当前位置:文档之家› 高性能水泥基复合材料的性能分析及应用研究概述

高性能水泥基复合材料的性能分析及应用研究概述

高性能水泥基复合材料的性能分析及应用研究概述
高性能水泥基复合材料的性能分析及应用研究概述

高性能水泥基复合材料的性能分析及应用研究概述

发表时间:2019-04-02T11:08:48.373Z 来源:《防护工程》2018年第35期作者:夏春强

[导读] 关系到整个建筑的施工和质量。本文主要针对水泥基复合材料的性能和应用进行分析。

胜利油田营海集团山东东营 257087

摘要:我国建筑业正处于快速发展时期,为提高建筑施工质量,保障建筑使用性能,各种新材料和新工艺不断引入到建筑行业,水泥是建筑施工中使用最多的材料之一,关系到整个建筑的施工和质量。本文主要针对水泥基复合材料的性能和应用进行分析。

关键词:水泥基复合材料;性能;应用

引言

21世纪以来,科学技术高速发展,社会时代飞速进步,伴随着环境恶化、资源紧缺和能源危机问题日益凸显。这些问题的出现对人类的可持续发展提出了新的挑战,同样也对我们材料科学提出了更高的要求。因此,高性能水泥基复合材料的出现和应用将会存在巨大潜力。

1水泥基复合材料的发展

混凝土作为一种力学性能优良的建筑材料,已广泛应用于在土木工程的各个领域。但其仍存在以下两方面的问题:1)由混凝土开裂引起的耐久性问题。结构中的混凝土往往处于裂缝状态。裂缝的形成会引起钢筋锈蚀,降低混凝土的承载能力。同时,外界的有害影响也会侵入结构部件内部,降低结构的耐久性能。2)极端荷载条件下的脆性破坏问题。已有的研究工作表明,在爆炸与冲击等高速动荷载作用下,混凝土材料往往呈现脆性破坏模式,导致结构破坏具有突然性,不利于人员避险。同时混凝土材料失效时会产生飞散的破片从而对结构内部的人员与设备造成伤害。混凝土材料在正常工作荷载下的开裂及在高速动荷载作用下的破碎与剥落的原因在于其本身断裂韧性和抗拉强度的不足。因此,有必要采用一定的方法改善和优化混凝土材料的力学性能,增加其断裂韧性,从而提高其抗拉强度。

近年来,国内展开了对水泥复合材料材料的研究,徐世烺团队的研究成果具有代表性,该团队定义了一种超高韧性水泥基复合材料(UHTCC),使用的纤维体积掺量不超过2.5%,并且硬化后具有应变-硬化的特性。UHTCC在直接拉伸荷载条件下可以观察到多条细小的裂纹,通过测量可发现达到峰值应力时,对应的裂缝宽度能稳定在100μm以内,对应极限拉应变达到3%以上。对纤维体积掺量为2%的PVA-水泥复合材料进行单轴抗压应力-应变曲线分析。结果显示,PVA-水泥复合材料的极限压缩应变(强度下降到峰值应力的20%时对应的应变)是混凝土的5~10倍,峰值应变是混凝土的4~7倍,由此可显示出PVA-水泥复合材料极强的压缩韧性;通过单轴抗拉伸试验,三点/四点弯曲试验和单轴压缩试验探究了UHTCC的力学性能,试验结果证实了UHTCC在不同破坏荷载作用下会通过产生多缝消散能量,具有明显的延性,不会发生脆性破坏,具有良好的整体性。此外,对低收缩率的水泥复合材料单轴抗拉伸、抗压缩性能、弹性模量及极限压缩应变等进行研究,试验结果表明该种水泥复合材料在拉伸时表现出明显的塑性变形,其极限应变、裂缝宽度都有明显的改善;采用快速冻结法将高韧性水泥复合材料与混凝土和砂浆的抗冻融性能进行对比,并且还深入探究了国产PVA纤维与进口PVA纤维对水泥复合材料抗冻融性能的影响,通过300次冻融循环试验,发现国产PVA-水泥复合材料的质量损失率要比进口PVA-水泥复合材料高1%左右。

2水泥基复合材料基本性能

纤维增强水泥基材料一般可划分为变形硬化和变形软化两类,其中变形硬化材料又可细分为应变硬化和应变软化。应变硬化材料具有裂缝形成后的材料强度会大于初裂强度,试件应变均匀且多缝开裂的典型特点。UHTCC材料在直接拉伸和弯曲荷载作用下均表现出应变硬化材料的受力和变形特点。

水泥基复合材料在单轴拉伸试验过程中表现出应变硬化的本构特性,极限抗拉强度可稳定达到6.0MPa,峰值拉应变接近3.6%;且该材料裂缝无害化分散能力突出,即便在峰值荷载作用下,裂缝宽度仍可以有效控制在100μm以内,有些甚至可以控制在50μm以内。

水泥基复合材料的压缩性能试验研究表明,在水泥基体材料中添加适当比例的纤维能改善材料的应力应变关系,使其具有的开裂后的荷载承受能力、压缩韧性和塑性变形性能明显优于混凝土。水泥基复合材料和混凝土的多轴压缩试验发现,与普通混凝土相比,在侧向压力存在的情况下,强度和延性改善幅度更明显。

水泥基复合梁构件承受横向荷载作用时表现出应变硬化和多缝开裂的特点,但与直接拉伸性能并不完全相同。试件受弯出现第一条裂缝后,裂缝宽度可以稳定在非常细窄的水平,此时材料的开裂强度与单向开裂强度几乎相等。随荷载增加,在梁截面弯矩作用较大的范围内先后出现与初始裂缝宽度相当的大量细微裂缝,载荷达到峰值后,某条微裂缝开始局部扩展导致试件失效破坏,破坏时刻材料的极限抗弯强度约为开裂强度的五倍。

