不是函数的全部。 从关系的角度来看,不仅函数的主要内容之间存在着种种实质性的联系,函数与其他中学数学内容也有着密切的联系。 方程的根可以作为函数的图象与轴交点的横坐标;

不等式的解就是函数的图象在轴上方的那一部分所对应的横坐标的集合; 数列也就是定义在自然数集合上的函数; 同样的几何内容也与函数有着密切的联系 2.对学数学的反思 教师在教学生是不能把他们看着“空的容器” ,按照自己的意思往这些“空的容器” 里“灌输数学” 这样常常会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学 活动的感觉通常是不一样的。 要想多“制造”一些供课后反思的数学学习素材,一个比较有效的方式就是在教学过程中尽可能多的把学生头脑中问题“挤”出来,使他们解决问题的思维过程暴露出来。 3.对教数学的反思

教得好本质上是为了促进学得好。但在实际教学过程中是否能够合乎我们 的意愿呢? 我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自己的讲解并没有很好的针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。 教学反思的四个视角 1.自我经历 在教学中,我们常常把自己学习数学的经历作为选择教学方法的一个重要 参照,我们每一个人都做过学生,我们每一个人都学过数学,在学习过程中所品尝过的喜怒哀乐,紧张、痛苦和欢乐的经历对我们今天的学生仍有一定的启迪。 当然,我们已有的数学学习经历还不够给自己提供更多、更有价值、可用作反思的素材,那么我们可以“重新做一次学生”以学习者的身份从事一些探索性的活动,并有意识的对活动过程的有关行为做出反思。

高中数学新课程创新教学设计案例等比数列

高中数学新课程创新教学设计案例等比数列 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

47 等比数列 教学内容分析 这节课是在等差数列的基础上,运用同样的研究方法和研究步骤,研究另一种特殊数列———等比数列.重点是等比数列的定义和通项公式的发现过程及应用,难点是应用. 教学目标 1. 熟练掌握等比数列的定义、通项公式等基本知识,并熟练加以运用. 2. 进一步培养学生的类比、推理、抽象、概括、归纳、猜想能力. 3. 感受等比数列丰富的现实背景,进一步培养学生对数学学习的积极情感. 任务分析 这节内容由于是在等差数列的基础上,运用同样的方法和步骤,研究类似的问题,学生接受起来较为容易,所以应多放手让学生思考,并注意运用类比思想,这样不仅有利于学生分清等差和等比数列的区别,而且可以锻炼学生从多角度、多层次分析和解决问题的能力.另外,与等差数列相比等比数列须要注意的细节较多,如没有零项、q≠0等,在教学中应注意加以比较. 教学设计 一、问题情景 在前面我们学习了等差数列,在现实生活中,我们还会遇到下面的特殊数列: 1. 在现实生活中,经常会遇到下面一类特殊数列.下图是某种细胞分裂的模型. 细胞分裂个数可以组成下面的数列: 1,2,4,8,… 2. 一种计算机病毒可以查找计算机中的地址薄,通过电子函件进行传播.如果把病毒制造者发送病毒称为第一轮,函件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么,在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是 1,20,202,203,…

(3)除了单利,银行还有一种支付利息的方式———复利,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.按照复利计算本利和的公式是 本利和=本金×(1+利率)存期 例如,现在存入银行10000元钱,年利率是%,那么按照复利,5年内各年末得到的本利和分别是(计算时精确到小数点后2位): 表47-1 时间年初本金(元)年末本利和(元) 第1年10000 10000× 第2年10000×10000× 第3年10000×10000× 第4年10000×10000× 第5年10000×10000× 各年末的本利和(单位:元)组成了下面的数列: 10000×10198,10000×101982,10000×101983,10000×101984,10000×101985. 问题:回忆等差数列的研究方法,我们对这些数列应作如何研究 二、建立模型 结合等差数列的研究方法,引导学生运用从特殊到一般的思想方法分析和探究,发现这些数列的共同特点,从而归纳出等比数列的定义及符号表示: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列 叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母q表示(q≠0).即 [问题] 1. q可以为0吗有没有既是等差,又是等比的数列 2. 运用类比的思想可以发现,等比数列的定义是把等差数列的定义中的“差”换成了“比”,同样,你能类比得出等比数列的通项公式吗如果能得出,试用以上例子加以检验. 对于2,引导学生运用类比的方法:等差数列通项公式为an=a1+(n-1)d,即a1与(n-1)个d的和,等比数列的通项公式应为an等于a1与(n-1)个q的乘积,即an=a1qn-1.上面的几个例子都满足通项公式. 3. 你如何论证上述公式的正确性.

