当前位置:文档之家› 全桥开关稳压电源

全桥开关稳压电源

全桥开关稳压电源
全桥开关稳压电源

目录

第一章前言 (1)

1.1 开关电源技术的发展状况 (1)

1.2 开关电源定义 (2)

1.3 开关电源的发展历史及其应用范围 (2)

1.4 开关电源控制技术分析研究 (4)

1.5 全桥开关电源应用技术 (4)

1.6 本设计的内容及参数 (4)

第二章电子元器件及部分电路介绍 (6)

2.1 二极管组成电路分析 (6)

2.1.1 整流桥电路 (7)

2.1.2 稳压管稳压电路 (8)

2.2 三极管及其组成电路分析 (9)

2.2.1 图腾柱驱动电路 (10)

2.2.2 共射放大电路 (10)

2.3 场效应管及其组成电路分析 (12)

2.3.1 场效应晶体管组成的开关驱动电路 (12)

第三章全桥拓扑原理 (14)

3.1基本工作原理 (14)

3.2 全桥变换器设计 (16)

3.2.1 最大导通时间、初级绕组圈数选择 (16)

3.2.2 初级电流、输出功率、输入电压的关系 (16)

3.2.3 初级线径的选择 (16)

3.3 变压器初级隔直电容的选择 (17)

第四章 UC3895芯片外围电路设计 (18)

4.1 UC3895介绍 (18)

4.1.1 UC3895原理框图及特点 (18)

4.1.2 UC3895引脚功能 (19)

4.2 UC3895 外围电路计算 (20)

第五章全桥开关电源硬件设计 (22)

5.1 稳压恒流电路的设计 (22)

5.2 辅助电源的设计 (23)

5.3 主功率板总图 (25)

5.4 驱动电路设计 (26)

结束语 (27)

参考文献 (28)

致谢 (29)

摘要:本文重点介绍了由UC3895构成的相移谐振PWM 控制器的工作原理和他的应用,进一步设计了由UC3895构成的全桥移相零电压开关(ZVS)PWM 开关电源。全桥开关电源采用了图腾柱驱动电路,并且驱动电路以隔离的方式驱动MOS开关管,以此来提高电源的稳定性;UC3895采用了ZVS技术使开关管的导通损耗减小,提高了整个电路的工作效率。此次开关电源设计重点分析了全桥开关电源开关管的零电压开通和零电流关断的过程以及全桥开关的工作原理,而且还阐述了全桥开电源相关的应用领域,以及全桥开关电源今后的发展方向和发展趋势。本文选择了全桥拓扑,分析了电源的外围电路。UC3895自身带有自适应延迟时间设置以及其他的增强逻辑功能,而且UC3895采用了BCDMOS制造工艺,这就使得UC3895的整体性能有了很大的提高。

关键词:全桥稳压技术;零电压开关技术;全桥移相控制技术。

ABSTRACT:This paper mainly introduces the composed of UC3895 phase shift resonant PWM controller working principle and application, further designed composed of UC3895 full bridge phase shifting zero voltage switching (ZVS) PWM switching power supply.Full bridge adopted the totem poles switch power supply drive circuit, and drive circuit in the form of isolated drive MOS switch tube, in order to improve the stability of the power supply;UC3895 adopted ZVS technology reduce switch tube conduction losses, improve the work efficiency of the whole circuit.The switching power supply design focuses on analyzing the whole bridge opening of zero voltage switch power switch tube and zero current turn off process and the working principle of the full bridge switch and also expounds the application of the whole bridge open power supply related fields, as well as the whole bridge switching power supply development direction and development trend in the future.This article chose the full bridge topology, the periphery of the power supply circuit is analyzed.UC3895 itself with enhanced adaptive delay time Settings, and other logic function, and BCDMOS UC3895 adopted manufacturing technology, which makes UC3895 overall performance has the very big enhancement. Keywords: zero voltage switching technology;full bridge phase shifting control;resonant converter。

第一章前言

小型开关电源主要是以反激拓扑为主,反激低噪声、抗干扰、高稳定性等优点。现在的的小型电源小型化以及高效率主要是由高频开关实现的,因此目前都在不断地开发出高效率新型元器件,特别是不断地改进次级侧二极管的管压降、变压器电容器小型化。该电源电路结构简单,工作可靠,总体发热量降低,电磁干扰能力增强,并且运行可靠,输出电源质量高,是一种高效率的小功率开关电源。

简单介绍一个小型电源的原理图,控制电路主要是由控制芯片OB2530来控制完成的,另外还加入必要的外围电路:反馈电路,它是由过流保护电路,过压保护电路,稳压电路等组成控制电路。主电路是由整流/滤波电路,Buck电容,高频变压器等组成。下图1.1 OB2530电路原理图。

图1.1 OB2530电路原理图

1.1 开关电源技术的发展状况

电力电子技术在近代社会正在以一个高速度不断的创新发展,高频开关电源应用的领域已经非常广泛:1.PC终端设备,2.通讯家用电器,3.工业电源,4.航空航天等各个领域。我国的电子行业正迅速崛起,电子产品正在经历一个迅速发展的阶段。手机,电脑等PC设备尤为突出。因此电源的需求与应用也变的很迫切。电源有几种比较常见的拓扑结构:1.Buck拓扑结构,2.Boost拓扑结构,

3.推挽拓扑结构,

4.正激拓扑结构,

5.反激拓扑结构,

6.半桥/全桥拓扑结构等。其中小功率的开关电源反激拓扑应用的很普遍,技术已经很成熟(150W)以下的开关电源。大功率的开关电源一些工业电源半桥/全桥拓扑应用的比较广泛。20世纪80年代PWM宽带脉冲调制技术得到了迅速的发展,PWM技术主要应用于电力电子行业。风力发电,电机调速,直流供电等重要领域。PWM技术的发展对节能环保方面有一定的积极的意义。正如像台达这些电源大厂的企业理念“节能,环保,爱地球”极大的提高了电源的效率,这也对应了如今国家提倡的节能减排的战略要求。PWM有很多种的控制方法:1.等脉宽PWM法2.随机PWM法3.SPWM 法等十几种方法控制方法。后面我们还会详细的讲解PWM脉宽调制技术。

1.2 开关电源定义

线性电源是高频开关电源迅速发展和进步的基础,通俗的说开关电源是在线性稳压电源的基础上发展进步的。开关电源是开关器件(如:三极管,晶体管等)工作在开关状态的电源。开关电源中有四大类基本电力电子电路: AC-DC 电路

DC-AC 电路

AC-AC 电路

DC-DC 电路

开关电源在实际应用中,比以上四种电子电路范围要窄的很多。换句话将就是要同时具备以下的三个基本条件的电源可称之为开关电源,这三个基本条件就是:1.开关 2.高频3.直流。

1.3 开关电源的发展历史及其应用范围

线性稳压电源是开关电源的发展基础。在开关电源还没有出现的时候,许多工业控制设备、PC电源等工作电源都是采用线性稳压电源。但是因为电子技术的不断跟进使得我们需要功能越来越强大更加完善的开关电源。这就使得市场迫切需要1.体积小2.效率高3.重量轻4.性能好的新型高频开关电源,开关电源技术发展最为强大的动力莫过于它巨大的市场价值当然还有能源方面的能源意义。新型电力电子器件的创新以及高频率的开关管的出现给开关电源的发展提供