3水泥基复合材料研究现状

3.1对矿物掺合料的研究

矿物掺合料,是为了改善混凝土工作性能,节约用水量,调节混凝土强度等级,而在混凝土拌合时掺入天然的或人工的能够改善混凝土力学性能和工作性能的粉状矿物质。活性掺合料是在掺入减水剂的情况下,能够增加新拌混凝土的工作性能,并能提高混凝土的力学性能和耐久性。在高强混凝土中掺入适量的硅灰,在一定程度上增强了混凝土的抗压强度和抗折强度。硅灰能够显著改善混凝土的工作性和耐久性,过量的硅灰的自收缩性大,会降低混凝土的抗压强度。超细石灰石粉具有微集料效应,微显核效应等,能够促进C3S的水化,显著提高混凝土抗压强度。超细高含硅质矿粉增强了集料与胶结料界面的粘结力。通过研究指出,掺10%粉煤灰或矿渣粉不会影响低水胶比浆体的水化进程,粉煤灰对水化进程的延缓效果要优于同等掺量的矿渣粉。双掺超细磨粉煤灰和硅灰能够显著提高混凝土的早期强度。以上研究表明,不同的矿物掺合料单掺、双掺和三掺作用机理不一样,对抗压强度的影响也就会产生不同。矿物掺合料的掺入可以替代部分水泥,降低成本,最根本的是可以降低水化热,优化孔洞结构,增强各相间的粘结,从而提高强度。矿物掺合料在降低水泥水化热的同时,也对水泥水化起到一定促进作用。

3.2对纤维掺量的研究

通过纤维技术与混凝土技术结合,可研制出能够改善混凝土力学性能,提高土建工程质量的高性能混凝土。不同纤维对于混凝土的作用不同,影响程度也不同。例如,钢纤维对于机场、大坝、高速公路等工程可起到抗渗、防裂、抗冲击和抗折性能,合成纤维可以起到预

硅酸盐水泥的选择与应用

浅谈硅酸盐水泥的选择与应用 学号:2010040432 姓名:高健专业:工程管理班级:4班 【摘要】本文对建筑工程中通常使用的各种硅酸盐水泥的特点、生产工艺、工作效能、注意事项,水泥制品特点等进行了简要分析。(主要从硅酸盐水泥的种类特征进行分析,进而为实际生活中选择合适的硅酸盐水泥。) 【关键词】波兰特水泥; 在所有的材料中,建筑材料的消耗量是最大的。因而,在所有的产业中,建筑材料产业成为了资源消耗量最大的产业。水泥,是建筑工程中最基础,用量最大的建筑材料。水泥性能的优良、以及所选用的水泥的型号、规格的不同,会直接影响到整个建筑工程的质量及最终的成败。各种不同的水泥,其生产工艺及性能也是各有特色的。 硅酸盐水泥,又称波特兰水泥(英语:Portland Cement),是由硅酸盐水泥熟料、0%-5%石灰石或粒化高炉炉渣、适量石膏磨细制成的水硬性胶凝材料。 一水泥分类 这类水泥包括不掺或掺有混合材料的各种硅酸盐水泥,中国按其混合材料的掺加情况,共分为如下六类。 1.纯熟料硅酸盐水泥,用于较为重要的土木建筑工程,因其抗冻性和耐磨性较好, 适用于配制高标号混凝土。 2.普通硅酸盐水泥,广泛用于制做各种砂浆和混凝土。普通硅酸盐水泥在应用方面 与硅酸盐水泥基本相同,并且有一些硅酸盐水泥不能应用的地方普通硅酸盐水泥也可以用,这使得普通硅酸盐水泥成为建筑行业应用面最广,使用量最大的水泥品种。 3.矿渣硅酸盐水泥,(矿渣水泥的抗渗性较差,不宜用于有抗渗要求的混凝土工程 中。但具有良好的耐热性,可用于温度不高于200℃的混凝土工程中,如热工窑炉基础等。)可用于地面、地下、水中各种混凝土工程,也可用于高温车间的建筑,但不宜用于需要早期强度高和受冻融循环、干湿交替的工程。因其颜色较浅,比重较小,水化热

几种常见硅酸盐水泥的特性

几种常见硅酸盐水泥的特性 一、组成部分 1)硅酸盐水泥(又称波特兰水泥) 由硅酸盐水泥熟料、0%-5%石灰石或粒化高炉炉渣、适量石膏磨细制成。 硅酸盐水泥熟料的主要成分为硅酸三钙3CaO·SiO2,硅酸二钙2CaO·SiO2,铝酸三钙3CaO·Al2O3和铁铝酸四钙4CaO·Al2O3·Fe2O3。 2)矿渣硅酸盐水泥(简称故渣水泥) 由硅酸盐水泥熟料和粒化高炉矿渣、适量石膏磨细制成 水泥中粒化高炉矿渣掺加量按重量计为20~70%;允许用不超过混合材料总掺量1/3的火山灰质混合材料(包括粉煤灰)、石灰石、窑灰来代替部分粒化高炉矿渣,这些材料的代替数量分别不得超过15%、10%、8%;允许用火山灰质混合材料与石灰石,或与窑灰共同来代替矿渣,但代替的总量不得超过15%,其中石灰石不得超过10%、窑灰不得超过8%;替代后水泥中的粒化高炉矿渣不得少于20%。 3) 火山灰质硅酸盐水泥(简称火山灰水泥) 由硅酸盐水泥熟料和火山灰质混合材料、适量石膏磨细制成。 水泥中火山灰质混合材料掺加量按重量计为20~50%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,代替部分火山灰质混合材料,代替后水泥中的火山灰质混合材料不得少于20%。 4)粉煤灰硅酸盐水泥(简称粉煤灰水泥) 由硅酸盐水泥熟料和粉煤灰、适量石膏磨细制成 水泥中粉煤灰掺加量按重量计为20~40%;允许掺加不超过混合材料总掺量1/3的粒化高炉矿渣,此时混合材料总掺量可达50%,但粉煤灰掺量仍不得少于20%或大于40%。 5)复合硅酸盐水泥(简称复合水泥) 由硅酸盐水泥熟料和粉煤灰混合材料、适量石膏磨细制成 水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。水泥中允许用不超过8%的窑灰代替部分混合材料;掺矿渣时混合材料掺量不得与矿渣硅酸盐水泥