汇总高中数学教学案例分析.doc

教学案例 我所带的是高二(2)班,她是个庞大的班级,有56名学生。 在第一周上课的几天里,我渐渐的发现一名“怪”学生——张勇明。这名学生坐在教室正中间第二排的位置上。这样的位置是老师能看到的最佳位置,就在老师眼皮底下。上课时,其他这种位置的同学慑于被老师盯上,一般都规规矩矩的坐着,认认真真的听课,而这位同学却不然,他好象一点也不怕被我盯上。 上课时,先是看着黑板听一会儿,然后就弯下腰半趴在课桌上什么也不看,懒懒的样子,不知道在干什么。下课后我走到他跟前问他是不是有什么事,他笑着摇摇头说没有。 课后(2)班主任周老师告诉我,其实那个学生的数学基础挺扎实的,只是有些懒不能长久坚持下去,应该多注意多关照一下。 在以后的上课中,我在提问其他同学问题的时候,也有意无意的去提问他。课后,走到他跟前问他有没有不清楚的问题。 渐渐的在以后的课堂上,这位同学半趴在课桌上的次数少了,当讲到关键处时,我也能看到他在集中精力听。而且我还发现他一个很好的学习习惯——提前预习书本内容,提前做课后练习及习题。有一次我讲四种命题的关系,下课后我走到张勇明跟前,看到他已经把下一节充分必要条件的练习题做过啦,而且准确无误。 中段考试成绩出来了,张勇明的数学考了75分(满分150分),全班第一名。其中有一道数学大题难度较大,我曾在课堂上给同学们讲过,可是只有张勇明一个学生作对,其他做对的同学寥寥无几。 由此,我体会到:由于(2)班大部分同学基础比较薄弱,而高中阶段新内容新知识的接受又需要以前所学内容做铺垫,而以前的知识又没真正掌握,这样恶性循环下去以致使他们失去了学习的兴趣。所以在课堂上,多数同学听的蒙蒙胧胧似懂非懂。 针对这种现象,我要求同学做到:(1)把以前的数学课本从家里找到带到教室来,放在课桌上有意识的经常翻一翻。这样有些没记住的公式或不熟悉的公理定理就能记住了。(2)同学们作课堂笔记的时候,对于涉及到的旧知识内容如果不了解,那么也要做笔记。这样易于查漏补缺,新旧内容一起巩固并掌握。(3)当天事情当天做。每天上完新课后,若有不懂的问题争取当天解决,或者问我或者问同学。(4)经常复习巩固。 高二(班)路玉

高中数学教学设计模版及案例

联系已学知识,可以解决这个问题。 对应问题1. 第三边c 是确定的,如何利用条件求之? 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点?能够解决什么问题? 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:(由学生推出)

222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。 课堂练习 在?ABC 中,若222a b c bc =++,求角A (答案:A=120°) 教学情境四 课堂小结 (1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; (2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。 (3)正、余弦定理从数量关系的角度解释了三角形全等,已知边角求做三角形两类问题,使其化为可以计算的公式。 习题设计 1. 在?ABC 中,a=3,b=4,?=∠60C ,求c 边的长。 2. 在?ABC 中,a=3,b=5,c=7,求此三角形的最大角的度数。 3. 若sin :sin :sin 5:7:8A B C =,求此三角形的最大角与最小角的和的大小。 4. △ABC 中,若()222tan a c b B +-=,求角B 的大小。 5. ?ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,求角C 的大小) (本案例由河北师大附中 刘建良设计,由汉沽五中 纪昌武 在目标设计和习题设计方面略作改动) 编写要求: 1、页面设置:A4,上、下、左、右边距都为2cm ;教学课题:小四宋体加粗;问题设计:课本上没有的有价值的情境、问题、例题、习题用五号黑体字,并简要说明设计意图。其他都用五号宋体。“目标设计、情境设计、问题设计、习题设计”要加粗。 2、目标设计主要写知识目标的设计。目标要具体明确、具有可操作性、可测性。