条件。在上世纪 60 年代末,巨型晶体管(GTR )的出现,在工程的不断努力下使得采用高工作频率的开关电源得以问世,那时确定的开关电源的基本拓扑结构一直沿用至今,如上文我们已经提到过的Buck 拓扑,Boost 拓扑,推挽变换器,正激变换器,反激变换器,半桥/全桥拓扑等。电源的开关频率这几年得到了很大的提升完全得益于MOSFET 在开关领域的使用,使得电源体积变得更小,重量变得更轻,功率密度也得到了改善。开关电源的开关频率不断的提高也引起了很多的问题,比如电磁干扰问题,为了能够更好的解决电磁干扰的问题就出现了一个新的技术,软开关技术开关电路它的出现使得开关电源技术进一步提升。在后来在上世纪 90 年代开始,功率因数校正(PFC )技术成为了开关电源发展的瓶颈,工程师们也不断的去想各种办法去提高开关电源的功率因数(PFC )。出现了功率因数校正技术(PFC )可以分为: 1.主动式

PFC

2.被动式PFC

目前除了对直流输出电压的输出纹波要求极高的场合外,高频开关电源慢慢的取代了线性稳压电源,主要用于小功率场合。比如:电视机、电脑、计算机、各种电子仪器仪表的电源。在比较多的中大容量范围,开关电源慢慢取代了相控电源,比如:

1.通信电源领域

2.

电镀装置3.电焊机4.工业设备等的电源等。开关电源的主电路是开关电源的核心部分。我们一般根据以下的三个原则对开关电源斤西瓜以下分类根据:

1. 电能回馈能力

2. 输出端与输入端是否电气隔离

3. 电路的结构形式。我们可以发现隔离型电路在实际应用中较广泛推广。而非隔离型电路较少如图 1.2 电源拓扑分布图:

图1.2 电源拓扑分布图

1.4 开关电源控制技术分析研究

开关电源可以分为电压控制模式和电流控制模式两种控制模式:

1.5 全桥开关电源应用技术 1.PWM 高频调制技术

2.软开关技术

3.处理网侧谐波电流

4.提高网侧功率因数

以上先进的的电力电子技术的应用引入高效、高性能、高功率因数和低污染的新趋势。使得电源的发展:

1.正向高频化

2.高功率密度

3.高功率因数

4.高可靠性和高智能化

1.6 本设计的内容及参数

本次设计采用相移脉宽调制谐振控制器UC3895芯片,这种介绍了UC3895的外围电路设计以及在开关源中的应用。UC3895是相移谐振DC/DC 变换的PWM 控制器,UC3895的功能及特点有以下几点。

1.UC3895增加了自我适应的延迟时间设置还有其他的逻辑功能模块设置。

2.先进的BCDMOC工艺制造用在了这颗芯片的身上,使得UC3895的性能得到了很大的提高。特别是处理信号的速度上。

3.这颗芯片也是一种DC/DC变换器的控制芯片。

4.UC3895内部设置有软开关设置,所以它能实现全桥零电压软开关功率变换电路,他也有控制电路简单,性能稳定可靠。

文中同时也有介绍 ZVS 逆变电路的各个开关管工作状态的工作模式,系统的阐述了各个电子元器件的性能参数以及他们的应用电路设计,还有设计了UC3895外围电路设计包括延迟时间的设定,逆变电路的设计,不可控整流电路的设计,电压检测反馈电路设计,过电流保护进行了设计,以及他们的动态电路的分析及简单计算,不管电路怎么设计,工程师们都尽力的使电路的稳定性和安全性进一步提高。

参数:

1.输入电压:220VAC±20%,50Hz。

2.输出48V-3.3V/15A,输出纹波≤50mV,开关噪声<200mV。

3.输入对地隔离电压≥1500VAC(10mA漏电流,1分钟打压)。

4.要求选用UC3895作为PWM控制芯片,全桥主电路。

第二章 电子元器件及部分电路介绍

在开关电源中,电力电子器件是完成电能转换以及主电路拓扑中最为关键的元件。为了降低电子元器件在工作状态的功率损耗以及提高开关电源的整机效率,开关电源中的开关管一般工作在开关状态,由此我们命名他们为开关元器件开关元器件的应用极大的提高了开关电源的效率。电力电子器件种类很多,我们根据电子元器件在电路中被控制的程度进行了一下的分类。1:不可控器件,即二极管;2:半控型器件,主要包括晶闸管及其派生器件;3:全控型器件,主要包括绝缘栅双极型晶体管、电力晶体管、电力场效应晶体管等。随着电子半导体技术的不断进步和发展,他们的性能都在不断地提高,功耗不断的下降。这就极大的提高了开光电源的整机的功率密度以及电源高频话的发展。我们只有不断地探索,创新了解电力电子器件的特性,这样才能设计开发出来一个理想的开关电源。

2.1 二极管组成电路分析

图2.1 二极管

2.1.1 整流桥电路

整流桥电路就是把我们用的交流电通过整流桥转换为直流电的电路。整流电路可以分为一下三种:

1.半波整流电路

2.全波整流电路

3.桥式整流电路

这三种整流电路主要就是利用二极管的单向导电特性,整流二极管的导通电压由输入交流电压提供。下图 2.2所示整流桥电路,他就是利用二极管的单向导电的基本特性来整流的电路,使交流电转换成了直流电。达到了整流的目的。

整流桥电路是对半波整流电路的一种改进。它能获得半波整流所不能得到的下半部分的波形,这就使得整流的效率提高。

桥式整流电路的原理非常简单,它就是利用四个二极管,两两对接。正弦波是能够顺利导通,负弦波是二极管2,3的作用使得电流正向流出,得到了直流电。利用二极管单向导通的特性,但也要特别注意二极管的反向耐压值,如果超出二极管就会被击穿,桥式整流我们由定义可以看出对输入正弦波的利用效率比半波整流高出一倍,因为正弦波的负半轴也被利用了。由此也提高了电能的利用效率。

桥式整流是交流电转换成直流电的第一步后面还要有直流电的滤波整流,雷击浪涌的整改等一系列问题。桥式整流是由4只整流二极管作桥式连接,它的封装工艺现在已经很完善。桥式整流器品种多,性能优良,整流效率高,稳定性好。

二极管有以下几个参数特性:

1:最大整流电流(IF)

2:最高反向工作电压(Udrm)

3:反向电流(Idrm)

4:动态电阻(Rd)

5:最高工作最高频率(Fm)

图2.2 桥式整流器

2.1.2 稳压管稳压电路

二极管的反向击穿时它的电流在一定的范围波动但是二极管的电压保持不变,利用二极管的这一特性我们就能制作成稳压二极管,它的主要作用就是稳压作用。在临界反向击穿电压前稳压二极管都有很高电阻的半导体器件,这就使得稳压二极管的两端的电压是保持不变在一定的电流范围内,具有很好的稳压特性下图的曲线可知,串联起来的稳压二极管可以在较高的电压上使用,串联起来的稳压二极管的两端可以有很高的电压。稳压电路和限幅电路根据这个特性做成的。下图为稳压二极管的伏安特性曲线和稳压二极管符号表示如图2.3(a)(b)所示。

