当前位置:文档之家› 组合斜拉桥简介及其结构特点分析

组合斜拉桥简介及其结构特点分析

组合斜拉桥简介及其结构特点分析
组合斜拉桥简介及其结构特点分析

2002年增刊广东公路交通

GuallgDOllgc∞gIjlJi日岫总第76期文章编号:167l一7619(2002)增刊一0Q52一03

组合斜拉桥简介及其结构特点分析

苗德山1(1.广东省交通集团有限公司.广州5101叭

孙向东2

2.广东省公路勘察规划设计院。广州5lQ5昕)

摘要:利用斜拉桥自身构件的各种变化,可以派生出众多优美的结构形式,并达到与环境的完美结合。组合斜拉桥跨越能力强,应用广泛,桥型美观。简要介绍了其类型并分析了各桥型的结构受力特点。

关键词:组舍斜拉桥桥掣结构分析

中图分类号:tM8.刀“文献标识码:c

1引言

随着结构分析技术、高强材料及先进施工工艺的发展,斜拉桥凭其自身的特点在太跨径桥梁领域成为了一种竞争能力极强的桥型。虽然现代斜拉桥只有短短的几十年历史,却在实际工程中展现了勃勃生机。利用斜拉桥自身构件的各种变化可以派生出众多优美的结构形式,并达到与环境的完美结合。

斜拉桥的上部结构由梁、索、塔三类构件组成,因上述三者一般不是同一种材料,故从整体上看斜拉桥本身就是一种组合结构。对于任何桥型来说跨度的推进始终是其发展的主题,而斜拉桥在自身的发展过程中,其粱、索、塔在结构形式、材料组成及协作方式等方面均发生了众多演化,其中以粱所派生出的形式最多,影响也最大。斜拉桥的主梁在空间不同的部位可以分别采用不同材料,通常是钢材和混凝土,此类斜拉桥与钢斜拉桥和混凝土斜拉桥相比,可称之为组合斜拉桥。

2组合斜拉桥分类

2.1竖向组合斜拉桥

竖向组合斜拉桥,是指在钢格构或钢梁上铺设钢筋混凝土或预应力混凝土行车道,这也就是通常所说的叠合梁斜拉桥(图1)。此类斜拉桥的代表有加拿大的A11Ilacis桥、中国上海的南浦及杨浦大桥等。

囤1血mads桥的叠台粱断面

2.2纵向组合斜拉桥

纵向组合斜拉桥一般是由边跨混凝土主粱与主跨钢粱在纵向加以连接组成.也就是通常所说的混合粱斜拉桥。此类斜拉桥的代表有法国的

?52N0Ⅱllalldv桥和日本的生口桥等。

图2所示为N0㈣dy大桥的纵向布置情况,图中显示边跨混凝土粱进人中跨116m后与中跨钢主梁相接,从而减少钢主梁长度,降低造价。

圈2N0mwdv桥的纵向布置

2002年增刊苗德山孙向东组合斜拉桥简介及其结构特点分析总第76期

2.3水平组合斜拉桥

水平组合斜拉桥一般由混凝土边主粱、钢横隔梁及混凝土桥面板组成,典型截面形式如图3。此类斜拉桥的代表有美国的№血鲫桥和葡萄牙的阿桥等。

混凝土桥面板

图3水平组合斜拉桥横向布置

3各类组合斜拉桥结构分析特点

3.1竖向组合斜拉桥

竖向组合斜拉桥除了具有钢主粱相同的优缺点外,能节省钢材用量且其刚度和抗风稳定性均优于钢主梁。

3.1.1结构体系

叠合梁结构体系的选择与跨径关系最大,通常为避免桥面板受过大的负弯矩所引起的混凝土过大的拉应力,对大跨径一般多采用漂浮体系,而不采用在近塔处会产生较大的负弯矩的其它体系。同时,现代大跨径的竖向组合斜拉桥几乎都采用密索布置,这有利于施工和降低粱高。在索面形式上多采用扇形索面,使拉索可集中锚于塔上,减小主塔弯矩。