高中数学教案模板

高中数学教案模板 篇一:高中数学备课模板《空间中的垂直关系》教学计划- 1 -- 2 - - 3 - - 4 - 篇二:高中数学教案模板(1) 课题:三角函数模型的简单应用学校莱钢高中姓名李红一、教学目标:(1)通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法,根据解析式作出图象并研究性质;(2)体验实际问题抽象为三角函数模型问题的过程,体会三角函数是描述周期变化现象的重要函数模型;(3)让学生体验一些具有周期性变化规律的实际问题的数学建模思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力。二、教学重点、难点:重点:用三角函数模型解决一些具有周期变化规律的实际问题.难点:将某些问题抽象为三角函数模型。三、教学方法:数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。四、教学过程:(一)课题引入生活中普遍存在着周期性变化规律的现象,昼夜交替四季轮回,潮涨潮散、云卷云舒,情绪的起起落落,庭前的花开花谢,一切都逃不过数学的眼睛!这节课我们就来学习如何用数学的眼睛洞察我们身边存在的周期现象-----1.6三角函数模型的简单应用。(二)典型例题(1)由图象探求三角函数模型的解析式例1.如图,某地一天从6~14时的温度变化曲线近似满足函数错误!未找到引用源。.(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式意图:切入本节课的课题,让学生明确学习任务和目标。同时以设问和探索的方式导入新课,创设情境,激发思维,做好基础铺垫,让学生带着问题,有目的地参与后续教学活动。解:(1)由图可知:这段时间的最大温差是20?C;(2)从图可以看出:从6~14是y?Asin(?x??)?b的半个周期的图象,∴ T ?14?6?8∴T?16 2 2? ∵T? ? ,∴?? ? 8 30?10?A??10??A?10?2又∵? ∴? b?20??b?30?10?20 ?2? ∴y?10? 8 x??)?20 3? ??)??1, 4 将点(6,10)代入得:∴ 3?3????2k??,k?Z,42 3?3? , ,k?Z,取?? 44 ∴??2k?? ?3? ∴y?10x?)?20,(6?x?14)。 84 【问题的反思】:①一般地,所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围;②与学生一起探索?的各种求法;(这是本题的关键!也是难点!)设计意图:提出问题,有学生动脑分析,

新课程标准下的高中数学课堂教学设计案例一则

新课程标准下的高中数学课堂教学设计案例一则 上海市真如中学常一耕 一、课堂教学改革势在必行 新课标的基本理念是:构建共同基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注重提高学生的数学思维能力;发展学生的数学应用意识。高度概括地说,老师的教与学生的学就是自主、合作、创新。 所谓自主就是尊重学生学习过程中的自主性、独立性,即在学习的内容上、时间上、进度上,更多地给学生自主支配的机会,给学生自主判断、自主选择和自主承担的机会;合作就是学生之间与师生之间的互动合作,平等交流;创新就意味着不固步自封、不因循守旧、不墨守成规。 传统的教学方式一般以组织教学、讲授知识、巩固知识、运用知识和检查知识来展开,其基本做法是:以纪律教育来维持组织教学,以师讲生听来传授新知识,以背诵、抄写来巩固已学知识,以多做练习来运用新知识,以考试测验来检查学习效果。这样的教学方式,在新一轮的基础教育课程改革下,它的缺陷越来越显现出来,它以知识的传授为核心,把学生看成是接受知识的容器,按照上述步骤进行教学,虽然强调了教学过程的阶段性,但却是以学生被动的接受知识为前提的,没有突出学生的实践能力和创新精神的培养,没有突出学生学习的主体性、主动性和独立性。因此,革新教学方式势在必行。 作为新课程改革的有机组成部分,课堂教学改革是不可或缺的重要一环。改革课堂教学就是要用新课程的理念指导课堂教学设计,转变学生消极被动的学习方式,培养学生创新精神和实践能力,数学课堂教学设计,即是要以《数学新课程标准》界定的课程理念为指导,逐步实现新课程标准设定的各项目标,让学生在学会数学知识的同时,学会探究、学会合作、学会应用、学会创新。 二、融入新课程理念的设计原则 (1)建构性原则学生以怎样的方式和途径来获取知识,这是一个学习方式问题,新课程倡导建构性的学习,主张学生知识的自我建构,新课标指出:学生的数学学习活动不应只限于接受、记忆、模仿和练习,而应自主探索、动手实践、合作交流、阅读自学等。因此,数学课堂教学的设计应遵循建构性原则,使学生从“我要学”出发,树立“我能学”的自信,最终寻找到适应学习的个性化方式。 (2) 交互性原则新课程的改革,要求教师进行角色变换,由单纯的“知识传授者”转换为学生学习的“合作者”、“激励者”和“促进者”,这样,在课堂教学中必然会出现“教师与学生”、“学生与学生”的合作学习。从另一角度看,数学课堂中的师生交往、生生交往就是不断进行信息传递的过程,因此,数学课堂设计应体现交互原则。 (3)情境性原则培养和提高学生的数学思维能力,是数学教育的基本目标之一。学生在学习数学和运用数学解决问题时,不断地经历、归纳类比、空间想象、抽象概括、数据处理、演绎证明、反思与建构等思维过程,对客观事物中蕴涵的数学模式进行思考和判断。但这一思维过程离不开直观感知、观察发现,或用实际例子(即适当的形式化)来加以表达,学生更容易接受,

