当前位置:文档之家› 行星齿轮传动的特点

行星齿轮传动的特点

行星齿轮传动的特点
行星齿轮传动的特点

行星齿轮传动的特点

行星齿轮传动与普通齿轮传动相比较,它具有许多独特的优点。它的最显著的特点是:在传递动力时它可以进行功率分流;同时,其输入轴与输出轴具有同轴性,即输出轴与输入轴均设置在同一主轴线上。所以,行星齿轮传动现已被人们用来代替普通齿轮传动,而作为各种机械传动系统中的减速器、增速器和变速装置。尤其是对于那些要求体积小、质量小、结构紧凑和传动效率高的航空发动机、起重运输、石油化工和兵器等的齿轮传动装置以及需要差速器的汽车和坦克等车辆的齿轮传动装置,行星齿轮传动已得到了越来越广泛的应用。

行星齿轮传动的主要特点如下。

(1)体积小、质量小,结构紧凑,承载能力大由于行星齿轮传动具有功率分流和各中心轮构成共轴线式的传动以及合理地应用内啮合齿轮副,因此可使其结构非常紧凑。再由于在中心轮的周围均匀地分布着数个行星轮来共同分担载荷,从而使得每个齿轮所承受的负荷较小,并允许这些齿轮采用较小的模数。此外,在结构上充分利用了内啮合承载能力大和内齿圈本身的可容体积,从而有利于缩小其外廓尺寸,使其体积小,质量小,结构非常紧凑,且承载能力大。一般,行星齿轮传动的外廓尺寸和质量约为普通齿轮传动的1/2~1/5 (即在承受相同的载荷条件下)。

(2)传动效率高由于行星齿轮传动结构的对称性,即它具有数个匀称分布的行星轮,使得作用于中心轮和转臂轴承中的反作用力能互相平衡,从而有利于达到提高传动效率的作用。在传动类型选择恰当、结构布置合理的情况下,其效率值可达0.97~0.99。

(3)传动比较大,可以实现运动的合成与分解只要适当选择行星齿轮传动的类型及配齿方案,便可以用少数几个齿轮而获得很大的传动比。在仅作为传递运动的行星齿轮传动中,其传动比可达到几千。应该指出,行星齿轮传动在其传动比很大时,仍然可保持结构紧凑、质量小、体积小等许多优点。而且,它还可以实现运动的合成与分解以及实现各种变速的复杂的运动。

(4)运动平稳、抗冲击和振动的能力较强由于采用了数个结构相同的行星轮,均匀地分布于中心轮的周围,从而可使行星轮与转臂的性力相互平衡。同时,也使参与啮合的齿数增多,故行星齿轮传动的运动平稳,抵抗冲击和振动的能力较强,工作较可靠。

总之,行星齿轮传动具有质量小、体积小、传动比大及效率高(类型选用得当)等优点。因此,行星齿轮传动现已广泛地应用于工程机械、矿山机械、冶金机械、起重运输机械、轻工机械、石油化工机械、机床、机器人、汽车、坦克、火炮、飞机、轮船、仪器和仪表等各个方面。行星传动不仅适用于高转速、大功率,而且在低速大转矩的传动装置上也已获得了应用。它几乎可适用于一切功率和转速范围,故目前行星传动技术已成为世界各国机械传动发展的重点之一。

随着行星传动技术的迅速发展,目前,高速渐开线行星齿轮传动装置所传递的功率已达到2000KW,输出转矩已达到4500KNm。据有关资料介绍,人们认为目前行星齿轮传动技术的发展方向如下。

(1)标准化、多品种目前世界上已有50多个渐开线行星齿轮传动系列设计;而且还演化出多种型式的

行星减速器、差速器和行星变速器等多器种的产品。

(2)硬齿面、高精度行星传动机构中的齿轮广泛采用渗碳和氮化等化学热处理。齿轮制造精度一般均在6级以上。显然,采用硬齿面、高精度有利于进一步提高承载能力,使齿轮尺寸变得更小。

(3)高转速、大功率行星齿轮传动机构在高速传动中,如在高速汽轮中已获得日益广泛的应用,其传动功率也越来越大。

(4)大规格、大转矩在中低速、重载传动中,传递大转矩的大规格的行星齿轮传动已有了较大的发展。行星齿轮传动的缺点是:材料优质、结构复杂、制造和安装较困难些。但随着人们对行星传动技术进一步深入地了解和掌握以及对国外行星传动技术的引进和消化吸收,从而使其传动结构和均载方式都不断完善,同时生产工艺水平也不断提高。因此,对于它的制造安装问题,目前已不再视为一件什么困难的事情。实践表明,在具有中等技术水平的工厂里也是完全可以制造出较好的行星齿轮传动减速器。

应该指出,对于行星齿轮传动的设计者,不仅应该了解其优点,而且应该在自己的设计工作中,充分地发挥其优点,且把其缺点降低到最低的限度。从而设计出性能优良的行星齿轮传动装置。

NGW型行星齿轮减速器——行星轮的设计

目录 一.绪论 (3) 1.引言 (3) 2.本文的主要内容 (3) 二.拟定传动方案及相关参数 (4) 1.机构简图的确定 (4) 2.齿形与精度 (4) 3.齿轮材料及其性能 (5) 三.设计计算 (5) 1.配齿数 (5) 2.初步计算齿轮主要参数 (6) (1)按齿面接触强度计算太阳轮分度圆直径 (6) (2)按弯曲强度初算模数 (7) 3.几何尺寸计算 (8) 4.重合度计算 (9) 5.啮合效率计算 (10) 四.行星轮的的强度计算及强度校核 (11) 1.强度计算 (11) 2.疲劳强度校核 (15) 1.外啮合 (15) 2.内啮合 (19) 3.安全系数校核 (20)