3.1.2叠舍梁截面中混凝土板与钢粱之间的连接叠合梁结构的最大特性,就是钢和混凝土两种材料组成的结构共同承受荷载,并充分发挥各自的材料特性。为了保证叠合梁在各种荷载下保持正常的工作状态,要求叠合梁在截面内变形协调,特别是在两种材料界面处的变形协调。并使内力根据两种材料的截面以一定比例分配。如上海杨浦大桥中,箱形钢主粱承受全部轴力的25%,而混凝土桥面板承受着全部轴向力的75%。

混凝土桥面板与钢结构(主梁、横梁及纵梁)之间的稳固连接是两者共同受力的关键,而两者之间的连接主要靠抗剪连接构件,一般采用带头的栓钉。

这些钢结构和混凝土板之间的抗剪连接,通常在桥梁伸臂架设阶段承受最大荷载。此时由于剪力滞影响限制了连接缝附近的桥面板有效宽度,而这个有效截面在早期必须负担在伸臂架设下一个梁体节段时,自重产生的非常大的局部弯矩。同时剪切连接要求简单、快速、有效,从而加快施工进度。

另外要考虑的一个抗剪连接的因素是,轴力会随时间起变化而在钢梁和混凝土板之间进行重分布。特别是在架设过程中当混凝土板尚未达到全部强度时就开始承受轴力,其结果是由于徐变关系会使混凝土桥面板中的轴力流落到钢粱部分,对此应详加验算。上述因素会影响钢与混凝土两种构件中的恒载轴力和最终变形。

3.1.3叠合粱内力分配

由于斜拉索的锚固力集中作用于钢主梁上,然后才扩散到整个断面,因此在靠近锚固点附近的断面上,混凝土桥面板中应力的横向分布是很不均匀的,主要集中在钢主梁附近一个有限的宽度范围内(即剪力滞后引起的有效分布宽度),设计时应对此精心考虑。

应该说,注意到上述叠合梁断面的内力分配和桥面板应力有效分布宽度的特点后,对于叠合梁结构在各种荷载组合中的内力和应力的计算分析,以及桥面板在局部荷载和整体荷载下的组合应力计算分析,就能得到比较准确和合理的结果。3.1.4桥面板的开裂研究及措施

叠合梁桥面板裂缝会影响桥梁的使用寿命。当裂缝超过规定值时,就不能考虑混凝土与钢粱的整体受力作用,且造成钢梁和钢筋的腐蚀,这是十分不利的,为此设计时必须注意预防各部分桥面板可能产生的裂缝。

由于对这种结构的内部机理、构造、材料、施工等方面的认识尚不完善,导致该种桥型的代表加拿大的Amcci8桥桥面出现了大量裂缝。可以说防止桥面板混凝土出现裂缝,是叠合梁设计中十分关键的问题。

我国杨浦大桥和南浦大桥设计过程中,通过在横梁底部反顶等措施来改善桥面板的开裂问题,并取得了相对较好的设计效果。在设计过程中应根据各种裂缝产生的原因,采取相应的措施。3.1.5空气动力问题

一般来说。预应力混凝土斜拉桥不会出现空

?53?

2002年增刊广东公路交通总第76期

气流动的涡流振动问题,这是因为它们具有较高的质量和阻尼,可在有限的风速下抑制开始出现的微小振动。质量和阻尼在低风速时也是一个制止桥梁截面开始发生颤振的有利因素,但是更大的质量会抵消和缓解这种有利的结果。因为自振频率的减小只与质量的平方根成正比,颤振的发振风速直接与截面的固有扭振频率成正比。具有双索面的重型大体积混凝土梁截面在这方面特别不利,因为它的扭曲惯性矩较大。实际情况是,迄今为止所有的梁式截面混凝土斜拉桥可以满足实有风速小于发振风速的要求,但在实有风速很大的地区需要有截面柔细而近似平板的空气动力性能。

竖向组合斜拉桥与混凝土斜拉桥相比,其单位长度的质量较小,故避免涡振的困难相对来说要大一些。钢板梁的底部有离散迎来气流的作用,并在下风侧引起涡流。可以用导风角、导风板等制振措施来取得抗风方面的稳定。

3.2纵向组合斜拉桥

该体系1972年第一次用于德国的KIlrt—Schu.macher桥,其后经过瑞典焦恩桥、日本生口桥而得以发展,及至法国的N0Ⅱmndv桥和日本的Tatara桥,其技术已日益成熟,并且在大跨斜拉桥领域日益取得竞争优势。其主梁结构和受力特性:(1)主跨的跨越能力比一般的斜拉桥要大,而边跨与主跨的比例一般要比传统的斜拉桥要小。