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

[复习]高中数学课题教学设计案例.docx

高中数学课程可选内容的资源 ——数学建模、数学课题学习的教学设计的案例 1.升旗中的数学问题 (一)问题情景和任务 问题情景:在不同地区,同一天的H出和H落吋间不尽相同;对一个地区而言,H岀日落时间又是随FI期的变化而变化的。北京的天安门广场上的国旗每天伴着太阳升起、伴着太阳降落,下表给出了是天安门广场2003年部分LI期的升、降旗时刻表: 任务1:试根据上表提供的数据,分析升、降旗时间变化的人致规律;建立坐标系,将以上数据描在坐标系中; 任务2:分别建立I」出时间和I」落时间关于I」期的近似函数模型;利用你建立的函数模型,计算“五一”国际劳动节、“十一”国庆节的升、降旗时间; 任务3:利用年鉴、互联网或其它资料,查阅北京天安门2003年升旗时间表,检验模型的准确度,分析误差原因,考虑如何改进口己的模型。 任务4:你所生活地区(城市、省、乡村等)某年不同的日期的“日出和FI落”的时间, 建立一个函数关系。 (二)实施建议与说明 通过对升旗中数学问题的求解和讨论,进一步了解相关数学知识的意义和作用,体验数学

建模的基木过程,增强数学知识的应用意识。理解用函数拟合数据的方法,捉高对数据的 观察、分析、处理、从中获取有益信息的能力。 在这个探求活动屮,要特别重视观察、分析、处理数据的一般方法、现代技术的合理使用、数学得到的结果与实际情况不同的原因分析。 1?组成学习探究小组,集体讨论,互相启发,形成可行的探究方案,独立思考,完成每个人的“成果报告”。 2.任务1的建议: 为了便于在坐标系中观察表中数据,选择适当的计最单位,如升旗时刻以10分之为一个单位,H期可以天为单位,即1月1 H为第0天,12月31日为第364天;可借助图形计算器或其它工具绘制各点, 3.任务2的建议: 利用自己的生活经验,或者访问家长、地理老师等,结合散点图,选择学过的适当函数, 作为刻画该关系的模型;要应注意关键数据(如最早升(降)旗时间和最迟升(降)旗时间等)在确定拟合函数参数小的作用; 4.任务3的建议: 根据观察坐标平而上所绘制点的走向趋势,对以考虑分段拟合函数。 5.“成果报告”的书写建议 成果报告可以下表形式呈现。 表1:探究学习成果报告表年级 ________ 班—完成时间_________

高中数学教学案例doc

高中数学《诱导公式》教学案例 教材分析:三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时, 教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义 和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发 现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。 教案背景:通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗 透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。 因此本节内容在三角函数中占有非常重要的地位. 教学方法:以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。 教学目标:借助单位圆探究诱导公式。 能正确运用诱导公式将任意角的三角函数化为锐角三角函数。 教学重点:诱导公式(三)的推导及应用。 教学难点:诱导公式的应用。 教学手段:多媒体。 教学情景设计: 一.复习回顾: 诱导公式(一)(二)。 角(终边在一条直线上) 思考:下列一组角有什么特征?()能否用式子来表示? 二.新课: 已知由 可知 而(课件演示,学生发现) 所以 于是可得:(三) 设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