五.零件图及装配图 (24) 六.参考文献 (25)

一.绪论 1.引言 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 NGW型行星齿轮传动机构的主要特点有: 重量轻、体积小。在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3; 传动效率高; 传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高; 装配型式多样,适用性广,运转平稳,噪音小; 外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。 因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。 2.本文的主要内容 NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,

行星齿轮传动设计详解

1 绪论 行星齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用[1-2]。 1.1 发展概况 世界上一些工业发达国家,如日本、德国、英国、美国和俄罗斯等,对行星齿轮传动的应用、生产和研究都十分重视,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1-8]。 1.2 3K型行星齿轮传动 在图4所示的3K型行星齿轮传动中,其基本构件是三个中心轮a、b和e,故其传动类型代号为3K[10]。在3K型行星传动中,由于其转臂H不承受外力矩的作用,所以,它不是基本构件,而只是用于支承行星轮心轴所必需的结构元件,

()齿轮传动效率及齿轮疲劳实验(文档)

齿轮传动效率及齿轮疲劳实验 (附加机械功率、效率测试实验) 一.实验目的 1.了解封闭(闭式)齿轮实验机的结构特点和工作原理。 2.了解齿轮疲劳实验的过程,及通过实验测定齿轮疲劳曲线的方法。 3.在封闭齿轮实验机上测定齿轮的传动效率。 4.介绍机械功率、效率测定开式实验台,了解一般机械功率、效率的测试方法。 二.实验设备及工作原理 1.封闭(闭式)传动系统 封闭齿轮实验机具有2个完全相同的齿轮箱(悬挂齿轮箱7和定轴齿轮箱4),每个齿轮箱内都有2个相同的齿轮相互啮合传动(齿轮9与V,齿轮5与5'),两个实验齿轮箱之间山两根轴(一根是用于储能的弹性扭力轴6,另一根为万向节轴10)相联,组成一个封闭的齿轮传动系统。当山电动机1驱动该传动系统运转起来后,电动机传递给系统的功率被封闭在齿轮传动系统内,既两对齿轮相互自相传动,此时若在动态下脱开电动机,如果不存在各种摩擦力(这是不可能的),且不考虑搅油及其它能量损失,该齿轮传动系统将成为永动系统; 山于存在摩擦力及其它能量损耗,在系统运转起来后,为使系统连续运转下去, 山电动机继续提供系统能耗损失的能量,此时电动机输出的功率仅为系统传动功率的20%左右。对于实验时间较长的情况,封闭式实验机是有利于节能的。 1?悬挂电动机2.转矩传感器3.转速传感器4?定轴齿轮箱5?泄轴齿轮副6.弹性扭力 轴7.悬挂齿轮箱&加载狂码9.悬挂齿轮副10.万向节轴11.转速脉冲发生器2.电动机的输出功率

电动机1为直流调速电机,电动机转子与定轴齿轮箱输入轴相联,电动机 采用外壳悬挂支承结构(既电机外壳可绕支承轴线转动);电动机的输出转矩等于电 动机转子与定子之间相互作用的电磁力矩,与电动机外壳(定子)相联的转矩传感器2提供的外力矩与作用于定子的电磁力矩相平衡,故转矩传感器测得的力矩即为电动机的输出转矩To;电动机转速为n,电动机输出功率为P u =n? To/9550 (KW)。3.封闭系统的加载 当实验台空载时,悬挂齿轮箱的杠杆通常处于水平位置,当加上载荷W 后,对悬挂齿轮箱作用一外加力矩WL,使悬挂齿轮箱产生一定角度的翻转,使两个齿轮箱内的两对齿轮的啮合齿面鼎紧,这时在弹性扭力轴内存在一扭矩T9 (方向与外加负载力矩WL相反),在万向节轴内同样存在一扭矩TJ (方向同样与外加力矩WL相反);若断开扭力轴和万向节轴,取悬挂齿轮箱为隔离体, 可以看出两根轴内的扭矩之和(Tg+TJ)与外加负载力矩WL平衡(即T9+T9'=WL);乂因两轴内的两个扭矩(T9和T9')为同一个封闭环形传动链内的扭矩,故这两个扭矩相等(T9=T9*),即2T9=WL, T9=WL/2 (Nm);由此可以算出该封闭系统内传递的功率为: P9=T9 n / 9550=WLn/19100 (KW) 其中:n--电动机及封闭系统的转速(rpm); W-所加祛码的重力(N); L—加载杠杆(力臂)的长度,L= 0.3 mo 4.单对齿轮传动效率 设封闭齿轮传动系统的总传动效率为Q ; 封闭齿轮传动系统内传递的有用功率为P9; 封闭齿轮传动系统内的功率损耗(无用功率)等于电动机输出功率Po,即: Po=( P9 / n)-P9 n=p9 / (Po+PJ 二T9/ (T0+T9) 若忽略轴承的效率,系统总效包也含两级齿轮的传动效率,故单级齿轮的传 动效率为:7=向={〒务 5.封闭功率流方向""

(完整word版)NGW型行星轮中太阳轮的设计和计算要点

目录 一.绪论 (1) 二.拟定传动方案及相关参数 (3) 1.机构简图的确定 (3) 2.齿形与精度 (3) 3.齿轮材料及其性能 (4) 三.设计计算 (4) 1.配齿数 (4) 2.初步计算齿轮主要参数 (5) 3.几何尺寸计算 (8) 4.重合度计算 (9) 四.太阳轮的强度计算及强度校核 (10) 1.强度计算 (10) (1)外载荷 (12) (2)危险截面的弯矩和轴向力 (12) 2.疲劳强度校核 (14) (1)齿面接触疲劳强度 (14) (2)齿根弯曲疲劳强度 (18) 3.安全系数校核 (21) 五.零件图和装配图 (25) 六.参考文献 (26)