水泥的高性能化

水泥的高性能化 1 前言 生产水泥的目的是满足各种混凝土建筑工程的需要。国标中水泥按强度分等级,是为了满足混凝土建筑工程的基本物理性能要求。从广东过去几十年混凝土材料的发展过程来看,上世纪80年代前,工程绝大部分使用低标号混凝土(C30以下)。低标号混凝土对配制技术或配制材料的要求均较低,外加剂(减水剂)甚少用到混凝土工程。在此情况下,无论是立窑水泥或湿法窑、干法窑烧制的转窑水泥,在配制混凝土时抗压强度差异不大。即使今天,按此条件配制混凝土来进行对比,大部分的强度结果均有类似规律。 但从上世纪80年代到本世纪初,随着经济的高速发展,混凝土工程的大型化及混凝土材料的高性能化要求越来越多。以广州近几年混凝土材料的设计、施工要求来看,出现了垂直高度300多米的泵送混凝土,高抛自流平(26m高度抛下、免振)等高工作性能的混凝土;C80高强混凝土,F5.0~6.0的高抗折、耐磨性好的道路混凝土;S20高抗渗、耐酸耐碱混凝土;低收缩抗开裂混凝土,广州新机场跑道的高强、抗冲击、耐磨、低收缩率混凝土;低水化热、高强度的大体积混凝土等等。混凝土材料性能要求越来越高,数量日益增多。为满足城市化及混凝土材料性能提高的要求,广东省商品混凝土搅拌站已有上百家,外加剂普遍使用,与外加剂相容性好的高标号水泥被首选、配制混凝土的粗细骨料质量要求及配制技术不断提高。这些均是提高

混凝土材料性能的措施及保证。从混凝土材料的发展及配制技术的提高,人们也越来越认识到水泥高性能化的重要性。简而言之,社会、经济的发展,要求混凝土材料的高性能化。这促进了混凝土技术的发展,为配制高性能混凝土及降低生产成本,又提出了水泥的高性能化。它是混凝土高性能化及低成本生产混凝土的基础。目前广州市绝大部分重点工程、尤其是对混凝土性能要求较高的工程所用水泥均为省内几家大水泥厂提供,这主要是由水泥性能决定的。 2 水泥高性能化的含义 目前水泥生产厂家对水泥的高性能化认识不全面。在我国水泥与混凝土分属于两个行业,生产水泥的技术人员不了解混凝土技术及进展,更不懂得如何使水泥的性能与配制混凝土技术相适应,往往将高标号、高比表面积的水泥认为是优质水泥的唯一标准,结果出现了水泥与外加剂相容性差,配制大体积混凝土时温度应力大、收缩大及耐久性差等问题。 本文认为:水泥性能的优劣必须从水泥在混凝土中的使用性能及效果来衡量。水泥的高性能化应包括以下三方面的含义:(1)是用现代先进技术生产的可大幅度提高各项物理性能的水泥。(2)可满足混凝土性能的不同要求,显著改善混凝土的工作性能、力学性能、耐久性能,更有利于实现混凝土的高性能化。(3)在配制混凝土时,能够用最少的水泥用量来达到高性能混凝土目标。

高性能混凝土选用水泥的原则

玉墙高性能混凝土选用材料的原则 普通混凝土选用水泥时,必须要根据混凝土的使用要求,考虑以下几项水泥技术条件:1.水泥强度等级2.在各种温度和湿度条件下,水泥早期和后期强度发展的规律3.在制品的使用环境中,水泥的稳定性4.各种水泥的其他性能。 当用户使用加有混合材的水泥时,往往不清楚所加入的混合材的数量和细度,所以为了保证混凝土的质量并充分发挥矿物质材料的作用,在配置耐久性混凝土时宜采用硅酸盐水泥或普通硅酸盐水泥,并将矿物质材料以掺合料的形式作为配置混凝土的组分加入拌合料中。当工程水泥用量很大时,也可由水泥厂家根据用户的订货要求,生产满足规定性能指标的水泥,一来减少混凝土搅拌站的储存,而来减少混凝土配置过程中多组分计量的可能误差。 国外研究用于高强高性能混凝土的特种水泥有球形水泥、调粒径水泥、超细磨水泥和高贝利特水泥等,这些水泥有的尚处于试验研究阶段,有些水泥国内并无生产,所以一般不推荐首选使用特种水泥。 特别需要説明的是,配制高强度混凝土不一定必须使用高强度水泥。因为我国水泥的强度强度等级是按照规定的水灰比成型水泥砂浆,养护至规定龄期来确定的。而在高强高性能混凝土中水胶比一般只有0.30左右,和水泥强度等级检验师时的水灰比相比,有了明显的减小,这时不同强度等级水泥强度发展情况、水化产物结构与水泥强度检验水灰比条件下完全不一样。化学外加剂和矿物掺合料的使用,使得用较低强度等级水泥配置高强混凝土有了可能。 中国建筑材料科学研究总院对利用不同强度等级的水泥配制高性能混凝土的进行研究,对比了不同强度等级的水泥在高、低水胶比条件下水化程度和水化掺物微观结构的差别,用低强度等级水泥配制了高强高性能混凝土,对其配比、胶凝材料水化热、抗压强度、耐腐蚀性能、碳化性能、抗渗透性能、抗冻融性能进行了系统试验。 实验证明利用中低强度等级水泥配制高强高性能混凝土是可行的,还具有较多的优势,首先,由于高强度等级水泥和特种水泥价格较高,一定程度上影响了高性能混凝土的推广应用,其次,有的高强度登记水泥常采用磨细工艺生产,水泥比表面积大大提高,从而导致混凝土早期开裂,与外加剂之间的适应性变差,给工程应用带来了一系列问题,最后,考虑到低强度等级水泥比表面积较小,其水化放热速率相对较低,有利于混凝土的早期温升控制,减少早期湿度应力产生的裂缝。 综合阅读: https://www.doczj.com/doc/641784744.html,/ https://www.doczj.com/doc/641784744.html,/ https://www.doczj.com/doc/641784744.html,/

硅酸盐水泥的分析实验报告

硅酸盐水泥中的SiO2,Fe2O3,Al2O3,CaO 和MgO含量的测定 摘要 硅酸是一种很弱的无机酸,在水溶液中绝大部分以溶胶状态存在在用浓酸和加热蒸干等方法处理后,能使绝大部分硅酸水溶胶脱水成水凝胶析出,因此可以利用沉淀分离的方法把硅酸与水泥中的铁、铝、钙、镁等其他组分分开重量法测定SiO2 的含量,Fe2O3 、Al2O3 、CaO和MgO的含量以EDTA配位滴定法测定。 关键词:SiO2、Fe2O3 、Al2O3 、CaO和MgO、EDTA Abstract Silicate is a weak inorganic acid , it exists in aqueous solution in most in the form of the gel .When heated with concentrated acid and evvaporated ,dehydration can make most of the acid water sol gel precipition into water . Therefore,the method can be used to precipition of iron silicate and cement ,aluminum,calcium and other components separately from the content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the EDTA titrimetric method. Keywords: SiO2, Fe2O3, Al2O3, CaO and MgO, EDTA