(a) (b)

图2.3 伏安特性曲线及符号

稳压二极管的主要参数:

1:稳定电压

2:稳定电流

3:额定功耗

4:动态电阻

5:温度系数

稳压二极管对电流的要求也很高,比如稳压二极管的反向电流要大于稳压管的最小稳定电流在稳压电路中,电流如果过小的话会造成稳压电路不稳定工作稳压二极管不稳压。稳压管的最大稳压电流我们也要注意,不能超过稳压管的最大

稳压电流,超过稳压管最大稳压电流的话就会造成稳压管损坏。为了解决这个问题我们在稳压电路中要串联了一个稳压电阻图2.4中的 R来限制电流,这个电阻我们叫做限流电阻。将限流电阻的R值计算在一个合适的范围内,才能保证稳压二极管工作在稳定状态,起到稳压的作用。如图2.4稳压管稳压电路。

图2.4 稳压管电路

2.2 三极管及其组成电路分析

半导体三极管我们简称它为三极管,也有的叫法双极型晶体管和晶体三极管,三极管它是一种电流控制的半导体器件,三级管有将电流信号放大的作用,它是电源电路中的核心元件。三极管由三部分组成组成的方式如图2.5(a)(b)分别为N沟道三极管P沟道三极管。

1.基区,

2.发射区

3.集电区

图2.5(a) 图2.5(b)

图2.5 N沟道三极管P沟道三极管

2.2.1 图腾柱驱动电路

图2.6是一个图腾柱驱动电路。图腾柱就是上下各一个晶体管,上管为NPN 型三极管,下管为PNP型三极管。两个基极极接到一起接输入,上管的发射极和下管的集电极接到一起接输出。来匹配电压或者提高MOS的驱动能力。

图2.6 图腾柱驱动电路

2.2.2共射放大电路

图2.7 阻容耦合共射放大电路

图2.8 直接耦合共射放大电路

2.3 场效应管及其组成电路分析

场效应晶体管有两种类型,第一种:junction FET—JFET第二种:金属 - 氧化物半导体场效应管。金属 - 氧化物半导体场效应管他是由多数载流子参与导电它具有单极性导电的特性所以也叫做单极性晶体管。单极性晶体管它是由电压控制的半导体器件。单极性晶体管具有:

1.输入电阻高;

2.噪声小;

3.功耗低;

4.动态范围大;

5.易于集成;

6.没有二次击穿现象优点。

场效应管是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件。场效应晶体有以下主要参数:

1.夹断电压;

2.饱和漏源电流;

3.开启电压;

4.漏源击穿电压;

5.最大漏源电流。

2.3.1场效应晶体管组成的开关驱动电路

使用MOS管相对于三极管有以下优点:

1.MOS管是电压控制的电子元器件,并且具有驱动能力小的特点。

2.MOS管大多都是载流子的器件,它没有二次击穿而且热稳定性比较好。

所以场效应晶体管是是开关电源小型化,高效率化的重要器件。特别是在开关电源工作在高频时(≧100KHZ),MOS 的有点更为突出。

场效应晶体管的基本形式如图2.9 TTL驱动MOSFET。

图2.9 TTL驱动MOSFET

第三章全桥拓扑原理

全桥开关电源拓扑如图3.1所示,全桥变换器与采用了倍压整流电路和全桥整流电路。所以全桥电压可以构造出440V的离线变压器全桥拓扑的优点是初级侧可以得到幅值为±VDC的方波电压。图3.1中全桥变换器有两个输出,及主输出VOM和辅助输出VOI.电路在工作的过程中MOS管 Q1和Q4, Q2和Q3两组MOS 交替导通半个周期,但是如果Q1,Q2,Q3,Q4同时导通的话MOS管就会烧坏。不考虑MOS 的导通压降的问题,我们就会得到初级电压幅值为VDC脉宽为t的交变方波如图3.2方波图。

3.1基本工作原理

我们知道市电的电压是不稳定的,所以我们得到的方波并不是一致不变的,这就需要我么在电路中设置反馈环检测输出电压的变化,检测到输出不稳定时及时的调制脉宽及占空比,达到在市电复杂变化的情况下保证负载得到的稳定电压。但是负载变化时,辅助输出的变化为百分之5-8之间。

图3.1 全桥变换器

图3.2 方波图

由上图我们假设晶体管MOS 的导通压降为1V ,肖特基整流管的压降为0.5,辅助输出的二极管为1V.由此我们可以计算出变压器的电压为:

辅助电压计算: ()T N N V V P OM on s dc 2t 5.02??????--= (3-1a)

pT N on

T VdcN V 2s on ≈ (3-1b)

主输出电压计算: ()T N N V ol V 2ton 1.0-p s 2-dc ??

????= (3-2a) T ton p N s

N dc V ol V 2≈ (3-2b)

由上面的公式我们可以看出全桥拓扑与其他的拓扑结构原理相同,当市电出现变化上升或下降时,UC3895就会进行一定比列的脉宽调节增大脉宽或减小脉宽,是输出电压保持稳定。就是通过保持VT 乘积不(伏秒积平衡)使输出电压稳定。

3.2 全桥变换器设计

3.2.1 最大导通时间、初级绕组圈数选择

首先我们上文提到了当四只开关管同时导通时,开关管会烧毁。这就要求开关管最大导通时间(由公式(3-1b )和(3-2b )可知)出现在直流输入电压最低的时候不超过半周期的百分之80。从而避免开关管烧坏。 根据电压方程我们正确的选择匝比p N s N 、Np N m ,使其在一定的电压范围内变换器仍能保持稳定的输出。

3.2.2 初级电流、输出功率、输入电压的关系

我们假设设计的变换器的效率为百分之90,因此我们可以得到一个转换关系in 0.9P P = ,输入的直流电压为最小值,选择的占空比0.8,忽略开关管的到导通压降,则输出的公式为:

P pf t I dc V Pin 25.1)9.0(== (3-3) 即 dc V P Ipft

39.1= (3-4)

3.2.3 初级线径的选择

因为我们设定的占空比为0.8,则电流的有效值为0.8pft rms I I =,由上式(3-3)可知: 8.01.39rms )(Vdc P I =

即: dc 1.25rms V P I = (3-5)

我们假设电流的密度为600圆密耳每有效值安培则:

总圆密耳数=dc 840dc 1.4600V P V P =* (3-6)

3.3 变压器初级隔直电容的选择

图3.1(a)中,在变压器的初级侧我们串联了一个没有极性的隔直电容,这样做的目的是为了避免磁通不平衡的问题。

全桥开关电源的磁通不平衡虽然不是很严重,但也会发生。晶体管一对半周期开关管导通的时间可能与另一半导通时间存在一定的误差;还有就是开关管的导通压降也肯能存在不同。这些参数的不同和一些其他因素的差异都会导致变换器初级侧的伏秒积不平衡导致磁通不平衡导致开关管的损坏。添加初级隔直电容可以避免磁通不平衡的问题,保证了电源的稳定性。