一.绪论 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 NGW型行星齿轮传动机构的主要特点有: 1、重量轻、体积小。在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3; 2、传动效率高; 3、传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高; 4、装配型式多样,适用性广,运转平稳,噪音小; 5、外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。 NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,以基本构件命名,

齿轮传动效率测定

验证性实验指导书 实验名称:齿轮传动效率测定 实验简介:齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。为此,人们采用了许多试验方法和试验设备。本实验是针对齿轮传动的效率进行验证性测定。 适用课程:机械设计 实验目的:A了解电功率封闭式齿轮传动试验台的基本原理、结构及特点;B掌握功率流分析、效率测定的方法;C测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线;D初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。。面向专业:机械类 实验项目性质:验证性(课内选做) 计划学时: 2学时 实验分组:4人/组 实验照片:

《机械设计》课程实验 实验二齿轮传动效率测定 齿轮是重要的机械传动零件,所以对齿轮传动的理论和实验研究都是很必要的。齿轮传动往往要进行轮齿静强度、齿根弯曲疲劳强度、齿面接触疲劳强度、齿面磨损、齿面胶合和影响齿轮传动性能的因素(如材料、制造工艺、热处理工艺、润滑、轮齿载荷分布等)的试验,以及对齿轮传动性能(如传动效率、动载荷、噪声、工作温度等)的测定。为此,人们采用了许多试验方法和试验设备。本实验是针对齿轮传动的效率进行验证性测定。 一、实验目的 1. 了解电功率封闭式齿轮传动试验台的基本原理、结构及特点; 2.掌握功率流分析、效率测定的方法; 3.测量单级圆柱齿轮减速器的传动效率,画出它的效率曲线; 4.初步了解拟定实验方案、设计实验装置和数据测量等方面的知识。 二、实验设备和工具 1. Z-45直流电动机2台; 2. ZJ型转矩转速传感器2台; 3. ZD10型减速器2台; 4. JXW-1型机械效率仪1台; 5. TSGC-20调压器1台; 6. 加载控制箱1台; 7. CP-80打印机1台。 三、实验原理 1. 齿轮传动试验台简介 所有类型的齿转传动试验台,根据运转与否分为运转式和非运转式两大类。非运转式试验台指齿轮或齿轮副只能在静止状态下进行试验的试验台,如静态加载的齿轮静强度试验台。非运转式试验台中被测齿轮的试验状态同齿轮的实际工作状态有较大的差别,不大可能获得满意的试验结果。运转式试验台是指齿轮副能在一定转速下进行试验的设备。该类设备一般都由驱动装置、传动装置、加载装置、齿轮试件失效监护装置、润滑装置、测试装置等六部分组成。其试验能获得较接近实际的结果,运转式试验台根据试验台功率的传递原理和加载方法的不同,可分为开放功率流式和封闭功率流式两类。 (1)开放功率流式试验台 所谓开放功率流,就是齿轮传动所传递的功率由原动机传来,经过齿轮传动和试验装且中的全部传动件,最后传到耗能装置中,由耗能装置即加载装置将其全部消耗,并借助耗能装置给被测装置加载。功率传递的流向未形成封闭回路,故称其为开放功率流式试验台,图2-1为开放功率流式试验台构成原理。

行星齿轮设计【模板】

第二章 原始数据及系统组成框图 (一)有关原始数据 课题: 一种行星轮系减速器的设计 原始数据及工作条件: 使用地点:减速离合器内部减速装置; 传动比:p i =5.2 输入转速:n=2600r/min 输入功率:P=150w 行星轮个数:w n =3 内齿圈齿数b z =63 第五章 行星齿轮传动设计 (一)行星齿轮传动的传动比和效率计算 行星齿轮传动比符号及角标含义为: 123i 1—固定件、2—主动件、3—从动件 1、齿轮b 固定时(图1—1),2K —H (NGW )型传动的传动比b aH i 为 b aH i =1-H ab i =1+b z /a z 可得 H ab i =1-b aH i =1-p i =1-5.2=-4.2 a z =b z /b aH i -1=63*5/21=15 输出转速: H n =a n /p i =n/p i =2600/5.2=500r/min 2、行星齿轮传动的效率计算: η=1-|a n -H n /(H ab i -1)* H n |*H ψ H ψ=*H H H a b B ψψψ+ H a ψ为a —g 啮合的损失系数,H b ψ为b —g 啮合的损失系数,H B ψ为轴承的损失系数,H ψ 为总的损失系数,一般取H ψ=0.025 按a n =2600 r/min 、H n =500r/min 、H ab i =-21/5可得