硅酸盐和硫铝酸盐复合水泥性能的研究

硅酸盐和硫铝酸盐复合水泥性能的研究班级:材料1003班姓名:指导老师: 摘要 本论文从研究硫铝酸盐水泥熟料、硅酸盐水泥熟料、粉煤灰、二水石膏四种原料复合后的水泥体系的物理性能入手,运用xRD衍射和扫描电镜等方法测试复合水泥体系的水化产物,对该复合水泥体系的水化机理进行了详细的探讨,通过复合水泥矿物组成和水化产物的理论计算,初步探讨复合水泥矿物的匹配。 本文确定了性能较好的各组分的配合比。研究表明,在硅酸盐水泥熟料中掺入10%以下硫铝酸盐水泥熟料的情况下,当石膏掺量为10%,CSA熟料含量在5%左右时,复合系统各方面的性能指标比较理想。当硅酸盐水泥熟料中掺入少量硫铝酸盐水泥熟料后,并配以适量的石膏掺量,可以提高硅酸盐水泥的早朗强度,抗压强度平均提高5MPa,同龄期抗折强度也有所提高。两种熟料复合后,水泥体系的凝结时间会明显缩短。 关键词:硅酸盐水泥,铝酸盐水泥,复合,性能

目录 第1章绪论------------------------------------------------------------------------------------- 1 1.1引言------------------------------------------------------------------------------------- 1 1.1.1硅酸盐水泥的发展概况 ---------------------------------------------------- 1 1.1.2硫铝酸盐水泥的发展概况 ------------------------------------------------- 3 1.2硅酸盐和硫铝酸盐复合水泥体系的研究现状 --------------------------------- 4 1.3论文选题的目的及意义 ---------------------------------------------------------- 5 1.3.1研究目的 ---------------------------------------------------------------------- 5 1.3.2论文选题的意义 ------------------------------------------------------------- 6 1.4研究内容 ---------------------------------------------------------------------------- 7 第2章实验内容------------------------------------------------------------------------------- 8 2.1实验原料------------------------------------------------------------------------------- 8 2.2材料化学成分------------------------------------------------------------------------- 8 2.3.1复合水泥的制备 ----------------------------------------------------------- 11 2.4水泥物理性能测定----------------------------------------------------------------- 11 2.4.1水泥净浆标准稠度用水量和凝结时间 -------------------------------- 11 2.4.2水泥砂浆抗压强度和抗折强度 ----------------------------------------- 11 2.5水泥微观分析----------------------------------------------------------------------- 11 2.5.1水泥净浆水化产物的取得 ----------------------------------------------- 11 2.5.2 XRD分析水泥水化产物的组成 ---------------------------------------------- 12 2.5.3扫描电镜(SEM)分析法观察水泥净浆水化产物的形貌------------------ 12

高性能混凝土对水泥要求

摘要 高性能混凝土(HPC)被认为是21世纪的结构混凝土,是先进生产力。代表着混凝土的发展方向。我国高性能混凝土的研究与应用已达10年,取得了长足进步,但同发达国家相比,还存在着较大差距,原因是多方面的其中高性能混凝土原材料的品质波动太大是主要原因。水泥是生产高性能混凝土最为重要的原材料。提高水泥品质,稳定水泥质量,对于发展高性能混凝土至关重要。本论文就水泥的原材料选用、水泥的煅烧与粉磨和水泥的选用几方面阐述了高性能混凝土发展对水泥的要求。 关键词:水泥原材料粉磨煅烧水泥质量

ABSTRACT High performance concrete (HPC) binder are considered in the 21st century,the structure of concrete is advanced productive forces. Represents the development direction of the concrete. Our research and application of high performance concrete has been for 10 years,and has made considerable progress,but compared with the developed countries,the large gap still exists,there are many reasons for the raw materials of high performance concrete quality fluctuation is the main reason is too big. The cement is the most important production of high performance concrete materials. To improve the quality of the cement stable quality,cement,for the development of high-performance concrete is very important. This thesis will cement material selection,cement grinding and cement calcined and choose a few aspects of the development of high-performance concrete cement. Key words:Cement grinding material calcined calcination cement quality

硅酸盐水泥___论文

河南大学土木建筑学院课题:硅酸盐水泥

硅酸盐水泥 胶凝材料是指在物理、化学作用下,从具有可塑性的浆体逐渐变成坚固石状体的过程,能将其他物料胶结为整体并具有一定机械强度的物质。因其具有原料丰富、生产成本低、耐久性好、适应性强、耐火性好等众多优点而广泛应用于工业、民用建筑、水利工程等建设之中,成为在国民经济及人民生活中不可缺少的重要材料。 胶凝材料一般可分为有机和无机两类。有机胶凝材料是指各种树脂和沥青等;无机胶凝材料又可分为水硬性和非水硬性。水硬性胶凝材料在拌水后技能在空气中硬化一,又能在水中硬化并具有强度,通常称为水泥,如硅酸盐水泥、铝酸盐水泥、硫酸盐水泥等;非水硬性胶凝材料是指不能在水中硬化,但能在空气中或其他条件下硬化,如石灰、石膏、镁质胶凝材料等等。 在众多的胶凝材料中,水泥占有尤为突出的,它是基本建设的主要原料之一,广泛应用于工业、农业、国防、交通、城市建设、水利及海洋开发等工程建设。水泥工业的发展对保证国家建设和提高生活水平具有十分重要的意义。水泥按其主要矿物组成可分为硅酸盐水泥、铝酸盐水泥、铁铝酸盐水泥、氟铝酸盐水泥、少熟料或无熟料水泥。水泥的主要技术特征是:水硬性(分为快硬和特快硬两类);水化热(分为中热和低热两类);抗硫酸盐性(分中抗硫酸盐腐蚀和高抗硫酸盐腐蚀);膨胀性(分为膨胀和自应力);耐高温性(铝酸盐水泥的耐高温性以水泥中氧化铝含量分级)。 在水泥诸多品种中,硅酸盐水泥是应用最广泛和研究最多的。在此从硅酸盐水泥的分类、生产、技术要求、性能及应用等方面对硅酸盐水泥进行简单的研究分析。 所谓硅酸盐水泥是指从黏土和石灰石为原料,经高温煅烧得到以硅酸盐钙为主要成分的熟料,加入0—5%的混合材料和适量石膏磨细制成的水硬性胶凝材料,国际上统称为波特兰水泥。 硅酸盐水泥的分类 硅酸盐水泥包括纯熟料硅酸盐水泥和掺混合材料硅酸盐水泥两类,我国按其混合材料的掺加情况,共分为如下五类:纯熟料硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥粉煤灰硅酸盐水泥。 纯熟料硅酸盐水泥在硅酸盐水泥熟料中加入适量石膏,磨细而成的水泥,分425、525、625、725四个标号。其早期强度比其他几种硅酸盐水泥高5~10%,抗冻性和耐磨性较好,适用于配制高标号混凝土,用于较为重要的土木建筑工程。 普通硅酸盐水泥简称普通水泥。由硅酸盐水泥熟料掺加少量混合材料和适量石膏磨细而成。混合材料的加入量根据其具有的活性大小而定。普通水泥分为275、325、425、525、625和725六个标号,广泛用于制做各种砂浆和混凝土。 矿渣硅酸盐水泥简称矿渣水泥。由硅酸盐水泥熟料和粒化高炉矿渣,加