开关稳压电源(E题)

开关稳压电源(E题) 摘要 本系统以Boost升压斩波电路为核心,以MSP430单片机为主控制器和PWM信号发生器,根据反馈信号对PWM信号做出调整,进行可靠的闭环控制,从而实现稳压输出。系统输出直流电压30V~36V 可调,可以通过键盘设定和步进调整,最大输出电流达到2A,电压调整率和负载调整率低,DC-DC变换器的效率达到93.97%。能对输入电压、输出电压和输出电流进行测量和显示。 系统特色:1)输出电压反馈采用“同步采样”方式,能有效避免电压尖峰对信号检测的影响。2)采用多种有效措施降低系统的电磁干扰(EMI),增强电磁兼容性(EMC)。3)具有完善、可靠的保护功能,如:过流保护、反接保护、欠压保护、过温保护、防开机“浪涌”电流保护等,保证了系统的可靠性。 1方案论证 1.1DC-DC主回路拓扑 方案一间接直流变流电路:结构如图1-1所示,可以实现输出端与输入端的隔离,适合于输入电压与输出电压之比远小于或远大于1的情形,但由于采用多次变换,电路中的损耗较大,效率较低,而且结构较为复杂。 方案二 Boost升压斩波电路:拓扑结构如图1-2所示。开关的开通和关断受外部PWM信号控制,电感L将交替地存储和释放能量,电感L储能后使电压泵升,而电容C可将输出电压保持住,输出电压与输入电压的关系为UO=(ton+toff),通过改变PWM控制信号的占空比可以相应实现输出电压的变化。该电路采取直接直流变流的方式实现升压,电路结构较为简单,损耗较小,效率较高。 E L C U O R L VD 图1-1 间接直流变流电路 图1-2 Boost升压斩波电路拓扑结构

综合比较,我们选择方案二。 1.2 控制方法及实现方案 方案一 利用PWM 专用芯片产生PWM 控制信号。此法较易实现,工作较稳定,但不易实现输出电压的键盘设定和步进调整。 方案二 利用单片机产生PWM 控制信号。让单片机根据反馈信号对PWM 信号做出相应调整以实现稳压输出。这种方案实现起来较为灵活,可以通过调试针对本身系统做出配套的优化。但是系统调试比较复杂。 在这里我们选择方案二。 1.3 系统总体框图 1) B oost 升压斩波电路中开关管的选取:电力晶体管(GTR )耐压高、工作频率较低、开关损耗大;电力场效应管(Power MOSFET )开关损耗小、工作频率较高。从工作频率和降低损耗的角度考虑,选择电力场效应管作为开关管。 2) 选择合适的开关工作频率:为降低开关损耗,应尽量降低工作频率;为避免产生噪声,工作频率不应在音频内。综合考虑后,我们把开关频率设定为20kHz 。 3) B oost 升压电路中二极管的选取:开关电源对于二极管的开关速度要求较高,可从快速恢复二极管和肖特基二极管中加以选择。与快速恢复二极管相比,肖特基二极管具有正向压降很小、恢复时间更短的优点,但反向耐压较低,多用于低压场合。考虑到降低损耗和低压应用的实际,选择肖特基二极管。 4) 控制电路及保护电路的措施:控制电路采取超低功耗单片机MSP430,其工作电流仅280μA ;显示采取低功耗LCD ;控制及保护电路的电源采取了降低功耗的方式,具体实现见附录图2,单片机由低功耗稳压芯片HT7133单独供电。 2 电路设计与参数计算 2.1 Boost 升压电路器件的选择及参数计算 B oost 升压电路

开关稳压电源设计说明书

开关稳压电源设计说明书 学生姓名: 学号: 专业班级:物电学院电子2班报告提交日期: 2014年5月20日 湖南理工学院物电学院

目录 一、设计任务及要求 (2) 1、设计任务 (2) 2、设计要求 (2) 二、基本原理与分析 (2) 三、方案设计 (5) 1、开关器件的选择 (5) 2、参数的设定 (5) 四、电路设计 (5) 1、电路整体设计 (5) 2、电路工作原理 (5) 五、总结 (7) 六、参考文献 (7)

一、设计任务及要求 1、设计任务 设计一手机开关型电池充电器,满足: (1)开关电源型充电; (2)输入电压220V,输出直流电压自定; (3)恒流恒压; (4)最大输出电流为:I max=1.0 A; 2、设计要求 (1)合理选择开关器件; (2)完成全电路理论设计、绘制电路图; (3)撰写设计报告。 二、基本原理与分析 随着电子技术和集成电路的飞速发展,开关稳压电源的类型越来越多,分类方法也各不相同,如果按照开关管与负载的连接方式分类,开关电源可以分为串联型、并联型和变压器耦合(并联)型3种类型。下面分别对这三种类型的开关电源做一些简单的介绍。 (1)串联型。 图1所示的开关电源是串联型开关电源,其特点是开关调整管VT与负载R L串联。因此,开关管和续流二极管的耐压要求较低。且滤波电容在开关管导通和截止时均有电流,故滤波性能好,输出电压U0的纹波系数小,要求储能电感铁心截面积也较小。其缺点是:输出直流电压与电网电压之间没有隔离变压器,即所谓“热地盘”,不够安全;若开关管部短路,则全部输入直流电压直接加到负载上,会引起负载过压或过流,损坏元件。因此,输出端一般需加稳压管加以保护。 根据稳压条件可得:(U i-U0)T1/L=U0T2/L 即 U0=U1T1/(T1+T2)=(T1/T)U i,σ=T1/T 由上式可见,可以通过控制开关管激励脉冲的占空比σ来调整开关电源的输出电压U0。

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

开关型直流稳压电源

电子课程设计 开关型直流稳压电源 摘要

【摘要】本次设计的主要目的是实现一个开关电源,开关电源在日常生活中应用非常广泛,比如电视机、电脑、冰箱以及其他常用的电子产品都需要开关电源,如今是数字化时代,用单片机实现电子产品十分方便,所以在这次设计中使用了单片机实现。在这次设计文档中,详细阐述了开关电源与线性电源的比较,方案论证,总体结构设计,并附以相关电路图表示,最后生成相关了PCB 电路图。 【关键词】线性,半导体,开关,储能,转换,控制,滤波,分压 一、开关电源方案设计 开关电源是指调整管工作在开关方式,即导通和截止状态的稳压电源,缩写为SPS (Switching Power Supply )。开关电源的核心部分是一个直流变换器。利用直流变换器可以把一种直流电压变成极性、数值不同的多种直流电压。 图2.1所示电路的工作过程为:假设基准电压为5v ,由于电网波动导致输入电压减小,那么输出电压也将会减少,此时,所采样的电压将减小,假设为4.9v ,误差为0.1v ,经过比较放大后,脉冲调制电路根据这个误差,提高占空比使输出电压增大,同理,当由于电网波动导致输出电压增大时,脉冲调制电路降低占空比使输出电压减小,以此来控制输出电压的稳定。 图2.1开关电源原理框图 方案1 方案1:单片机通过数模转换输出一个电压,用作电源的基准电压,电源可以通过键盘预置输出电压,单片机不加入反馈控制,电源仍要使用专门的PWM 控制芯片,工作过程为:当通过键盘预置电压时,单片机通过D/A 芯片输出一个电压作为控制芯片的基准电压,这个基准电压可以使得控制芯片按照预置电压值,来输出控制脉冲,以输出期望输出电压。 整流 滤波 电路 开关管 滤波电路 采样电路 比较放大 脉冲调宽 输出 输入 基准电压 + - + -