由公式(一)(三)可以看出,角角相等。即: . 公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。 设计意图:结合学过的公式(一)(二),发现特点,总结公式。 练习 (1) 设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。 (学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。) 三.例题 例3:求下列各三角函数值: (1) (2) (3) (4) 例4:化简 设计意图:利用公式解决问题。 练习: (1) (2)(学生板演,师生点评) 设计意图:观察公式特点,选择公式解决问题。 四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

高中数学教学案例设计总汇编

高中数学教学案例设计汇编 (下部) 19、正弦定理(2) 一、教学容分析 本节容安排在《普通高中课程标准实验教科书·数学必修5》(人教A版)第一章,正弦定理第一课时,是在高二学生学习了三角等知识之后,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形容的直接延伸,因而定理本身的应用又十分广泛。 根据实际教学处理,正弦定理这部分容共分为三个层次:第一层次教师通过引导学生对实际问题的探索,并大胆提出猜想;第二层次由猜想入手,带着疑问,以及特殊三角形中边角的关系的验证,通过“作高法”、“等积法”、“外接圆法”、“向量法”等多种方法证明正弦定理,验证猜想的正确性,并得到三角形面积公式;第三层次利用正弦定理解决引例,最后进行简单的应用。学生通过对任意三角形中正弦定理的探索、发现和证明,感受“观察——实验——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。 二、学情分析 对普高高二的学生来说,已学的平面几何,解直角三角形,三角函数,向量等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。 三、设计思想: 本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“正弦定理的发现和证明”为基本探究容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。 四、教学目标: 1.让学生从已有的几何知识出发, 通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。 2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。 3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探

高中数学新课程创新教学设计案例 角的概念的推广

31 角的概念的推广 教材分析 这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键. 教学目标 1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义. 2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法. 3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系. 任务分析 这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握. 教学设计 一、问题情境 [演示] 1. 观览车的运动. 2. 体操运动员、跳台跳板运动员的前、后转体动作. 3. 钟表秒针的转动. 4. 自行车轮子的滚动.

[问题] 1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角 2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角 3. 钟表上的秒针(当时间过了时)是按什么方向转动的,转动了多大角 4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角 显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备. 二、建立模型 1. 正角、负角、零角的概念 在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角. 2. 象限角 当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限. 3. 终边相同的角 在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即 390°=30°+360°,(k=1); -330°=30°-360°,(k=-1). 设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和. 三、解释应用 [例题] 1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.

高中数学教案模板(1)

课题:三角函数模型的简单应用 学校莱钢高中姓名李红 一、教学目标: (1)通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法,根据解析式作出图象并研究性质; (2)体验实际问题抽象为三角函数模型问题的过程,体会三角函数是描述周期变化现象的重要函数模型; (3)让学生体验一些具有周期性变化规律的实际问题的数学建模思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力。 二、教学重点、难点: 重点:用三角函数模型解决一些具有周期变化规律的实际问题. 难点:将某些问题抽象为三角函数模型。 三、教学方法: 数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。 四、教学过程: (一)课题引入 生活中普遍存在着周期性变化规律的现象,昼夜交替四季轮回,潮涨潮散、云卷云舒,情绪的起起落落,庭前的花开花谢,一切都逃不过数学的眼睛!这节课我们就来学习如何用数学的眼睛洞察我们身边存在的周期现象-----1.6三角函数模型的简单应用。 (二)典型例题 (1)由图象探求三角函数模型的解析式 例1.如图,某地一天从6~14时的温度变化曲线近似满足函数错误!未找到 引用源。.Array(1)求这一天6~14时的最大温差; (2)写出这段曲线的函数解析式