硅酸盐水泥的分析实验报告

硅酸盐水泥的分析实验 报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

硅酸盐水泥中的SiO2,Fe2O3,Al2O3,CaO 和M g O含量的测定 摘要 硅酸是一种很弱的无机酸,在水溶液中绝大部分以溶胶状态存在在用浓酸和加热蒸干等方法处理后,能使绝大部分硅酸水溶胶脱水成水凝胶析出,因此可以利用沉淀分离的方法把硅酸与水泥中的铁、铝、钙、镁等其他组分分开重量法测定 SiO2 的含量, Fe2O3 、Al2O3 、CaO和 MgO的含量以EDTA配位滴定法测定。 关键词:SiO2、 Fe2O3 、Al2O3 、CaO和 MgO、EDTA Abstract Silicate is a weak inorganic acid , it exists in aqueous solution in most in the form of the gel .When heated with concentrated acid and evvaporated ,dehydration can make most of the acid water sol gel precipition into water . Therefore,the method can be used to precipition of iron silicate and cement ,aluminum,calcium and other components separately from the content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the EDTA titrimetric method. Keywords: SiO2, Fe2O3, Al2O3, CaO and MgO, EDTA 目录

纤维增强水泥基复合材料

纤维增强型水泥基复合材料 一、纤维增强型水泥基复合材料的概述 纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。 普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。 加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。 二、纤维增强型水泥基复合材料的力学性能 在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。 ? 2.1 抗拉强度 ?在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。 ? ? 2.2 抗裂性

在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生; 在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。 ? 2.3 抗渗性 纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。 2.4 抗冲击及抗变形性能 在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。 2.5 抗冻性 纤维可以缓解温度变化而引起的水泥基复合材料内部应力的作用,从而防止水泥固化过程中微裂纹的形成和扩散,提高材料的抗冻性;同时,水泥基复合材料抗渗能力的提高也有利于其抗冻能力的提高。 ?纤维的纤维掺量对混凝土强度的影响很大 ?合成纤维可有效地控制由混凝土内应力产生的裂缝,使混凝土早期收缩裂缝减少50~90%,显著提高混凝土的抗渗性和耐久性,使混凝 土内钢筋锈蚀时间推迟2.5倍。除抗裂外,合成纤维还能提高混凝土的粘 聚性和抗碎裂性。 ?以聚丙烯合成纤维为例 ?掺入聚丙烯合成纤维后,混凝土的性能将发生变化,当纤维含量适当时,混凝土抗压强度、抗弯强度等均有不同程度的提高。纤维掺量对混凝土强 度的影响见下表。 三、几种主要增强型水泥基复合材料的应用现状

硅酸盐水泥的制备及性能测试实验报告

硅酸盐水泥的制备及性能测试 第1章实验目的 1.1 掌握硅酸盐水泥的制备工艺原理及工艺过程(包括原料的选择、生料的粉磨与成型、水泥熟料的烧结、水泥的粉磨)。 1.2提出具体的实验方案,确定合理的工艺条件(包括原料的配方、熟料的率值、烧成温度及水泥的组成和配合比),制备出合格的硅酸盐水泥样品。 1.3按国家标准对硅酸盐水泥样品进行相关的性能测定。 第2章实验原理 硅酸盐水泥的制备分为三个阶段:石灰质原料、粘土质原料与少量校正原料经破碎后,根据硅酸盐水泥熟料的率值进行配料、磨细成为成分合适、质量均匀的生料,称为生料制备;生料在窑炉内煅烧至部分熔融所得到的以硅酸钙为主要成分的硅酸盐水泥熟料,称为熟料煅烧;熟料加适量石膏共同磨细成为水泥,称为水泥粉磨。水泥加水拌成的浆体,起初具有可塑性和流动性,随着水泥与水发生一系列物理化学反应——水化反应的不断进行,浆体逐渐失去流动能力,转变成为具有一定强度及其它性能的固体。 第3章实验设备、材料及试剂 3.1 实验材料及试剂 化工原料(化学纯或分析纯):碳酸钙(CaCO3),石英砂(SiO2),氧化铝(Al2O3),氧化铁(Fe2O3),标准砂。 3.2 实验设备 水泥试验磨、高铝坩埚、硅碳棒高温炉、烘干箱、勃氏透气比表面积仪、电子天平、水泥净浆搅拌机、水泥净浆标准稠度及凝结时间测定仪、水泥混凝土恒温恒湿标准养护箱、水泥胶砂搅拌机、水泥胶砂振实台(或水泥胶砂振动台)、电动抗折试验机、数显式建材压力试验机、沸煮箱、水泥抗压夹具、水泥抗折试模。 3.2.1 实验设备图及介绍