开关可调稳压电源的设计与制作

开关可调稳压电源的设计与制作 设计思想: 交直流转换,稳压:变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电变压器原理图流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)变压器由铁芯(或磁芯)和线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。变压器利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器输送的电能的多少由用电器的功率决定. 将 220V 交流电压首先通过隔离变压器降压为 18V 的交流电压,隔离变压器的主要作用是:使一次侧与二次侧的电气完全绝缘,也使该回路隔离。另外,利用其铁芯的高频损耗大的特点,从而抑制高频杂波传入控制回路。用隔离变压器使二次对地悬浮,只能用在供电范围较小、线路较短的场合,此时,系统的对地电容电流小得不足以对人身造成伤害。还有一个很重要的作用就是保护人身安全。足以对人身造成伤害。隔离危险电压.18V 交流电压经过滤波二极管和电容 C2 进行滤波,经过lm7818 输出稳定的 18V 电压,电容 C1C3 是为了滤掉直流电压的毛刺,使其输出稳定 设计方案: 方案中使用隔离变压器提高抗电磁干扰能力,使用脉宽调制电路控制电压输出,采用 DC-DC 变换器,提高电源效率。 设计原理图如下: 电路原理图如下:

电路仿真结果如下: 各元器件与模块: N7818 稳压芯片介绍: 共有三种外形封装形式,,管脚 1 是电压输入脚,2 是接地脚,3 是稳定电压输出脚,用于稳压,原件如图所示: DC—DC 升压模块,DC-DC 升压变换器的工作原理:DC-DC 功率变换器的种类很多。按照输入/输出电路是否隔离来分,可分为非隔离型和隔离型两大类。非隔离型的 DC-DC 变换器又可分为降压式、升压式、极性反转式等几种;隔离型的 DC-DC 变换器又可分为单端正激式、单端反激式、双端半桥、双端全桥等

开关稳压电源电路设计及应用

摘要:在对线性稳压集成电路与开关稳压集成电路的应用特性进行比较的基础上,简单介绍了LM2576的特性,给出了基本开关稳压电源、工作模式可控的开关稳压电源和开关与线性结合式稳压电路的设计方案及元器件参数的计算方法。 关键词:LM2576 电源设计 MCU 嵌入式控制系统的MCU一般都需要一个稳定的工作电压才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变M CU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会大的“热损失”(其值为V压降×I负荷),其工作效率仅为30%~50%[1]。加之工作在高粉尘等恶劣环境下往往将嵌入式工业控制系统置于密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得更差。 而开关电源调节器件则以完全导通或关断的方式工作。因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%[1]。在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。因此,开关稳压电源可大大减少散热片体积和PCB板的面积,甚至在大多数情况

下不需要加装散热片,从而减少了对MCU工作环境的有害影响。 采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自于电源的高频干扰具有较强的抑制作用。此外,由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。 LM2576系列开关稳压集成电路是线性三端稳压器件(如78xx 系列端稳压集成电路)的替代品,它具有可靠的工作性能、较高的工作效率和较强的输出电流驱动能力,从而为MCU的稳定、可靠工作提供了强有力的保证。 一、LM2576简介 LM2576系列是美国国家半导体公司生产的3A电流输出降压开关型集成稳压电路,它内含固定频率振荡器(52kHz)和基准稳压器(1.23V),并具有完善的保护电路,包括电流限制及热关断电路等,利用该器件只需极少的外围器件便可构成高效稳压电路。LM2576系列包括LM2576(最高输入电压40V)及LM257 6HV(最高输入电压60V)二个系列。各系列产品均提供有3.3

开关稳压电源设计

开关电源的设计 同组参与者:李方舟、周恒、张涛开关式直流稳压电源的控制方式可分为调宽式和 调频试两种,实际应用中,而调宽式应用的较多,在 目前开发和使用的开关电源集成电路中,绝大多数也 为脉宽调制(PWM)型。 开关稳压电源具有效率高,输出功率大,输入电 压变化范围宽,节约能耗等优点。 开关电源的工作原理就是通过改变开关器件的开 通时间和工作周期的比值即占空比来改变输出电压; 通常有三种方式:脉冲宽度调制(PWM),脉冲频率 调制(PFM)和混合调制。PWM调制是指开关周期 恒定,通过改变脉冲宽度来改变占空比的方式,因为 周期恒定,滤波电路的设计比较简单,也是应用能够 最广泛的调制方式。开关稳压电源的主要结构框架如 图1-1所示,有隔离变压器产生一个15-18V的交流电 压,在经过整流滤波电路,将交流电变成直流电,然 后再经过DC—DC变换,由PWM的驱动电路去控 制开关管的导通和截止,从而产生一个稳定的电压源, 如图1-1所示;

图1-1 一开关转换电路 1:滤波电路 输入滤波电路具有双向隔离作用,它可以抑制交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。如图1-2所示滤波电路中C1用以滤除直流份量中的交流成分,隔离电容应选用高频特性较好的碳膜电容,电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性,C2、C3跨接在输出端,能有效地抑制共模干扰,为了减小漏电流C2、C3宜选用陶瓷电容器. 图1-2 2.电压保护电路 如图1-3所示为输出过压保护电路。稳压管VS的

击穿电压稍大于输出电压额定值,输出电压正常时,VS不导通,晶闸管VS的门极电压为零,不导通,当输出过压时,VS击穿,VS受触发导通,使光电耦合器输出三极管电流增大,通过UC3842控制开关管关断。 图1-3 输出过压保护电路 3.电压反馈电路 电压反馈电路如图1-4所示。输出电压通过集成稳压器TL431和光电耦合器反馈到的1脚,调节R1 R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压U0升高,集成稳压器TL431的阴极到阳极的电流在增大,UC3842的输出脉宽相应变窄,输出电压U0变小,同样,如果输出电压U0减小,可通过反馈调节使之升高。

开关稳压电源设计报告

开关稳压电源设计报告 成员名字:方愿岭段洁斐梅二召 摘要:为提高电源的利用效率和缩小设计电源的尺寸,本文介绍一种含有MC3406集成芯片的开关稳压电源,并对成芯片内部结构和外部电路作简要介绍,最终给出一个完整的开关稳压电路设计电路并对电路作具体论证最终完成开关稳压电源的实物制作。 A switching power supply design report Abstract:In order to improve the efficiency in the use of the power supply and reduce the size of the power source design, this paper introduces a kind of contains MC34063 integrated chips of a switching power supply, and the integrated chip internal structure and external circuit is briefly introduced, finally give a complete a switching circuit design circuit to make concrete demonstration and circuit switching power supply finally complete the making of objects. 关键词:开关稳压电源;整流滤波电路;PWM控制电路;MC34063 引言 电源是各种电子设备的核心,因此电源的优劣直接关系到电子设计的好坏。另外电子设计者不得不考虑的一个问题就是效率问题,所