(2)边跨预应力混凝土主梁,不但能平衡主跨的钢主梁重量且确保边跨各支点均不出现拉力,而且由于后锚拉索分布较密,从而从总体上提高了整座桥的刚度。当主跨布置活载时,主跨的梁体变形和主塔变位均有减小的趋势,实际上边跨结构起到了很好的锚固作用,这也是纵向组合斜拉桥的基本构思之一。

(3)由于边跨设有较多的刚性支承点,因此当边跨布置活载时,对主跨影响较小。这样,主跨的弯矩变幅和斜拉索索力变幅就明显减小,因而也就减小了主梁和斜拉索的疲劳影响。

(4)主梁高度受跨径增大的影响较小,一般跨高比大于200。加之采用扁平的流线型箱梁,不论是抗风性能,还是建筑外观,均得到了较大的改善。

(5)主塔和边跨预应力混凝土主梁可以同时施工,一旦主塔和边跨主粱完成,即可吊装主跨钢梁。这样就加快了施工进度。

(6)预应力混凝土梁与钢粱之间的连接是纵向组合斜拉桥的最重要的构造之~。也可以说,钢粱于预应力混凝土主粱的连接位置选择和可靠的连接,是纵向组合斜拉桥成功的关键之一。

因该体系材料经济和施工方便,尤其在350m以上跨径且边跨采用顶推施工时更具优势。

3.3水平组合斜拉桥

该体系较台适双主肋横断面形式,即对直接传递斜拉索水平推力和承受整体荷载的主肋及桥面板采用混凝土结构,对仅承受局部荷载的横梁采用钢结构。其主要优点是减轻结构自重,简化施工工艺,加快施工进度。

4结语

虽然组合斜拉桥大致可以分为以上三类,但通过它们之间的再次组合又可以派生出其它的结构形式。例如第一类和第二类斜拉桥组合后即可形成中跨叠合梁,边跨混凝土梁的新形式。组合斜拉桥的理念就是在恰当的部位使用恰当的材料,由此可以推知,随着工程技术的发展,组合斜拉桥的大家庭中将会不断加人新的成员,丰富其结构形式。

参考文献

1林元培.斜拉桥[M],北京:人民交通出版社,1994

2周念先.预应力砼斜张桥[M].北京:人民交通出版社.1989

(收稿日期:2002—09—15)

组合斜拉桥简介及其结构特点分析

作者:苗德山, 孙向东

作者单位:苗德山(广东省交通集团有限公司,广州,510101), 孙向东(广东省公路勘察规划设计院,广州,510507)

刊名:

广东公路交通

英文刊名:GUANGDONG HIGHWAY COMMUNICATIONS

年,卷(期):2002,""(z1)

被引用次数:0次

参考文献(2条)

1.林元培斜拉桥 1994

2.周念先预应力砼斜张桥 1989

相似文献(3条)

1.学位论文左智飞组合斜拉桥的设计2001

在斜拉桥结构发展日新月异的今天,组合斜拉桥作为其一个分支,因结构自重轻,受力性能好,构造合理,施工方便等优点,展现出极强的竞争能力.组合斜拉桥的思想就是在恰当的部位使用恰当的材料,这就给组合斜拉桥以很大的发展空间.该文结合当前组合斜拉桥的发展现状,阐明了组合斜拉桥的分类及其各自的特点;给出纵向组合斜拉桥的分析模式和施工方法;论述了纵向组合斜拉桥设计中一些关键的技术环节.根据以上理论,该论文给出了一个纵向组合斜拉桥的工程实例.在实例中,从整体到局部,多层次地进行了结构分析,以进一步的探讨该种桥型的受力特点.

2.会议论文苗德山.孙向东组合斜拉桥简介及其结构特点分析2002

利用斜拉桥自身构件的各种变化,可以派生出众多优美的结构形式,并达到与环境的完美结合.组合斜拉桥跨越能力强,应用广泛,桥型美观.简要介绍了其类型并分析了各桥型的结构受力特点.