A.水泥试验磨是由罩壳、磨机、 支座及电器控制箱等四大部分组成。 (1)罩壳:罩壳由二层玻璃钢板中间 夹吸音棉组成,分上下两罩,上罩壳 有罩门,下罩壳有取料斗,可盛放磨 好的物料,罩壳与磨机轴用带有毛毡 圈端盖7密封,所以罩壳起到隔音和 防尘的良好密封作用。(2)磨机:磨 机由筒体磨门盖、轴承及轴承、联轴 器和齿轮减速机等组成,是研磨物料 的主体部分,在卸料时将磨盖换上栅 孔卸料板,满足卸料的要求。(3)支 座:支座是由磨机及电动机组成的钢 结构,用以支承罩壳,磨机,电动减 速机及电器控制箱等,磨机座底部有4个Φ20底脚螺栓孔,用以固定全套设备。4、电器控制箱:由按钮、组合开关、热继电器、时间继电器、组合开关等组成,用它控制电机的启动和停止。 B.水泥净浆搅拌机主要有双速电 机、传动箱、主轴、偏心座、搅拌叶、 搅拌锅、底座、立柱、支座、外罩、 程控制器等组成。双速电动机通过联 轴器将动力传给传动箱内的蜗杆再经 蜗轮及一对齿轮和传给主轴并减速。 主轴带动偏心座同步旋转,使固定在 偏心座上的搅拌叶进行公转。同时搅 拌叶通过搅拌叶轴上端的行星齿轮围 绕固定的内齿轮完成自转运动。双速 电机经时间程控器控制自动完成一次 慢—停—快转的规定工作程序。搅拌 锅与滑板用偏心槽旋转锁紧。

高性能水泥基复合材料的性能分析及应用研究概述

高性能水泥基复合材料的性能分析及应用研究概述 发表时间:2019-04-02T11:08:48.373Z 来源:《防护工程》2018年第35期作者:夏春强 [导读] 关系到整个建筑的施工和质量。本文主要针对水泥基复合材料的性能和应用进行分析。 胜利油田营海集团山东东营 257087 摘要:我国建筑业正处于快速发展时期,为提高建筑施工质量,保障建筑使用性能,各种新材料和新工艺不断引入到建筑行业,水泥是建筑施工中使用最多的材料之一,关系到整个建筑的施工和质量。本文主要针对水泥基复合材料的性能和应用进行分析。 关键词:水泥基复合材料;性能;应用 引言 21世纪以来,科学技术高速发展,社会时代飞速进步,伴随着环境恶化、资源紧缺和能源危机问题日益凸显。这些问题的出现对人类的可持续发展提出了新的挑战,同样也对我们材料科学提出了更高的要求。因此,高性能水泥基复合材料的出现和应用将会存在巨大潜力。 1水泥基复合材料的发展 混凝土作为一种力学性能优良的建筑材料,已广泛应用于在土木工程的各个领域。但其仍存在以下两方面的问题:1)由混凝土开裂引起的耐久性问题。结构中的混凝土往往处于裂缝状态。裂缝的形成会引起钢筋锈蚀,降低混凝土的承载能力。同时,外界的有害影响也会侵入结构部件内部,降低结构的耐久性能。2)极端荷载条件下的脆性破坏问题。已有的研究工作表明,在爆炸与冲击等高速动荷载作用下,混凝土材料往往呈现脆性破坏模式,导致结构破坏具有突然性,不利于人员避险。同时混凝土材料失效时会产生飞散的破片从而对结构内部的人员与设备造成伤害。混凝土材料在正常工作荷载下的开裂及在高速动荷载作用下的破碎与剥落的原因在于其本身断裂韧性和抗拉强度的不足。因此,有必要采用一定的方法改善和优化混凝土材料的力学性能,增加其断裂韧性,从而提高其抗拉强度。 近年来,国内展开了对水泥复合材料材料的研究,徐世烺团队的研究成果具有代表性,该团队定义了一种超高韧性水泥基复合材料(UHTCC),使用的纤维体积掺量不超过2.5%,并且硬化后具有应变-硬化的特性。UHTCC在直接拉伸荷载条件下可以观察到多条细小的裂纹,通过测量可发现达到峰值应力时,对应的裂缝宽度能稳定在100μm以内,对应极限拉应变达到3%以上。对纤维体积掺量为2%的PVA-水泥复合材料进行单轴抗压应力-应变曲线分析。结果显示,PVA-水泥复合材料的极限压缩应变(强度下降到峰值应力的20%时对应的应变)是混凝土的5~10倍,峰值应变是混凝土的4~7倍,由此可显示出PVA-水泥复合材料极强的压缩韧性;通过单轴抗拉伸试验,三点/四点弯曲试验和单轴压缩试验探究了UHTCC的力学性能,试验结果证实了UHTCC在不同破坏荷载作用下会通过产生多缝消散能量,具有明显的延性,不会发生脆性破坏,具有良好的整体性。此外,对低收缩率的水泥复合材料单轴抗拉伸、抗压缩性能、弹性模量及极限压缩应变等进行研究,试验结果表明该种水泥复合材料在拉伸时表现出明显的塑性变形,其极限应变、裂缝宽度都有明显的改善;采用快速冻结法将高韧性水泥复合材料与混凝土和砂浆的抗冻融性能进行对比,并且还深入探究了国产PVA纤维与进口PVA纤维对水泥复合材料抗冻融性能的影响,通过300次冻融循环试验,发现国产PVA-水泥复合材料的质量损失率要比进口PVA-水泥复合材料高1%左右。 2水泥基复合材料基本性能 纤维增强水泥基材料一般可划分为变形硬化和变形软化两类,其中变形硬化材料又可细分为应变硬化和应变软化。应变硬化材料具有裂缝形成后的材料强度会大于初裂强度,试件应变均匀且多缝开裂的典型特点。UHTCC材料在直接拉伸和弯曲荷载作用下均表现出应变硬化材料的受力和变形特点。 水泥基复合材料在单轴拉伸试验过程中表现出应变硬化的本构特性,极限抗拉强度可稳定达到6.0MPa,峰值拉应变接近3.6%;且该材料裂缝无害化分散能力突出,即便在峰值荷载作用下,裂缝宽度仍可以有效控制在100μm以内,有些甚至可以控制在50μm以内。 水泥基复合材料的压缩性能试验研究表明,在水泥基体材料中添加适当比例的纤维能改善材料的应力应变关系,使其具有的开裂后的荷载承受能力、压缩韧性和塑性变形性能明显优于混凝土。水泥基复合材料和混凝土的多轴压缩试验发现,与普通混凝土相比,在侧向压力存在的情况下,强度和延性改善幅度更明显。 水泥基复合梁构件承受横向荷载作用时表现出应变硬化和多缝开裂的特点,但与直接拉伸性能并不完全相同。试件受弯出现第一条裂缝后,裂缝宽度可以稳定在非常细窄的水平,此时材料的开裂强度与单向开裂强度几乎相等。随荷载增加,在梁截面弯矩作用较大的范围内先后出现与初始裂缝宽度相当的大量细微裂缝,载荷达到峰值后,某条微裂缝开始局部扩展导致试件失效破坏,破坏时刻材料的极限抗弯强度约为开裂强度的五倍。 3水泥基复合材料研究现状 3.1对矿物掺合料的研究 矿物掺合料,是为了改善混凝土工作性能,节约用水量,调节混凝土强度等级,而在混凝土拌合时掺入天然的或人工的能够改善混凝土力学性能和工作性能的粉状矿物质。活性掺合料是在掺入减水剂的情况下,能够增加新拌混凝土的工作性能,并能提高混凝土的力学性能和耐久性。在高强混凝土中掺入适量的硅灰,在一定程度上增强了混凝土的抗压强度和抗折强度。硅灰能够显著改善混凝土的工作性和耐久性,过量的硅灰的自收缩性大,会降低混凝土的抗压强度。超细石灰石粉具有微集料效应,微显核效应等,能够促进C3S的水化,显著提高混凝土抗压强度。超细高含硅质矿粉增强了集料与胶结料界面的粘结力。通过研究指出,掺10%粉煤灰或矿渣粉不会影响低水胶比浆体的水化进程,粉煤灰对水化进程的延缓效果要优于同等掺量的矿渣粉。双掺超细磨粉煤灰和硅灰能够显著提高混凝土的早期强度。以上研究表明,不同的矿物掺合料单掺、双掺和三掺作用机理不一样,对抗压强度的影响也就会产生不同。矿物掺合料的掺入可以替代部分水泥,降低成本,最根本的是可以降低水化热,优化孔洞结构,增强各相间的粘结,从而提高强度。矿物掺合料在降低水泥水化热的同时,也对水泥水化起到一定促进作用。 3.2对纤维掺量的研究 通过纤维技术与混凝土技术结合,可研制出能够改善混凝土力学性能,提高土建工程质量的高性能混凝土。不同纤维对于混凝土的作用不同,影响程度也不同。例如,钢纤维对于机场、大坝、高速公路等工程可起到抗渗、防裂、抗冲击和抗折性能,合成纤维可以起到预