基于UC3875的高频开关电源的设计

引言 近年来,随着电子技术的发展,邮电通信、交通设施、仪器仪表、工业设施、家用电器等越来越多地应用开关电源,随着科学技术的不断进步,对大功率电源的需求也就越来越大。与此同时大量集成电路、超大规模集成电路等电子通信设备日益增多,要求电源的发展趋势是小型化、轻量化。通常滤波电感、电容和变压器的体积和重量比较大,因此主要是靠减少它们的体积来实现小型化、轻量化。 我们可以通过减少变压器的绕组匝数和金减小铁心尺寸来提高工作频率,但在提高开关频率的同时,开关损耗会随之增加,电路效率会严重下降。针对这些问题出现了软开关技术,它利用以谐振为主的辅助换流手段,解决了电路中的开关损耗和开关噪声问题,使开关电源能高频高效地运行,从20世纪70年代以来国内外就开始不断研究高频软开关技术,目前已比较成熟,下面以2KW的电源为例进行设计。 1.设计内容和方法 1.1主电路型式的选择 变换电路的型式主要根据负载要求和给定电源电压等技术条件进行选择。在几种常用的变换电路中,因为半桥、全桥变换电路功率开关管承受的电压比推挽变换电路低一倍,由于市电电压较高,所以不选推挽变换电路。半桥变换电路与全桥变换电路在输出同样功率时,半桥变换电路的功率开关管承受二倍的工作电流,不易选管,输出功率较全桥小,所以采用全桥变换电路。 传统的全桥变换电路开关元件在电压很高或电流很大的条件下,在门极的控制下开通或关断,开关过程中电压、电流均不为零,出现重叠,导致了开关损耗。开关损耗随开关频率增加而急剧上升,使电路效率下降,阻碍了开关频率的提高。在移相控制技术的基础上,利用功率管的输出电容和输出变压器的漏电感作为谐振元件,使全桥变换器四个开关管依次在零电压下导通,实现恒频软开关。由于减少了开关过程损耗,变换效率可达80%-90%,并且不会发生开关应力过大。所以选用移相控制全桥型零电压开关脉宽调制(PSC FB ZVS-PWM)变换电路。 移相控制全桥变换电路是目前应用最为广泛的软开关电路之一,它的特点是电路简单,与传统的硬开关电路相比,并没有增加辅助开关等元件。原理如图1所示,主要由四个相同的功率管和一个高频变压器压器组成。E为输入直流电压, T1~T4 为开关管, D1~D4 为体内二极管,C1 ~C4 为开关的输出电容。以第一个桥臂为例介绍,利用变压器漏感和功率输出电容C1 谐振,漏感储能向电容 C1释放过程中,使电容上的电压逐步下降到零,体内二极管D1开通,创造了T1 的ZVS条件。

600W半桥型开关稳压电源设计

600W半桥型开关稳压电源设计 600W半桥型开关稳压电源设计 摘要 本次设计主要是设计一个600W半桥型开关稳压电源,从而为负载供 电。 电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源本身消耗的能量低,电源效率比普通线性稳压电源提高一倍,被广泛用于电子计算机、通讯、家电等各个行业。它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。本文介绍了一种采用半桥电路的开关电源,其输入电压为单相170 ~ 260V,输出电压为直流12V恒定,最大电流50A。从主电路的原理与主电路图的设计、控制电路器件的选取、保护电路方案的确定以及计算机仿真图形的绘制与波形分析等方面的研究。 关键词:半桥变换器;功率MOS管;脉宽调制;稳压电源; 第1章绪论1.1 电力电子技术概况 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术属于信息电子技术。电力电子技术是应用于电

力领域的电子技术,它是利用电力电子器件对电能进行变换和控制的新兴学科。目前所用的电力电子器件采用半导体制成,故称电力半导体器件。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。电力电子技术的发展是以电力电子器件为核心,伴随变换技术和 控制技术的发展而发展的。 电力电子技术可以理解为功率强大,可供诸如电力系统那样大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。为了解决发热和效率问题,对于大功率的电子电路,器件的运行都采用开关方式。这种开关运行方式就是电力电 子器件运行的特点。 电力电子学这一名词是20世纪60年代出现的,“电力电子学”和“电力电子技术”在内容上并没有很大的不同,只是分别从学术和工程技术这2个不同角度来称呼。电力电子学可以用图1的倒三角形来描述,可以认为电力电子学由电力学、电子学和控制理论这3个学科交叉而形成 的。这一观点被全世界普遍接受。 电力电子技术与电子学的关系是显而易见的。电子学可分为电子器件和电子电路两大部分,它们分别与电力电子器件和电力电子电路相对应。从电子和电力电子的器件制造技术上进两者同根同源,从两种电路的分析方法上讲也是一致的,只是两者应用的目的不同,前者用于电力变换, 后者用于信息处理。

开关稳压电源和线性稳压电源

开关稳压电源和线性稳压电源 根据调整管的工作状态,我们常把稳压电源分成两类:线性稳压电源和开关稳压电源。 线性稳压电源,是指调整管工作在线性状态下的稳压电源。而在开关电源中则不一样,开关管(在开关电源中,我们一般把调整管叫做开关管)是工作在开、关两种状态下的:开——电阻很小;关——电阻很大。 开关电源是一种比较新型的电源。它具有效率高,重量轻,可升、降压,输出功率大等优点。但是由于电路工作在开关状态,所以噪声比较大。通过下图,我们来简单的说说降压型开关电源的工作原理。如图所示,电路由开关K(实际电路中为三极管或者场效应管),续流二极管D,储能电感L,滤波电容C等构成。当开关闭合时,电源通过开关K、电感L给负载供电,并将部分电能储存在电感L以及电容C中。由于电感L的自感,在开关接通后,电流增大得比较缓慢,即输出不能立刻达到电源电压值。一定时间后,开关断开,由于电感L的自感作用(可以比较形象的认为电感中的电流有惯性作用),将保持电路中的电流不变,即从左往右继续流。这电流流过负载,从地线返回,流到续流二极管D的正极,经过二极管D,返回电感L的左端,从而形成了一个回路。通过控制开关闭合跟断开的时间(即PWM——脉冲宽度调制),就可以控制输出电压。如果通过检测输出电压来控制开、关的时间,以保持输出电压不变,这就实现了稳压的目的。 在开关闭合期间,电感存储能量;在开关断开期间,电感释放能量,所以电感L叫做储能电感。二极管D在开关断开期间,负责给电感L提供电流通路,所以二极管D叫做续流二极管。 在实际的开关电源中,开关K由三极管或场效应管代替。当开关断开时,电流很小;当开关闭合时,电压很小,所以发热功率U×I就会很小。这就是开关电源效率高的原因。 看过完两个关于电源的FAQ后,大家可能对电源的效率计算还不了解。在后面的FAQ中,我们将专门给大家介绍。 常见的用于开关电源的芯片有:TL494,LM2575,LM2673,34063,51414等等。