3.学位论文余辉玻璃钢-混凝土组合斜拉桥桥面板试验研究2006

由于斜拉桥具有适用、安全、经济、美观等优点,因此得到广泛使用。尤其是在300-500米跨度范围内,斜拉桥与其它桥型竞争,在技术上和经济上都占据较明显优势。随着斜拉桥数量的增加,跨度也逐渐增大,斜拉桥在我国已经得到了较大的发展,由于斜拉索的锈蚀影响其正常使用性能,不得不进行换索。为此,对已更换下来的旧索进行了力学性能退化研究。由于斜拉索吊点处桥面板开裂,水和腐蚀介质渗入拉索锚固区,致使高强钢丝和锚头锈蚀,影响斜拉桥的正常使用。重点对拉索吊点处桥面板的结构形式进行探索,以克服桥面板开裂。

本文的研究工作主要围绕以下三个方面展开:

1.重庆石门大桥废索力学性能的退化研究

对重庆石门大桥换下的废索进行拉伸以及扫描电镜的试验研究,分析比较了锈蚀、微锈蚀、严重锈蚀对高强钢丝力学性能的影响,证实了钢筋坑蚀(截面锈蚀率>10﹪)是高强钢丝力学性能严重退化的重要因素,从而为石门大桥换索提供理论依据。此外,综述了斜拉索的防护措施。

2.玻璃钢与混凝土的组合结构力学性能理论分析

在平截面假定的基础上,利用条带划分截面建立板的弯矩-曲率和荷载-挠度关系,编制了相应的MATLAB程序,可分析玻璃钢-混凝土组合板弹性阶段的力学行为,用于试验模型的设计。

3.玻璃钢(GFRP)与混凝土组合板的组合形式研究

设计了五块不同组合形式的玻璃钢-混凝土组合板,并进行了静力试验。试验结果表明:影响GFRP-混凝土组合板结构行为的关键因素是GFRP与混凝土共同受力的程度不同。胶粘剂的力学性能与加劲肋的布置形式直接影响到组合板的承载力和破坏形式。带有类似“蜘蛛网格”状肋条的GFRP-混凝土组合板可有效提高普通混凝土板的正常使用荷载和极限承载能力,并具有较好的经济性,玻璃钢本身具有良好的防水性能。GFRP-混凝土组合板的应用可以克服使用阶段斜拉桥桥面板开裂的问题。