硅酸盐水泥熟料行业发展预测及投资咨询报告

硅酸盐水泥熟料 行业发展预测与投资咨询报告 2016-2020

核心内容提要 产业链(Industry Chain) 狭义产业链是指从原材料一直到终端产品制造的各生产部门的完整链条,主要面向具体生产制造环节; 广义产业链则是在面向生产的狭义产业链基础上尽可能地向上下游拓展延伸。产业链向上游延伸一般使得产业链进入到基础产业环节和技术研发环节,向下游拓展则进入到市场拓展环节。产业链的实质就是不同产业的企业之间的关联,而这种产业关联的实质则是各产业中的企业之间的供给与需求的关系。 市场规模(Market Size) 市场规模(Market Size),即市场容量,本报告里,指的是目标产品或行业的整体规模,通常用产值、产量、消费量、消费额等指标来体现市场规模。千讯咨询对市场规模的研究,不仅要对过去五年的市场规模进行调研摸底,同时还要对未来五年行业市场规模进行预测分析,市场规模大小可能直接决定企业对新产品设计开发的投资规模;此外,市场规模的同比增长速度,能够充分反应行业的成长性,如果一个产品或行业处在高速成长期,是非常值得企业关注和投资的。本报告的第三章对手工工具行业的市场规模和同比增速有非常详细数据和文字描述。 消费结构(consumption structure) 消费结构是指被消费的产品或服务的构成成份,本报告主要从三个角度来研究消费结构,即:产品结构、用户结构、区域结构。1、产品结构,主要研究各类细分产品或服务的消费情况,以及细分产品或服务的规模在整个市场规模中的占比;2、用户结构,主要研究产品或服务都销售给哪些用户群体了,以及各类用户群体的消费规模在整个市场规模中的占比;3、区域结构,主要研究产品或服务都销售到哪些重点地区了,以及某些重点区域市场的消费规模在整个市场规模中的占比。对消费结构的研究,有助于企业更为精准的把握目标客户和细分市场,从而调整产品结构,更好地服务客户和应对市场竞争。