η=1-|a n -H n /(H ab i -1)* H n |*H ψ=1-|2600-500/(-4.2-1)*500|*0.025=97.98% (二) 行星齿轮传动的配齿计算 1、传动比的要求——传动比条件 即 b aH i =1+b z /a z 可得 1+b z /a z =63/5=21/5=4.2 =b aH i 所以中心轮a 和内齿轮b 的齿数满足给定传动比的要求。 2、保证中心轮、内齿轮和行星架轴线重合——同轴条件 为保证行星轮g z 与两个中心轮a z 、b z 同时正确啮合,要求外啮合齿轮a —g 的中心距等于内啮合齿轮b —g 的中心距,即 w (a )a g - =()w b g a - 称为同轴条件。 对于非变位或高度变位传动,有 m/2(a z +g z )=m/2(b z -g z ) 得 g z =b z -a z /2=63-15/2=24 3、保证多个行星轮均布装入两个中心轮的齿间——装配条件 想邻两个行星轮所夹的中心角H ?=2π/w n 中心轮a 相应转过1?角,1?角必须等于中心轮a 转过γ个(整数)齿所对的中心角, 即 1?=γ*2π/a z 式中2π/a z 为中心轮a 转过一个齿(周节)所对的中心角。 p i =n/H n =1?/H ?=1+b z /a z 将1?和H ?代入上式,有 2π*γ/a z /2π/w n =1+b z /a z 经整理后γ=a z +b z =(15+63)/2=24 满足两中心轮的齿数和应为行星轮数目的整数倍的装配条件。 4、保证相邻两行星轮的齿顶不相碰——邻接条件 在行星传动中,为保证两相邻行星轮的齿顶不致相碰,相邻两行星轮的中心距应大于两轮齿顶圆半径之和,如图1—2所示

齿轮传动的特点和应用

齿轮传动的特点和应用 外 合直齿圆啮齿柱轮动 内啮传直合圆齿齿轮传柱 齿动轮条传动(齿直条齿 外啮合)齿斜柱齿圆轮动传 字人轮传动 齿轮齿条齿动传(斜条)齿 .空2齿轮传间动.间齿轮空动用传于交轴相交和轴之错间的动。空间齿轮传传用于相动交和交错轴轴间的之动。传 螺旋轮齿传动齿直锥圆齿传轮动曲齿圆锥齿传轮动交错(轴齿斜轮动传)蜗 传杆 动

双准曲齿轮传动 面 齿轮传的类动型齿直圆柱齿轮动外传啮 合啮内 平合齿面轮运齿(动传递平轴行的运动)间轮传动间空齿轮运(传动递不行轴间的平动) 运 (齿与轮轴平)行轮齿条齿 啮合斜外齿柱齿轮传动圆内合啮轮齿(与不平行轴齿轮)条齿 人字轮齿动传(齿成轮字形) 人递传交轴相运动(齿锥传轮动)直齿斜齿交错轴斜齿传动轮传递错轴交运动蜗轮杆蜗动传准双曲齿轮面动传 121..3廓啮齿基本合律定齿轮动传要求确准平,即要稳在求传过动程中瞬时传比保动持不变以免,生产击、冲齿传动轮求准确要平,即要稳求传动在过程中,瞬传动比时持不保,以免产生变击冲振动、

噪音。和振和动音。噪论齿廓不任何点接触在,过触点所作两齿廓接的法线必须公连与线交心于固一定点不论齿,廓在任何点触接过接,触所点作两齿的廓法公线必与连心线须交一于定点,这固就是廓齿合基本定律。就啮齿廓啮是基合定律。本 212.渐线开轮12.2.齿1开渐线的形成基及性质本.1渐开的形线成2.渐开 线的质性.据根渐线的形开,成可知开渐具有下列线些一特性:据根渐开的线成形,知可渐开线有下列具些特性一:)1生线沿基发圆过滚直线的长,等度于 基圆上滚被过的弧长圆度;发)生沿基圆滚过的直线线度,等于基长上圆被滚过的弧圆度;长 2))发线k生n是开渐在任线意点k法的。线法线的因此,。生线发任上一点法的必线切基于。因圆,此发生线上任一的法点必线切基于圆。)3开渐线廓上某点的齿法线该与点速度的方向线所夹锐的α角k称为该的压点角。力)称为点的该压角力。上式由知可,开线渐

齿轮传动效率测定与分析

齿轮传动效率测定与分 析 Document number:PBGCG-0857-BTDO-0089-PTT1998

实验2 齿轮传动效率测定与分析 实验目的 1.了解机械传动效率的测定原理,掌握用扭矩仪测定传动效率的方法; 2.测定齿轮传动的传递功率和传动效率; 3.了解封闭加载原理。 实验设备和工具 1.齿轮传动效率试验台; 2.测力计; 3.数据处理与分析软件; 4.计算机、打印机。 实验原理和方法 1. 齿轮传动的效率及其测定方法 齿轮传动的功率损失主要在于:(1)啮合面的摩擦损失;(2)轮齿搅动润滑油时的油阻损失;(3)轮轴支承在轴承中和轴承内的摩擦损失。齿轮传动的效率即指一对齿轮的从动轮(轴)输出功率与主动轮(轴)输入功率之比。对于采用滚动轴承支承的齿轮传动,满负荷时计入上述损失后,平均效率如表所示。 表齿轮传动的平均效率

测定效率的方式主要有两种:开放功率流式与封闭功率流式。前者借助一个加载装置(机械制动器、电磁测功器或磁粉制动器)来消耗齿轮传动所传递的能量。其优点是与实际工作情况一致,简单易行,实验装置安装方便;缺点是动力消耗大,对于需作较长时间试验的场合(如疲劳试验),消耗能力尤其严重。而后者采用输出功率反馈给输入的方式,电源只供给齿轮传动中摩擦阻力所消耗的功率,可以大大减小功耗,因此这种实验方案采用较多。 2. 封闭式试验台加载原理 图表示一个加载系统,电机功率通过联轴器1传到齿轮2,带动齿轮3及同一轴上的齿轮6,齿轮6再带动齿轮5。齿轮5的轴与齿轮2的轴之间以一只特殊联轴器和加载器相联接。 设齿轮齿数6532,z z z z ==,齿轮5的转速为5n (r/min)、扭矩为)m N (5?M ,则齿轮5处的功率为 )kW ( 9550 555n M N = 若齿轮2、5的轴不作封闭联接,则电机的功率为 )kW ( 9550/5 551η η?==n M N N 式中η为传动系统的效率。 而当封闭加载时,在5M 不变的情况下,齿轮2、3、6、5形成的封闭系统的内力产生封闭力矩4M )m N (?,其封闭功率为 )kW ( 9550 444n M N = 该功率不需全部由电机提供,此时电机提供的功率仅为 )kW ( /441 N N N -='η 由此可见,11 N N <<',若%95≈η,则封闭式加载的功率消耗仅为开放式加载功率的1/20。