本文链接:https://www.doczj.com/doc/6418627311.html,/Periodical_gdgljt2002z1015.aspx

授权使用:西北农林科技大学图书馆(wflsxbt),授权号:c224a47f-d590-48fa-a1a4-9dbd00b9961f

下载时间:2010年7月24日

大跨极窄人行悬索桥动力特性及风振响应研究

第40卷第9期建 筑 结 构2010年9月 大跨极窄人行悬索桥动力特性及风振响应研究 熊耀清, 何云明, 吴小宾 (中国建筑西南设计研究院有限公司,成都610081) [摘要] 以一个跨度199m 、宽跨比仅1P 132,且地处峡谷的钢结构柔性悬索桥为工程背景,采用ANSYS 有限元软件进行了大跨极窄人行悬索桥动力特性及非线性风振响应研究。结果表明,该类桥的基本周期较通常的大型公路悬索桥明显偏短,采用抗风缆的抗风措施能够改变结构振型的排列顺序和改善结构抗风性能;采用基于线性滤波法的自回归(AR)模型应用MATLAB 模拟了考虑桥址风特性的水平及竖向脉动风时程,结果表明满足分析与设计需求;比较了水平及水平和竖向风工况下有无抗风措施时悬索桥的非线性风振响应,结果表明结构抗风性能满足安全要求。 [关键词] 大跨极窄悬索桥;动力特性;桥址风特性;非线性风振;抗风措施 Research on dynamic characteristics and wind vibration response of a pedestrian large -span and slender suspension bridge Xiong Yaoqing,He Yunming,Wu Xiaobin (Chi na South west Architectural Design and Research Institute Co.,Ltd.,Chengdu 610081,China) Abstract :Based on a steel truss flexible suspension bridge in mountainous area,which has the main span of 199m and the wide -span ratio of 1P 132,the dynamic characteristics and nonlinear wind vibration response of the pedestrian large -span and slender suspension bridge were analyzed by ANSYS.The resul ts indicate that the basic period of the bridge is shorter than that of general large high way suspension bridge obviously,and the wind fortification measures can change dynamic characteristic of the suspension brid ge and can increase its wind resistance performance.Considering the wind characteri stics of the bridge si te,the wind load history was simulated with AR model by MATLAB https://www.doczj.com/doc/6418627311.html,pared the nonlinear wind vibration response with and wi thou t forti fication measures under horizontal and horizontal &vertical wind load,i t shows that the wind resistance performance of the brid ge is qualified when i t comes to safety requirement. Keywords :large -span and slender suspension bridge;dynamic characteristic;wind characteristics of the bridge site;nonlinear wind vibration;wind fortification measures 作者简介:熊耀清,博士,高级工程师,Emai l:xyq729730@https://www.doczj.com/doc/6418627311.html, 。 0 引言 大跨度、窄桥面悬索桥造价低廉、施工方便,在我 国西部山区应用较多。因其上部结构刚度较小,对风敏感,且多建于风场复杂的峡谷、山口等特殊地形山区[1],导致结构所承受的风荷载不同于常规结构,从而对抗风设计提出了更高的要求。而现有的大跨悬索桥的风振响应分析都是基于大型公路桥梁[2,3],现行桥梁设计规范对于大跨极窄的人行悬索桥没有相关规定。为给该类悬索桥的抗风设计及施工提供基本数据,以某景区的人行悬索桥为工程背景,研究了其结构自身的动力特性及桥址处山区风特性,进行了详细的风荷载静力及非线性风振响应分析,并比较了采用加抗 风缆、栏杆、中央扣等抗风措施后悬索桥的抗风性能。1 工程概况 某悬索桥地处低山丘陵地带,山体呈V 形走廊,海拔高度650~700m,桥体横跨东、西两岸,桥面相对谷底的垂直高度约为100m 。该桥主要用于连接两岸,桥型 布置如图1所示。采用单跨钢结构柔性悬索桥形式,跨度199m,主缆间距115m,矢跨比1P 1312,宽跨比达1P 132,吊杆间距310m 。主缆为悬索桥主要承重结构,两端固定于锚碇,两岸桥塔为主缆提供中间支承(在塔顶设置主索鞍)。加劲梁及桥面系通过吊杆悬挂于主缆上,并在主塔处设置支座,提供支承,抗风缆通过抗风拉索与桥面横梁相连,并组成一个与铅垂面呈30b 夹角的平面。主缆采用2根7<38的平行钢丝束索,抗拉强度1770MPa;吊杆采用圆钢<40;抗风缆采用2根<44的钢丝束索,抗拉强度1770MPa 。桥面系包括加劲梁、桥面铺装、栏杆等,加劲梁为梁格体系,由纵、横梁及风联钢构(即桥面水平撑)焊接而成,纵、横梁分别采用工 字钢I14,I20,材质为Q345;桥面铺装为宽300mm 、厚80mm 松木板条,间缝10mm,木板采用锚栓与桥面纵梁连接,栏杆采用<50钢管,间距115m;桥塔为钢筋混凝 148