硅酸盐水泥的性能及应用

8硅酸盐水泥的性能及应用 习要点硅酸盐水泥的性能是具有理论性和实用性的重要内容学习时应重点理解并定凝结时间的意义和影响凝结时间的因素;掌握水泥强度的产生、发展和影响因素;积变化与水化热在工程中所产生的影响了解抗渗性、抗冻性及坏境介质对水泥耐久 响机理拿握普通混凝土配合比的计算并了解混凝土的种类及应用了解外加剂对水凝土的作用和常用夕卜加剂的种类及机理。 硅酸盐水泥在现代建筑工程中主要用以配制砂浆、混凝土和生产水泥制品,随着国民经济的不断发展,水泥作为大量应用的工程材料,研究和改善其性能,对于发展水泥品种、提髙建筑效率、改进工程质量都具有十分重要的意义。硅酸盐水泥的性能包括:物理性能,如密度细度等, 建筑性能,如凝结时间、泌水性、保水性、强度、体积变化和水化热、耐久性等. 8. 1硅酸盐水泥的凝结时间 水泥浆体的凝结时间,对于建筑工程的施工具有十分重要的意义。水泥浆体的凝结可分为初凝和终凝。初凝表示水泥浆体失去流动性和部分可塑性,开始凝结。终凝则表示水泥浆体逐渐硬化,完全失去可塑性,并具有一泄的机械强度,能抵抗一泄的外来压力。从水泥加水搅拌到水泥初凝所经历的时间称为“初凝时间”,到终凝所经历的时间称为“终凝时间”。在施工过程中,若初凝时间太短,往往来不及进行施工浆体就变硬,因此,应有足够的时间来保证混凝丄砂浆的搅拌、输送、浇注、成型等操作的顺利完成。同时还应尽可能加快脱模及施工进度,以保证工程的进展要求。为此,各国的水泥标准中都规左了水泥的凝结时间。初凝时间,对水泥的使用更具有实际意义。根据中国水泥国家标准GB 175—1999 规泄,酸盐水泥初凝不得早于45min,终凝不得迟于390min° 8. 1?1凝结速度 水泥凝结时间的长短决泄于其凝结速度的快慢。从水泥的水化硬化过程可知,水泥加水拌和后熟料矿物开始水化,熟料中各矿物28d的水化速度大小顺序为CaA>CaS>C4AF>C2S, 并产生各种水化物,C3S与C2S水化生成C_S_H凝胶和Ca(0H)2, C3A与C4AF在石膏作用下?根据石膏掺量的不同可分别水化生成三硫型水化硫铝(铁)酸钙(AFt).单硫型水化硫铝(铁)酸钙(AFm)和C/H:個溶体。随着水化作用的继续进行,水化产物逐渐长大增多并初步联结成网,逐渐失去流动性与可塑性而凝结。所以,凡是影响水化速度的齐种因素,基本上也同样影响水泥的凝结速度,如熟料矿物组成、水泥细度.水灰比. 温度和外加剂等?但水化和凝结又有一左的差异。例如,水灰比越大,水化越快,凝结反而变慢。这是因为加水量过多.颗粒间距增大.水泥浆体结构不易紧密,网络结构难以形成的缘故。水泥的凝结速度既与熟料矿物水化难易有关,又与各矿物的含量有关。决左凝结速度的主要矿物为C3A 和C3S。R. H.鲍格和w?勒奇等人认为,C3A的含疑是控制初凝时间的决左因素。在C3A含量较髙或石膏等缓凝剂掺量过少时,硅酸盐水泥加水拌和后,C3血速反应,很快生成大量片状的水化铝酸钙,并相互连接形成松散的网状结构,出现不可逆的固化现象,称为“速凝”或“闪凝”。产生这种不正常快凝时,浆体迅速放出大量热,温度急剧上升。但是如果C3A较少(W2%)或掺加有石膏等缓凝剂,就不会出现快凝现象,水泥的凝结快慢则主要由C3S水化来决左。所以说,快凝是由C3A造成的,而正常凝结则是受 C3 S制约的。 事实上,水泥的凝结速度还与熟料矿物和水化产物的形态结构有关系。实验证明,即使化学组成和表而积完全相同的水泥,但由于锻烧制度的差异,仍可使熟料结构有所不同,凝结时间也将发生相应的变化。如急冷熟料凝结正常,而慢冷熟料常岀现快凝现象。这是因为慢冷时C。A能充分结晶,CsA晶体相对较多,使水化加快,而急冷时CsA固溶体与玻璃体中,由于玻璃体结构致密,相对CsA晶体水化较慢。同样,若水化产物是凝胶状的,则会 形成薄膜,包裹在未水化的水泥周围,阻碍矿物进一步水化,因而能延缓水泥的凝结。 温度的变化也会影响水泥的凝结速度。温度升髙,水化加快,凝结时间缩短,反之则凝结时间会延长,如图8. 1所示。所以,在炎热季石及高温条件下施工时,需注意初凝时间的变化,在冬季或寒冷条件下施工时应注意采取适当的保温措施,以保证正常的凝结时间。 总之,影响水泥凝结快慢的因素是多方而的,但主要还是C3A的影响,因此在生产上都是

不同品种水泥的性能应用及使用注意事项

产品性能及应用 硅酸盐水泥 1、早期及后期强度均高:适用于预制和现浇的混凝土工程、冬季施工的混凝土工程、预应力混凝土工程等。 2、抗冻性好:适用于严寒地区和抗冻性要求高的混凝土工程。 3、干缩小:可用于干燥环境。 4、耐磨性好:可用于道路与地面工程。 适用于配制高标号、超高标号混凝土及大跨度梁架等。 普通硅酸盐水泥 特性:早期强度增长快、水化热略低、在低温情况下强度进展很快,耐冻性好、抗渗性好;和易性好。 适用于桥梁、码头、道路、高层建筑等各种建筑工程,一般工业与民用建筑,可配C30-C80不同标号混凝土。是应用最广的水泥 复合硅酸盐水泥 特性:耐腐蚀性耐热性好、水化热低、干缩性小、抗渗性较好;由于掺入了二种以上的混合材料,起到了互相取长补短的作用,其效果大大优于只掺一种混合材料。因而其用途更为广泛。 适用于一般工业与民用建筑。 使用注意事项 1、要注重存储管理,防止产品受潮。在运输、储存过程中要做好防护,雨天装车要注意车箱不能积水,要及时加盖防雨蓬布;水泥储存要放在干燥的环境中,避免水泥吸潮结块;使用时要坚持先进先用原则,且储存时间不宜过长,防止受潮,导致产品质量、性能下降;同时注意水泥不要与糖、化肥等有机物质混合在一起,避免引起不良反应。 2、不能混合使用。由于不同品种、强度等级水泥的质量、性能存在差异,要分开堆放,单独使用;同一厂家不同品种、不同等级水泥不能混合使用;同品种、同等级、但不同厂家的水泥也不得混合使用 3、合理地选择水泥品种及强度等级。在海螺水泥产品使用时,要根据施工部位和混凝土强度等级设计要求,合理地选择水泥品种及强度等级,避免选择高强度等级水泥配制低标号混凝土或用低强度等级水泥配制高标号混凝土,使水泥在混凝土中掺量不当,导致混凝土和易性差、坍落度损失大等不良现象产生,同时造成混凝土生产成本不经济 4、坚持预配试验工作。海螺水泥在使用时,由于不同工程、不同结构、不同部位的要求不同,要预先进行配比实验,确定最佳配合比,以确保混凝土质量稳定合格。 5、重视施工规范和养护工作。要严格控制好混凝土用砂、石、水等掺合料质量,水中不得含有有机物,砂石中含泥量要低,含硫、碱高的砂石及掺合物不得使用;混凝土配合比设计要按照施工规范进行设计;施工时搅拌要均匀,水灰比不能太大,振捣要适度,不能漏浆,避免混凝土出现水泥分布不均、离析、泌水等,使其强度下降。 6、在高温或低温天气搅拌混凝土时,要注意控制好掺合料的温度,避免混凝土凝结时间过快或过慢;浇筑的混凝土在失去塑性后,要及时浇水、覆盖,保持湿润,避免过于干燥使混凝土开裂,也要注意浇水不要过早、过多,以免混凝土表面粘结差、强度低,防止出现起砂、起皮现象。

相关主题
文本预览
相关文档 最新文档