大功率移相全桥软开关电源的设计

工程硕士学位论文 大功率移相全桥软开关电源的设计 THE DESIGN ON SOFT SWITCHING POWER SUPPLY WITH HIGH POWER PHASE-SHIFTED FULL-BRIDGE 雷连方 哈尔滨工业大学 2006年12月

国内图书分类号 : TM92 国际图书分类号: 621.38 工程硕士学位论文 大功率移相全桥软开关电源的设计 硕士研究生:雷连方 导师:刘瑞叶 教授 副导师:肖连存 高工 申请学位:工程硕士 学科、专业:电气工程 所在单位:中国科工集团第三总体设计部 答辩日期:2006年12 月 授予学位单位:哈尔滨工业大学

Classified Index: TM92 U.D.C: 621.38 Dissertation for the Master Degree in Engineering THE DESIGN ON SOFT SWITCHING POWER SUPPLY WITH HIGH POWER PHASE-SHIFTED FULL-BRIDGE C a n d i d a t e:Lei Lianfang Supervisor:Prof. Liu Ruiye Associate Supervisor:Senior Engineer Xiaolianchun Academic Degree Applied for:Master of Engineering Speciality:Electrical Engineering Affiliation:The 3rd Headquarters of China Aerospace Science Industry Company Date of Defence:December,2006 Degree-Conferring-Institution:Harbin Institute of technology

移相全桥为主电路的软开关电源设计详解

移相全桥为主电路的软开关电源设计详解 2014-09-11 11:10 来源:电源网作者:铃铛 移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。 主电路分析 这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。 图1 1.2kw软开关直流电源电路结构简图 其基本工作原理如下: 当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。 由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。 当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、

降压型直流开关稳压电源

降压型直流开关稳压电源(A题) 学校:东北石油大学 参赛选手:卢鑫坡曲记锋宋忠民 指导教师:张明 摘要:本系统以TI公司的LM5117及CSD18532KCS场效应管为核心,设计制作了该降压型开关直流稳压电源。额定输出电压为5V,输出电流最大值为3A。该系统前端是以LM5117为核心构成的DC-DC直流转直流降压电路,从而确定所需的PWM调制方式,经过几级滤波最终去除纹波,完成了总体电路的设计。该作品很好地满足了竞赛题目要求。 关键词:开关电源LM5117 CSD18532KCS场效应管 1.设计任务 1.1基本要求 (1)额定输入电压下,输出电压偏差:; (2)额定输入电压下,最大输出电流:; (3)输出噪声纹波电压峰峰值:; (4)从满载变到轻载时,负载调整率: ; (5)变化到17.6V和13.6V,电压调整率: (6)效率; (7)具有过流保护功能,动作电流;

(8)增加1个二端子端口,即输出控制端口,端口可外接电阻R (1k-10k )。电源输出电压由下式确定: ; (9)尽量减小电源重量,使电源不含负载的重量不大于0.2Kg ; 2.系统方案 2.1方案提出 利用LM5117制作一个恒流稳压器,经查该芯片数据手册知,可以通过调节电流控制,电压控制两部分的开合关系,来实现升压和降压的功能,最终达成DC-DC 变换的目的。 具体电路原理图如后图5-1所示。 2.2系统整体框图 图2-1降压型开关稳压电源设计总体框图 3.电路理论分析 3.1具体实现方法 去耦滤波 消除高频噪音 直流输入部分 负载 RC 滤波 DC-DC 降压部分 5V 、3A 直流输出 去耦滤波 环形路型补偿 仿真电流检测

开关稳压电源设计word文档

编号:E甲0904 2007全国大学生电子设计竞赛题目E: 《开关稳压电源》 参赛学生:李泉泉、满中甜、董学峰 指导教师:刘晓军、郑亚民、周强 学校:山东大学威海分校 院系:信息工程学院 2007年9月6日

开关稳压电源(E题) 摘要 该电源以单端反激式DC-DC变换器为核心。市电通过自耦式调压器,隔离变压器,整流滤波后产生直流电压,经DC-DC变换得到题目所需输出电压,实现了开关稳压电源的设计。DC-DC变换器采用脉宽调制器(PWM)UC3842,通过调节 在30V~36V范围内可调;微控制器与键盘显示构成了占空因数使得输出电压U O 控制显示模块,能对输出电压进行键盘设定和步进调整,并显示输出电压、电流的测量和数字显示功能,形成了良好的人机界面。 关键词:DC-DC变换器,脉宽调制器(PWM) 1方案论证 1.1DC-DC主回路拓扑 适合本系统的DC-DC拓扑结构为单端反激式DC-DC变换器,利用UC3824芯片作为控制核心,该芯片抗电压波动能力强,并可使负载调整率得到明显改善,而且其频响特性好,稳定裕度大,过流限制特性好,具有过流保护和欠压锁定功能。 1.2控制方法及实现方案 手动输出电压调节采用电位器改变取样回路的上下比电阻比值来改变输出电压,使其满足题目要求,该方案电路结构简单,实现方便。 键盘设定通过单片机改变模拟开关接通通道,选取取样回路的电阻节点位置,改变取样回路的上下比电阻比值来改变输出电压,实现发挥部分的键盘设定功能。 1.3提高效率的方法及实现方案 在DC-DC变换器中,主要消耗功率的元件有主回路的开关管、续流二极管、储能电感等部件。本设计中提高效率的措施主要有: 通过增加电感线径减小电感阻值; 采用低内阻的高效率MOSFET作为主回路的开关元件; 采用高速低正相压降的肖特基二极管降低其功耗。 2电路设计与参数计算 2.1电路整体设计 本设计以DC-DC变换器为核心,辅以隔离变压、整流滤波、控制显示等功能模块,完成开关稳压电源各项功能(见图1 系统框图)。

开关型稳压电源

习题12 开关型稳压电源 开关型稳压电源中的调整管工作在开关状态,因而功耗小,电路效率高,体积小,重量轻。适用于大功率且负载固定、输出电压调节范围不大、负载对输出纹波要求不高的场合。现在开关型电源应用很广泛,有许多不同种类的开关稳压电源。 按调整管与负载连接方式可分为串联型和并联型。 按稳压控制方式可分为脉冲宽度调制型(PWM)、脉冲频率调制型(PFM)和混合型。 以下是简单实用开关稳压电源。 12.1脉冲宽度调制(PWM)电路MIC2194 脉冲宽度调制(PWM)电路MIC2194的外形及管脚如图12.1所示。 图12.1 脉冲宽度调制(PWM)电路MIC2194的外形及管脚 由MIC2194控制的串联型开关稳压电源如图12.2所示。改变R1或R2可以适当改变输出电压。Si4431A管脚及电路符号如图12.3所示。Si4431A主要参数如表12.1所示。5.2μH的电感线圈要加环形磁心,导线略大于1mm2。输出负电压采用图12.4所示电路。 表12.1 Si4431A主要参数 V DS(V) r DS (Ω) I D (A) -30 0.030 V GS= -10V -7.2 0.052 V GS= -4.5V -5.5 图12.2 MIC2194控制的串联型开关稳压电源