大跨径混合梁斜拉桥的动力特性分析

大跨径混合梁斜拉桥的动力特性分析 发表时间:2018-12-13T09:25:46.667Z 来源:《建筑模拟》2018年第27期作者:范晓杰 [导读] 本文以一个大跨径的混合梁斜拉桥为例,采用大型有限元分析软件madis civil建立模型,用子空间迭代法对模态进行求解,得出了自振频率、振型,并结合混合梁斜拉桥的结构特点分析其动力特性。 范晓杰 浙江省嘉兴市交通工程质量安全监督站 314000 摘要:本文以一个大跨径的混合梁斜拉桥为例,采用大型有限元分析软件madis civil建立模型,用子空间迭代法对模态进行求解,得出了自振频率、振型,并结合混合梁斜拉桥的结构特点分析其动力特性。在此基础上考虑分别在横向和纵向输入地震波,用反应谱法分析产生的影响。结果表明,前十阶振型中竖向振型较多,频谱较为密集,没有出现扭转振型,纵向、横向的振型耦联效应较小等,为目前其他同类型混合梁斜拉桥的动力特性分析研究提供参考。 一、工程概况 永川长江大桥主桥全长1008m,跨径布置为(64+68+68+608+68+68+64)m的7跨半漂浮体系混合梁斜拉桥,边跨设置1个过渡墩,2个辅助墩。索塔采用宝瓶型钢筋混凝土索塔,塔高分别为196.7m、207.4m。边跨为预应力PK断面混凝土箱梁,中跨也为同外形的PK断面钢箱梁,梁高3.5m,宽37.6m。拉索为双索面扇形构造,边跨11对索间距为10m,7对索间距为8m,主跨索间距为15m。 二、斜拉桥的动力特性分析 结构的动力响应取决于结构本身的动力特性和外部荷载的激励,所以在进行抗风稳定、抗震分析时往往得先进行自振特性分析。 采用子空间迭代法计算自振频率及相应的振型如表3.1所列。 表3.1桥梁的自振特性 一阶振型为纵飘,这是由于斜拉桥的设计主要考虑控制结构的横向和竖向变位,而允许纵向移动,很好的提高了桥梁的抗震能力。 二阶振型为主梁对称竖弯,主梁的竖弯也会引起桥塔的纵向弯曲,从表3.1中可以发现在前十阶振型中出现较多的主梁对称和反对称竖弯,因此在抗震设计中要着重考虑主梁的竖向和桥塔的纵向位移。 三阶振型为主梁对称横弯,这说明了主梁的横向刚度较小,抗风稳定性较差,在抗震设计中也应该注意控制。 结构的一阶对称竖弯、横弯振型出现在2、3阶,根据经验这符合大跨度斜拉桥的动力特性的一般特点。 表3.1中没有出现扭转振型,这符合双索面、箱梁布置的斜拉桥动力特性,抗扭刚度较大。 本桥的前十阶振型自振频率在0.0823~0.8684,说明结构的模态比较密集,在动荷载作用下许多振型容易被引起强烈的振动。 在前十阶振型中出现了很多的主梁竖向弯曲,这是由于混合梁斜拉桥中钢箱梁的刚度小于混凝土梁的刚度而引起的。 为了分析本桥的纵、横向的耦联效应,分别在纵向、横向输入地震波。考虑该桥所在区域抗震设防烈度为7度,场地类别为Ⅰ类,选择主梁的内力值进行分析,结果如表3.2所示,塔顶、跨中的位移如表3.3所示。 表3.2 主梁内力值分析结果 表3.3 塔顶、跨中位移值(单位:mm) 横向地震反应引起的主梁反应主要是y方向的剪力和弯矩,且混凝土梁的反应大于钢箱梁;而x方向、z方向的剪力及弯矩都较小。纵向地震反应时主梁x、z方向剪力及弯矩较大,说明在输入纵向地震反应时结构会产生竖向内力,混凝土梁的反应亦大于钢箱梁。