设计意图:切入本节课的课题,让学生明确学习任务和目标。同时以设问和探索的方式导入新课,创设情境,激发思维,做好基础铺垫,让学生带着问题,有目的地参与后续教学活动。 解:(1)由图可知:这段时间的最大温差是C 20; (2)从图可以看出:从6~14是b x A y ++=)sin(?ω的 半个周期的图象, ∴ 86142 =-=T ∴16=T ∵ω π 2= T ,∴8 π ω= 又∵??? ????=+==-=20 210301021030b A ∴???==2010b A ∴20)8 sin( 10++=?π x y 将点)10,6(代入得:1)4 3sin(-=+?π , ∴ Z k k ∈+=+,2 3243ππ?π, ∴Z k k ∈+ =,432ππ?,取4 3π ?= , ∴)146(,20)4 38sin(10≤≤++=x x y π π。 【问题的反思】: ①一般地,所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特 别注意自变量的变化范围; ②与学生一起探索?的各种求法;(这是本题的关键!也是难点!) 设计意图:提出问题,有学生动脑分析,自主探究,培养学生数形结合的数学思考习惯。

高中数学新课程创新教学设计案例50篇___15_异面直线

15 异面直线 教材分析 异面直线是立体几何中十分重要的概念.研究空间点、直线和平面之间的各种位置关系必须从异面直线开始. 教材首先通过实例让学生弄懂“共面”、“异面”的区别,正确理解“异面”的含义,进而介绍异面直线所成角及异面直线间的距离,这样处理完全符合学生的认知规律.处理好这节内容,可以比较容易地引导学生实现由平面直观到空间想象的过渡. 教学重点是异面直线的概念,求异面直线所成的角和异面直线间的距离是这节的难点.教学目标 1. 理解异面直线的概念,了解空间中的直线的三种位置关系. 2. 理解异面直线所成的角、异面直线间的距离的意义,体会空间问题平面化的基本数学思想方法. 3. 通过异面直线的学习,使学生逐步养成在空间考虑问题的习惯,培养学生的空间想象能力. 任务分析 空间中的两条直线的位置关系,是在平面中两条直线位置关系及平面的基本性质基础上提出来的.学生对此已有一定的感性认识,但是此认识是肤浅的.同时,学生空间想象能力还较薄弱.因此,这节内容课应从简单、直观的图形开始介绍.“直观”是这节内容的宗旨.多给学生思考的时间和空间,以有助于空间想象能力的形成.异面直线所成的角的意义及求法,充分体现了化归的数学思想.要让学生通过基本问题的解决,进一步体会异面直线所成的角、异面直线间的距离的意义及其基本求法. 教学设计 一、问题情境(1) 1. 同一平面内的两条直线有几种位置关系?空间中的两条直线呢?观察教室内的日光灯管所在直线与黑板的左右两侧所在直线的位置或观察天安门广场上旗杆所在直线与长安街所在直线的位置. 2. 如图15-1,长方体ABCD—A1B1C1D1中,线段A1B所在直线与线段C1C所在直线的位置关系如何?

高中数学教学设计模版及案例

教学情境一:(问题引入)在ABC中,已知两边a,b和夹角C,作出三角形。 联系已学知识,可以解决这个问题。

对应问题1. 第三边c 是确定的,如何利用条件求之 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点能够解决什么问题 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角 从余弦定理,又可得到以下推论:(由学生推出) 222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系 (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-==b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B b = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。

(完整版)高中数学教学案例

高中数学教学案例 孙世纪 直线与平面平行的判定 一、教学内容分析: 本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。 二、学生学习情况分析: 任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。 三、设计思想 本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助 实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定 理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的 过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养 成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力, 提高学生的数学逻辑思维能力。 四、教学目标 通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。 五、教学重点与难点 重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。 六、教学过程设计 (一)知识准备、新课引入

高中数学教学设计案例分析参考

高中数学教学设计案例分析参考 高中数学《圆锥曲线定义的运用》教学案例的反思 一、教学内容分析 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低

学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。 3.借助多媒体辅助教学,激发学习数学的兴趣. 五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解

2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义解题 六、教学过程设计 【设计思路】 (一)开门见山,提出问题 一上课,我就直截了当地给出—— 例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。 (A)椭圆(B)双曲线(C)线段(D)不存在

高一数学教案设计

高一数学教案设计 教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法 (2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的 集合 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 1、集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的 掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可 缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础 把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中, 这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下 一章讲函数的概念与性质,就离不开集合与逻辑 本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并 且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描 述法,还给出了画图表示集合的例子 这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使 学生认识学习本章的意义本节课的教学重点是集合的基本概念 集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过 实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为 一个集合,也简称集”这句话,只是对集合概念的描述性说明

相关主题
文本预览
相关文档 最新文档