齿轮传动、蜗杆传动、带传动、链轮传动的优缺点超全

齿轮传动、蜗杆传动、带传动、链轮传动的优缺点超全

几种传动形式之间的比较齿轮传动用来传递任意两轴间的运动和动力 齿轮传动与带传动相比主要有以下优点: (1)传递动力大、效率高; (2)寿命长,工作平稳,可靠性高; (3)能保证恒定的传动比,能传递任意夹角两轴间的运动 齿轮传动与带传动相比主要缺点有: (1)制造、安装精度要求较高,因而成本也较高; (2)不宜作远距离传动。 (3 ) 无过载保护 (4 ) 需专门加工设备

蜗轮蜗杆用于传递交错轴之间的回转运动和动力 带传动和链传动都是通过中间挠性件(带或链)传递运动和力的,适用于传递两轴中心距较大的场合 链传动的特点:①和齿轮传动比较,它可以在两轴中心相距较远的情况下传递运动和动力;②能在低速、重载和高温条件下及灰土飞扬的不良环境中工作;③和带传动比较,它能保证准确的平均传动比,传递功率较大,且作用在轴和轴承上的力较小;④传递效率较高,一般可达~;⑤链条的铰链磨损后,使得节距变大造成脱落现象;⑥安装和维修要求较高.链轮材料一般是结构钢等. 带传动(皮带传动)特点(优点和缺点):①结构简单,适用于两轴中心距较大的传动场合;②传动平稳无噪声,能缓冲、吸振;③过载时带将会在带轮上打滑,可防止薄弱零部件损坏,起到安全保护作用;④不能保证精确的传动比.带轮材料一般是铸铁等. 齿轮传动的特点:①能保证瞬时传动比恒定,平稳性较高,传递运动准确可靠;②传递的功率和速度范围较大;③结构紧凑、工作可靠,可实现较大的传动比;④传动效率高,使用寿命长;⑤齿轮的制造、安装要求较高.齿轮材料一般是铸铁等. 涡轮蜗杆传动最主要的特点就是具有反向自锁的功能,而且相比其它传动具有较大的速比,涡轮蜗杆的输入、输出轴不在同一轴线上,甚至不在同一个平面上。自身的缺点,那就是涡轮蜗杆的传动效率不够高,精度也不是很高

3Z型行星齿轮减速器设计

1.绪论 1.1课题研究的背景和意义 “十一五”期间我国将按照国家储备与企业储备相结合,以国家储备为主的方针,统一规划,分批建设国家战略石油储备基地。为了快速建立起我国独立的石油储备基地,根据我国国情石油储备形式以大型工业油罐为主。 在使用大型油罐进行原油储备的过程中,遇到最关键的问题就是油泥的问题,储运重未经提炼制的原油重平均约含2.2%的油泥,即对一个10万立方的储罐来说,灌满原油后其中约有2200立方的油泥成点在油罐底部。如不及时清除,再次加入原油是油泥将继续累积在一起,形成硬块,为油罐的检查及清洗增加困难。而且数量如此巨大的油泥存在于油罐底部,不经减小油罐的有效储存空间,降低储存周期寿命,造成进出阀的阻塞,而且较厚的油泥层使浮顶灌的浮顶不能不下降到底而引起浮顶倾斜,对储油安全造成威胁。因此大型原油储罐在建立时就必须增设油泥防止和消除系统,以增加油罐的储油效率,提高储油安全性,减小清灌难度。 大型原油储罐灌底油泥的防止和消除方法主要是在灌内增加油泥的混合搅拌系统,使油泥破碎细化,便于通过管线输出,我们选用了旋转喷射搅拌器。但是,其喷嘴口径相对于大型储罐的直径而言是很小的,喷嘴固定是射流束的搅拌范围是有限的,于是,在旋转喷射器入口处设置轴流涡轮,考循环油泵加压后的原油流动带动轴流涡轮高速旋转,旋转的涡轮通过主轴带动结构上完全隔绝的传动箱内一系列的减速传动使喷嘴缓慢旋转,而且通过传动箱内有关参数的选择来调节喷嘴旋转的速度,是从喷嘴喷出的射流也随之缓慢旋转,射流可打击到油罐底周向任一位置的油泥,实现彻底清除油泥,不留死角的功能。 可见,旋转喷射器中减速箱是工业油罐底油泥旋转喷射混合系统中重要的一部分。高速旋转的涡轮带动喷水嘴低速的转动,中间需要一个传动比很大的减速器连接。 1.2行星齿轮减速器研究现状及发展动态 行星齿轮传动与普通定州齿轮传动相比较,具有质量小,体积小,传动比大,承载能力大以及传动平稳和传动效率高等优点,这些已经被我过越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动种均有效地利用了功率分流性和输入,输出地同轴性以及合理的采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速,大功率而且可用于低速,大转矩的机械传动装置上。它可以用作减速,增速和变速传动,运动的合成和分解,以及其特殊的应用中:

行星齿轮传动原理

行星齿轮传动原理 每一部汽车上都有行星齿轮,少了它们,汽车就不能自由行走。汽车上的行星齿轮主要用在两个地方,一是驱动桥减速器、二是自动变速器。很多网友都想知道,行星齿轮有什么功能,为什么汽车少不了它。 我们熟知的齿轮绝大部分都是转动轴线固定的齿轮。例如机械式钟表,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图1中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图2中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。 在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合: 动力从其中一个太阳轮输入,从另外一个太阳轮输出,行星架通过刹车机构刹死;动力从其中一个太阳轮输入,从行星架输出,另外一个太阳轮刹死; 动力从行星架输入,从其中一个太阳轮输出,另外一个太阳轮刹死; 两股动力分别从两个太阳轮输入,合成后从行星架输出; 两股动力分别从行星架和其中一个太阳轮输入,合成后从另外一个太阳轮输出;动力从其中一个太阳轮输入,从另外一个太阳轮和行星架分两路输出; 动力从行星架输入,分两路从两个太阳轮输出; 我们知道,汽车发动机只有一个,而车轮有四个。发动机的转速扭矩等特性与路面行驶需求大相径庭。要把发动机的功率适当地分配到驱动轮,可以利用行星齿轮的上述特性。如自动变速器,也是利用行星齿轮的这些特性,通过离合器和制动器改变各个构件的相对运动关系而获得不同的传动比

齿轮传动效率实验

齿轮传动效率实验 一. 实验目的 1. 了解封闭式齿轮试验台的基本原理及其结构。 2. 测定齿轮传动效率,掌握测试方法。 3. 本试验台可长期运行,定时观察齿面点蚀现象。 二. 实验设备及工作原理 1. 1. 试验台结构 图12-1所示为封闭式齿轮试验台的结构示意图: 1—功耗电机 2—重力测力计 3—齿轮箱 4—加载器 5—试验齿轮箱 6—砝码 7—电器控制箱 图12-1 封闭式齿轮试验台结构示意图 1是外壳浮动式功耗电机;2是重力测力计;3、5是两套完全相同的齿轮箱,两对齿轮①、②、③、④分别用两根轴I 、II 相联接,并由特殊设计的联轴器和加载器4组成机械封闭回路;6是加在加载器上的砝码,从而产生作用在封闭系统中的轴向力;7是电器控制箱。 2. 加载机构 封闭式齿轮试验台加载器有多种形式,本试验台是采用螺旋槽轴向移动而产生轴扭转的方法来实现加载的。图12-2表示螺旋槽加载器的结构,由于槽中的滚子距轴心的作用半径为d/2(d =43mm ),螺旋槽的螺旋角β=11.14°,轴向力由砝码G (kgf )通过动滑轮实现,故作用在封闭系统内的封闭力矩为: (12—1) 系统中最大封闭力矩T B =50 N ?m 时,砝码重量G 最大为25 kgf 左右。 T G tg G N m B =???=?22159811141000 2140....()

系统中齿轮所受负载的大小仅与加载机构施加的扭矩有关,而与封闭系统外的浮动电机无关。当电机不转时,即齿轮处于静止状态,力矩T B仍然存在,此时 T B是由齿轮①—②—③—④所组成封闭系统中的平衡内力产生,称为封闭力矩。静止时,系统中只有力矩的存在而无功率的流动和损耗。当电机运转时,带动整个系统运转,并使封闭系统产生功率流动和损耗,电动机的作用就是克服系统中各种摩擦阻力,补充摩擦功率耗损、以维持正常运转状态。由于摩擦功率损耗很小,因而电机容量很小,仅需齿轮工作功率的1/20左右。这对于长期运转的实验,其经济意义很大。本试验台的功耗电机功率仅300w左右,同步转速1000 r/min,工作时约950 r/min。 三. 封闭功率的效率计算 单纯的齿轮副的效率测定是比较困难的,这里齿轮副的效率分别为η12,η34,它包括啮合效率,轴承效率及搅油效率等。 效率是指输出功率与输入功率之比。要确定输入和输出功率,首先要判明哪个是主动轮,哪个是从动轮。判别的方法是根据加载机构产生扭矩的方向与电机的转向是否一致,若方向一致则齿轮④为主动,相反为从动,封闭功率流动的方向应由大流向小,由主动流向从动。图12-1中设电机转动的方向与螺旋加载器产生扭矩T B方向相同,则齿轮④为主动,③为从动,齿轮④的左端为封闭功率P B的输入端(功率最大),功率P B流经齿轮④→齿轮③→轴II→齿轮②→齿轮①→轴I。流动中有啮合磨损,轴承磨损,搅油损耗等,功率逐渐减少,然而经过电动机输出功率P f的弥补,则通过轴II输入齿轮④的左端时,又恢复成P B。设封闭系统中的总效率为η0,则η0=η12?η34若η12≈η34=η,则一对齿轮副的效率为η=。 电动机输出功率为: P f =P B(1-η0)=P B(1-η2) η=P-P P B f B η

行星减速器设计

目录 第一章概述 (1) 第二章要求分析 (2) (一) ............................................................... 原始数据2(二) ........................................................... 系统组成框图2 第三章方案拟定 (4) 第四章传动系统的方案设计 (5) 传动方案的分析与拟定 (5) 1. 对传动方案的要求 (5) 2. 拟定传动方案 (5) 第五章行星齿轮传动设计 (6) (一)行星齿轮传动比和效率计算 (6) (二)行星齿轮传动的配齿计算 (6) 1. 传动比条件 (6) 2. 同轴条件 (6) 3. 装配条件 (7) 4. 邻接条件 (7) (三)行星齿轮传动的几何尺寸和啮合参数计算 (8) (四) ............................................... 行星齿轮传动强度计算及校核10 1 、行星齿轮弯曲强度计算及校核 (10) 2、................................................... 齿轮齿面强度的计算及校核11 3、..................................................... 有关系数和接触疲劳极限11 (五) .................................................. 行星齿轮传动的受力分析13(六) .......................................... 行星齿轮传动的均载机构及浮动量15(七) ................................................... 轮间载荷分布均匀的措施15第六章行星轮架与输出轴间齿轮传动的设计 (17) (一)................................................... 选择齿轮材料及精度等级17(二)..................................................... 按齿面接触疲劳强度设17(三)................................................... 按齿根弯曲疲劳强度计算18