图12.3 Si4431A管脚及电路符号 图12.4 MIC2194控制的串联型开关稳压电源输出负电压12.2 MC34060控制的串联型开关稳压电源 MC34060外形及管脚如图12.5所示。 MC34060控制的串联型开关稳压电源如图12.6所示。 MC34060控制的串联型开关稳压电源测试结果如表12.2所示。

开关直流稳压电源设计

毕业设计说明书(论文) 课题名称开关直流稳压电源设计 专业航空电子设备维修 081331 班 学生姓名罗亨林学号 26号 指导老师贺国灿技术职称______________ 2011年04 月05 日

毕业设计(论文)任务书 学生姓名:罗亨林班级:081331 1.毕业设计(论文)题目:开关直流稳压电源设计 2.毕业设计(论文)使用的原始资料数据及设计技术要求: (1)交流输入电压220V±20%,50Hz; (2)直流输出电压30V~36V可调; (3)直流输出电流0~2A; (4)负载调整率S I≤5%; (5)DC-DC变换器的效率 ≥70%; (6)具有过流保护功能,动作电流I O(th)=2.5±0.2A。 3.毕业设计(论文)工作内容及完成时间: 本设计主要以MC34063芯片的DC-DC电源变换控制器为控制核心设计一开关直流稳压电源 日期:自2010年12月01日至2011年04月05日 指导老师评语: __________________________________________________________________ __________________________________________________________________ ____________________________________________ 指导老师:贺国灿系主任:姚卫华

前言 开关电源是一种利用开关功率器件并通过功率变换技术而制成的直流稳压电源.它具有体积小、重量轻、效率高、对电网电压及频率的变化适应性强、输出电压保持时间长、有利于计算机信息保护等优点,因而广泛应用于以电子计算机为主导的各种终端设备、通讯设备,是当今电子信息产业飞速发展不可缺少的一种电源.开关电源又被称为高效能节能电源,内部电路工作在高频开关状态,自身消耗的能量很低,一般电源效率可达80%左右,比普通线性稳压电源进步一倍.目前生产的无工频变压器式中,开关电源仍然采用脉冲宽调制器PWM或脉冲频率调制器PFM的原理.本文根据PWM原理,以MC34063芯片的DC-DC电源变换控制器为控制核心设计出的一开关直流稳压电源。

全桥式开关电源的研究与设计解读

研究生课程考试答题册 学号2009201370 姓名刘俊飞 考试科目现代电源变换技术 考时日期2010.1.8 西北工业大学研究生院

全桥式开关电源的研究与设计 摘要 电源是所有用电设备的心脏,用电设备的可靠工作离不开质量可靠的电源的支持。可一般情况下,电网电能并不能直接用于用电设备,而是要经过转换才能符合使用的需要。这就需要运用电力变换技术对电力进行变换,以获取满足使用要求的电能,其中将交流电变换成直流电是其中的一种。将交流电变换成直流电的技术叫做整流。现代开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。 本篇论文对PWM型全桥式开关电源进行研究,阐述其变换拓扑,分析其工作的原理,并对全桥式开关技术的实现进行探索。针对某一实际要求的开关电源技术指标,设计了一开关稳压电源电路,实现稳定的直流电压输出,并对开关电源技术的发展进行了展望。 关键词: 开关电源全桥式 PWM技术 SG3525A芯片

一、引言 现代开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源电路运用现代电力电子技术,由脉冲宽度调制(PWM)控制IC进行脉冲宽度控制,调节占空比,以对MOSFET或其他的全控型开关器件的开通与关断进行控制,从而调节输出的电压,实现输出电压的稳定。 电源是所有用电设备的心脏,用电设备的可靠工作离不开质量可靠的电源的支持。可一般情况下,电网电能并不能直接用于用电设备,而是要经过转换才能符合使用的需要。这就需要运用现代电力变换技术对电力进行转换,以获取满足使用要求的电能,其中将交流电变换成直流电是其中的一种。将交流电变换成直流电的技术叫做整流技术。随着电力电子技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电力电子设备都离不开可靠的电源。进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。因而开关电源技术十分重要。 但作为用电设备的动力源,电源的形式却并不单一。电源特性的参数有电压、功率、频率、噪声及所带负载参数的变化等;在同一参数要求下,又有体积、重量、形态、功率、可靠性等指标。那么在不同的领域,不同的工作场合,不同的设计指标下,如何进行电源的设计,以完美地满足客户的要求,是一个值得研究的课题。因而对现代开关电源技术的研究是十分必要的。 开关电源的种类很多,其中桥式开关稳压电源以其能适应输入电压较高和输出功率较大等优点,得到了广泛的应用。本文针对PWM型全桥式开关电源的变换方法进行研究。桥式开关稳压电源电路的核心实际上就是一个桥式直流变换器电路。桥式直流变换器电路主要包括半桥式直流变换器和全桥式直流变换器,他是由两个推挽式直流变换器电路组成的。由于这种变换器克服了推挽式直流变换器

高频开关稳压电源的设计

电子设备离不开电源,电源供给电子设备所需要的能量,这就决定了电源在 电子设备中的重要性。电源的质量直接影响着电子设备的工作可靠性,所以电子设备对电源的要求日趋增高。 现有的电源主要由线性稳压电源和开关稳压电源两大类组成。这两类电源由于各自的特点而被广泛应用。线性稳压电源的优点是稳定性好、可靠性高、输出电压精度高、输出纹波电压小。它的不足之处是要求采用工频变压器和滤波器,它们的重量和体积都很大,并且调整管的功耗较大,是电源的效率大大降低,一般情况均不会超过50%。但它的优良的输出特性,使其在对电源性能要求较高的场合仍得到广泛的应用。相对线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求,从20世纪中期开关电源问世以来,由于它的突出优点,使其在计算机、通信、航天、办公和家用电器等方面得到了广泛的应用,大有取代线性稳压电源之势。 本课题是设计一种基于SG3525 PWM控制芯片为核心构成的高频开关电源电 路。 关键词:高频开关稳压电源、SG3525、PWM

1高频开关稳压电源概述 (1) 1.1高频开关稳压电源简介 (1) 1.2高频开关稳压电源的发展状况 (2) 1.3高频开关稳压电源的基本原理 (3) 2设计任务与分析 (4) 2.1任务要求 (4) 2.2任务分析 (4) 3 系统设计方案 (5) 3.1系统总体方案设计 (5) 3.2功率变换器电路设计 (6) 3.2.1全桥功率变换器工作原理 (6) 3.2.2全桥功率变换器控制方式 (7) 3.3控制电路设计 (8) 3.3.1 SG3525结构和功能介绍 (8) 3.3.2控制电路的设计 (9) 3.4驱动电路设计 (10) 3.5辅助电源电路设计 (11) 3.6过流检测及保护电路设计 (13) 3.6.1电力电子器件的缓冲电路 (13) 3.6.2电力电子器件的保护电路 (13) 3.7整流器输出电路设计 (15) 小结与体会 (16) 附录 (18)

相关主题
文本预览
相关文档 最新文档