(效率管理)齿轮传动效率测定与分析

实验2 齿轮传动效率测定与分析 2.1 实验目的 1. 了解机械传动效率的测定原理,掌握用扭矩仪测定传动效率的方法; 2. 测定齿轮传动的传递功率和传动效率; 3. 了解封闭加载原理。 2.2 实验设备和工具 1. 齿轮传动效率试验台; 2. 测力计; 3. 数据处理与分析软件; 4. 计算机、打印机。 2.3 实验原理和方法 1. 齿轮传动的效率及其测定方法 齿轮传动的功率损失主要在于:(1)啮合面的摩擦损失;(2)轮齿搅动润滑油时的油阻损失;(3)轮轴支承在轴承中和轴承内的摩擦损失。齿轮传动的效率即指一对齿轮的从动轮(轴)输出功率与主动轮(轴)输入功率之比。对于采用滚动轴承支承的齿轮传动,满负荷时计入上述损失后,平均效率如表3.1所示。 测定效率的方式主要有两种:开放功率流式与封闭功率流式。前者借助一个加载装置(机械制动器、电磁测功器或磁粉制动器)来消耗齿轮传动所传递的能量。其优点是与实际工作情况一致,简单易行,实验装置安装方便;缺点是动力消耗大,对于需作较长时间试验的场合(如疲劳试验),消耗能力尤其严重。而后者采用输出功率反馈给输入的方式,电源只供给齿轮传动中摩擦阻力所消耗的功率,可以大大减小功耗,因此这种实验方案采用较多。 2. 封闭式试验台加载原理 图3.1表示一个加载系统,电机功率通过联轴器1传到齿轮2,带动齿轮3及同一轴上的齿轮6,齿轮6再带动齿轮5。齿轮5的轴与齿轮2的轴之间以一只特殊联轴器和加载器相联接。 设齿轮齿数6532,z z z z ==,齿轮5的转速为5n (r/min)、扭矩为)m N (5?M ,则齿轮5处的功率为 )kW ( 9550 5 55n M N = 若齿轮2、5的轴不作封闭联接,则电机的功率为

机械设计中必须掌握的齿轮传动知识!

机械设计中必须掌握的齿轮传动知识! 【每日学机械】第89期,今天我们聊聊在机械设计中,我们必须掌握的齿轮传动知识! 齿轮传动是利用两齿轮的轮齿相互啮合传递动力和运动的 机械传动。在所有的机械传动中,齿轮传动应用最广,可用来传递相对位置不远的两轴之间的运动和动力。 齿轮传动的特点:效率高,在常用的机械传动中,以齿轮传动效率为最高,闭式传动效率为96%~99%,这对大功率传动有很大的经济意义;结构紧凑,比带、链传动所需的空间尺寸小;传动比稳定,传动比稳定往往是对传动性能的基本要求。齿轮传动获得广泛应用,正是由于其具有这一特点;工作可靠、寿命长,设计制造正确合理、使用维护良好的齿轮传动,工作十分可靠,寿命可长达一二十年,这也是其它机械传动所不能比拟的。这对车辆及在矿井内工作的机器尤为重要; 但是齿轮传动的制造及安装精度要求高,价格较贵,且不宜用于传动距离过大的场合。齿轮传动的分类: 齿轮传动按齿轮的外形可分为圆柱齿轮传动、锥齿轮传动、非圆齿轮传动、齿条传动和蜗杆传动。 圆柱齿轮传动用于传递平行轴间动力和运动的一种齿轮传动。按轮齿与齿轮轴线的相对关系,圆柱齿轮传动可分为直

齿圆柱齿轮传动、斜齿圆柱齿轮传动和人字齿圆柱齿轮传动3种。 ▲直齿圆柱齿轮传动▲斜齿圆柱齿轮传动▲人字齿圆柱齿轮传动 圆柱齿轮传动的传递功率和速度适用范围大,功率可从小于千分之一瓦到10万千瓦,速度可从极低到300米/秒。啮合特点由齿廓曲面形成过程可知,渐开线直齿圆柱齿轮啮合时,齿廓曲面的接触线是与轴线平行的直线,在啮合过程中整个齿宽同时进入和退出啮合,轮齿上所受的力也是突然加上或卸掉,故传动平稳性差,冲击和噪声大。 锥齿轮传动锥齿轮传动由一对锥齿轮组成的相交轴间的齿轮传动,又称伞齿轮传动。按齿线形状锥齿轮传动可分为直齿锥齿轮传动、斜齿锥齿轮传动和曲线齿锥齿轮传动,其中直齿的和曲线齿的应用较广。 ▲直齿锥齿轮传动 ▲斜齿锥齿轮传动 非圆齿轮传动是指传动中至少有一个齿轮的节曲面不是旋转曲面的齿轮传动。齿条传动齿轮与齿条的传动结构,齿条分直齿齿条和斜齿齿条,分别与直齿圆柱齿轮和斜齿圆柱齿轮配对使用;齿条的齿廓为直线而非渐开线(对齿面而言则为平面),相当于分度圆半径为无穷大圆柱齿轮。蜗杆传动是在空间交错的两轴间传递运动和动力的一种传动,两轴

行星轮系基本关系

一、简单行星轮系转矩关系 简单行星轮系(Planetary Gear Set)由太阳轮(Sun Gear)、行星架(Planet Carrier)、齿圈(Ring Gear)和行星轮(Planet Gear)构成,太阳轮S、齿圈R和行星架C有共同的回转中心,为行星轮系3个基本传动构件,如下图: 设发动机转矩由行星架C输入,FC为输入转矩在行星架上行星轮P的回转中心点的作用力,FS、FR分别为太阳轮S和齿圈R受到的外部阻力矩作用于行星轮P节圆上的反力, rS、rR分别为太阳轮S、齿圈R的节圆半径(到共同回转中心),rC为行星架上行星轮P 的回转中心点到共同回转中心的半径,rP为行星轮P的节圆半径,TS、TC、TR分别为太阳轮S、行星架C、齿圈R对行星轮P的作用力点对共同回转中心的转矩。ZS、ZR分别为太阳轮S和齿圈R的齿数,

因两齿轮齿数比等于其节圆半径比,故有:ZR∕ZS=rR∕rS,设α= ZR ∕ZS=rR∕rS,(α>1,称为行星轮系结构参数) 忽略轮系各转轴内摩擦力及各齿轮啮合摩擦力,根据作用力与反作用力定理及行星轮P平面力系平衡条件有: FC=-(FR+FS)(1) TC=-(TR+TS)(2) FR=FS (3) FC=-2FR=-2FS (4) (事实上,由于行星轮P与太阳轮S及齿圈R是通过轮齿接触传力,而与行星架C是通过转轴连接,因此当太阳轮S或齿圈R作为主动构件,行星架C作为从动构件时,(3)、(4)式的受力关系仍然成立。(1)、(2)式当然更是成立。) 即FS∕FR∕FC =1∕1∕-2 (5) 由rS、rR、rC的几何关系可知: rS∕rR∕rC =1∕α∕(1+α)÷2 (6)

行星轮系减速器设计说明书

第一章概述 行星轮系减速器较普通齿轮减速器具有体积小、重量轻、效率高及传递功率范围大等优点,逐渐获得广泛应用。同时它的缺点是:材料优质、结构复杂、制造精度要求较高、安装较困难些、设计计算也较一般减速器复杂。但随着人们对行星传动技术进一步的深入地了解和掌握以及对国外行星传动技术的引进和消化吸收,从而使其传动结构和均载方式都不断完善,同时生产工艺水平也不断提高,完全可以制造出较好的行星齿轮传动减速器。 根据负载情况进行一般的齿轮强度、几何尺寸的设计计算,然后要进行传动比条件、同心条件、装配条件、相邻条件的设计计算,由于采用的是多个行星轮传动,还必须进行均载机构及浮动量的设计计算。 行星齿轮传动根据基本够件的组成情况可分为:2K—H、3K、及K—H—V三种。若按各对齿轮的啮合方式,又可分为:NGW型、NN型、WW型、WGW型、NGWN型和N型等。我所设计的行星齿轮是2K—H行星传动NGW型。

第二章原始数据及系统组成框图 (一)有关原始数据 课题: 一种自动洗衣机行星轮系减速器的设计 原始数据及工作条件: 使用地点:自动洗衣机减速离合器内部减速装置; 传动比:p i=5.2 输入转速:n=2600r/min 输入功率:P=150w n=3 行星轮个数: w z=63 内齿圈齿数 b (二)系统组成框图

洗涤:A制动,B放开,运动经电机、带传动、中心齿轮、行星轮、行星架、波轮 脱水:A放开,B制动,运动经电机、带传动、内齿圈(脱水桶)、中心齿轮、行星架、 波轮与脱水桶等速旋转。

第三章减速器简介 减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。 减速器降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。降速同时降低了负载的惯量,惯量的减少为减速比的平方。 一般的减速器有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等等。按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。 1)蜗轮蜗杆减速器的主要特点是具有反向自锁功能,可以有较大的减速比,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。 2)谐波减速器的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。输入转速不能太高。 3)行星减速器其优点是结构比较紧凑,回程间隙小、精度较高,使用寿命很长,额定输出扭矩可以做的很大。

行星齿轮传动比计算

行星齿轮传动比计算 在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比e ab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i =ab i (E 是指固定件,即是固定的太阳轮,A 为主动件,B 为被动件)说明:H ab i =(Na-NH)/(Nb-NH),那么如果H 一开始是E ,那么e ab i =(Na-NE)/(Nb-NE)=Na/Nb=ab i NE 的转速为0........由于的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。 一式求解行星齿轮传动比有三个基本的公式 1=+c ba a bc i i ――――――――――――――――――――――――1 a cx a bx a bc i i i = ―――――――――――――――――――――――――2 a c b a b c i i 1= ――――――――――――――――――――――――――3 熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等

在此例中,要求出e ab i =?,如果行星架固定不动的话,这道题目就简单多了,就是一定轴传动。所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bc i i i =将x 加进去, 所以可以得出:e bx e ax e ab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第 一个公式1=+c ba a bc i i 了,所以)1()1(x be x ae e bx e ax e ab i i i i i --==所以现在e ab i 就变成了两个定轴传动之间的关系式了。定轴传动的传动比就好办了,直接写出来就可以了。 即)1()1())1(1())1(1()1()1(01 c e b d a e c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ?-+=?--?--=--== 再例如下面的传动机构: 已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。其输入件对输出件1的传动比i H1

相关主题
文本预览
相关文档 最新文档