斜拉桥结构体系

斜拉桥结构体系 一、结构体系的分类 1、按照塔、梁、墩相互结合方式,可划分为漂浮体系、半漂浮体系、塔梁固结体系和刚构体系。 2、按照主梁的连续方式,有连续体系和T构体系等。 3、按照斜拉桥的锚固方式,有自锚体系、部分地锚体系和地锚体系。 4、按照塔的高度不同,有常规斜拉桥和矮塔斜拉桥体系。 二、结构体系介绍 1、漂浮体系:漂浮体系的特点是塔墩固结、塔梁分离。主梁除两端有支承外,其余全部用拉索悬吊,属于一种在纵向可稍作浮动的多跨柔性支承类型梁。一般在塔柱和主梁之间设置一种用来限制侧向变位的板式活聚四氟乙烯盘式橡胶支座,简称侧向限位支座。 漂浮体系的优点:主跨满载时,塔柱处的主梁截面无负弯矩峰值;由于主梁可以随塔柱的缩短而下降,所以温度、收缩和徐变内力均较小。密索体系中主梁各截面的变形和内力的变化较平缓,受力较均匀;地震时允许全梁纵向摆荡,成为长周期运动,从而吸震消能。目前,大跨斜拉桥多采用此种体系。 漂浮体系的缺点:当采用悬臂施工时,塔柱处主梁需临时固结,以抵抗施工过程中的不平衡弯矩纵向剪力。由于施工不可能做到完全对称,成桥后解除临时固结时,主梁会发生纵向摆动。 2、半漂浮体系:半漂浮体系的特点是塔墩固结,主梁在塔墩上设置竖向支承,成为具有多点弹性支承的三跨连续梁。可以是一个固定支座,三个活动支座;也可以是四个活动支座,一般均设活动支座,以避免由于不对称约束而导致不均衡温度变化。水平位移将由斜拉索制约。 3、塔梁固结体系:塔梁固结体系的特点是将塔梁固结并支承在墩上,斜拉索变为弹性支承。主梁的内力与挠度直接同主梁与索塔的弯曲刚度比值有关。这种体系的主梁一般只在一个塔柱处设置固定支座,而其余均为纵向乐意活动的支座。 塔梁固结体系的优点是显著减少主梁中央段承受的轴向拉力,索塔和主梁的温度内力极小。缺点是中孔满载时,主梁在墩顶处转角位移导致塔柱倾斜,使塔顶产生较大的水平位移,从而显著地增大主梁跨中挠度和边跨负弯矩。 4、刚构体系:刚构体系的特点是塔梁墩相互固结,形成跨度内具有多点弹性支承的刚构。 种体系的优点是既免除了大型支座又能满足悬臂施工的稳定要求;结构的整体刚度比较好,主梁挠度又小。缺点是主梁固结处负弯矩大,使固结处附近截面需要加大;。再则,为消除温度应力,应用于双塔斜拉桥中时要求墩身具有一定的柔性,常用语高墩的场合,以避免出现过大的附加内力。

1使用MIDAS Civil做斜拉桥分析时的一些注意事项

使用MIDAS/Civil做斜拉桥分析时的一些注意事项 斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。 确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。 MIDAS/Civil程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种解决方案,下面就一些功能的目的、适用对象和注意事项做一些说明。 1.未闭合力功能 通常,在进行斜拉桥分析时,第一步是进行成桥状态分析,即建立成桥模型,考虑结构自重、二期恒载、斜拉索的初拉力(单位力),进行静力线性分析后,利用“未知荷载系数”的功能,根据影响矩阵求出满足所设定的约束条件(线形和内力状态)的初拉力系数。此时斜拉索需采用桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的非线性效应可以看作不是很大,而且影响矩阵法的适用前提是荷载效应的线性叠加(荷载组合)成立。 第二步是利用算得的成桥状态的初拉力(不再是单位力),建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施工阶段分析控制对话框中选择“体内力”。 第三步是根据倒拆分析得到的各施工阶段拉索的内力,将其按初拉力输入建立正装施工阶段的模型并进行分析。此时斜拉索仍需采用只受拉索单元来模拟,但在施工阶段分析控制对话框中选择“体外力”。 但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响;而在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。 MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。 重新说明一下的话,首先倒拆分析和正装分析的结果是不可避免存在差异的,设计人员需要根据倒拆分析得到的施工阶段张力,利用自己的经验进行进一步地调索或者调整施工步骤或施工工法,从而才能得到既满足施工阶段的结构安全要求,又满足成桥状态的线形和内力条件的斜拉索张力。 其次利用MIDAS/Civil的未闭合力功能,设计人员可以不必繁琐地建立倒拆施工阶段的

ansys对斜拉桥的分析实例

用Ansys分析斜拉桥的变形、应力分布与优化

问题背景:第三届结构设计大赛,题目为:承受运动载荷的不对称双跨桥 梁结构模型设计。参赛作品为一个斜拉桥 比赛所用材料:桐木若干,白乳胶一瓶。 比赛要求:保证小车通过的同时,桥应力求重量轻,轻者可进入决赛。 参赛实验台示意图 比赛计算参数: 木杆的抗拉强度表

设计方案数据:根据所给材料,经过计算我们预计需要使用:主梁:4根6*6、4*6,55*1截取18mm宽,55*2截取15mm宽;拉塔:2根6*6,3*4作桁架;梁的固定用1根3*4;桥墩:2根3*4,55*1的木片作桁架结构。下脚料把主梁两端各加长20mm,并把端面做成梯形以使桥梁稳定。 桥梁简支模型:

其中(5)、(7)、(8)为拉索,(6)为拉塔,(1)、(2)、(3)、(4)为主梁,1、2、5为三个支座,塔高为330mm,2、3的距离为250mm,3、4的距离为200mm。 当小车经过2、5之间时,梁最容易发生破坏。 加载条件:预赛——空车(重9.88kg)行驶,桥面板由长度为30mm的若干铝板,用柔绳串接而成,重量为2.8kg。 Ansys分析目的:使用ansys分析软件对桥的应力分布进行分析,对结构进行改进与优化。 Ansys建模数据: 步骤: 定义单元类型:桐木材料选取单元类型:Beam 188 拉索材料选取单元类型为Link 10。 定义单元实常数:Link 10单元的实常数AREA定义为3.14*2.25/4。其中Beam 188不需要定义实常数。 定义材料属性:材料属性如图。 定义梁截面类型:主梁:8*8,侧梁:5*5,桁架:3*3(全部为矩形),拉索:R=1.5(圆形)。 建模:建立节点模型,利用建模工具建立节点,再用lines—straight lines 连接节点形成线模型。 划分网格:利用Meshing—Mesh attributes—picked lines,根据不同单元属性,不同材料属性,不同截面属性选择线,划分网格。再用Meshing命令中的line—set进行线单元数目划分,取为15。 定义load:对底座、边缘施加全部自由度约束,节点受力为98.8/4。 求解:solve命令。 查看结果:利用general postproc后处理查看结构变形云图,应力分布。 模型说明:建模过程中,对实际模型进行简化。其中弹性模量和泊松比进行简化处理,数据从网络中获取。桥面板由长度为30mm的若干铝板,用柔绳串接而成,重量为2.8kg。此约束忽略不计。当小车通过桥梁时,认为在如图位置变形最大,故受力分析时,将载荷加载到如图13、14、16、17节点处。尤其是拉索模型。由于拉索单元为Link,其只能受拉,不具有抗弯性能,故改用杆单元代替原模型。建模时使用mm作单位,而泊松比要除以1000,受力要乘以1000,才能得到正确的结果。

大跨度斜拉桥动力特性分析(精)

大跨度斜拉桥动力特性分析Ξ 陈淮郭向荣曾庆元 (郑州工业大学土建系,郑州,450002(长沙铁道学院土木系,长沙,410075 摘要本文提出一种计算大跨度钢桁梁斜拉桥动力特性的方法。文中分别采用桁段 有限单元、空间梁元、空间杆元计算斜拉桥中桁架、桥塔、 拉索的刚度矩阵与质量矩阵, 采用子空间迭代法求解特征方程,所得结果可供设计参考。 关键词有限元法;斜拉桥;自振频率;振型 分类号U 44112 1引言 桥梁结构的动力特性包括自振频率及主振型等,它是桥梁计算的重要课题之一。桥梁结构的动力特性反映了桥梁的刚度指标,它对于正确地进行桥梁的抗震设计及维护,有着重要的意义。我国设计的某大跨度钢桁梁斜拉桥,这种桥型的自振频率和主振型的计算困扰着设计人员。钢桁梁斜拉桥是一个空间杆系结构,从理论上讲计算这种结构的空间振动自振频率及主振型并不是十分困难。然而,由于桥梁结构复杂,自由度很大,加上实际桥梁受结点及支座的约束等,完全由理论按空间梁元计算钢桁梁斜拉桥自振频率及主振型并不容易。本文探讨这种桥型动力特性的计算方法,对于桁梁、应用桁段有限元法,将桁梁取为桁段单元,每个桁梁节间断面有10个自由度。桥塔取为空间梁单元,每个结点有6个自由度。斜拉桥拉索取为空间桁元,分析了国内设计中的某特大跨度斜拉桥的自振特性。文中在形成结构总体刚度矩阵

及质量矩阵时,使用形成矩阵的“对号入座”法则〔1〕,能很简便地考虑桥门架、横联等局部构件的作用。数值算例表明,这种方法使用方便,结果可靠,结构自由度数可大大降低等优点,是斜拉桥动力分析的有效方法。 2计算模型及其主要假定 211桥梁简介 国内设计的某特大跨度钢桁梁斜拉桥为双塔双索面斜拉桥。主梁采用五跨连续钢桁梁,其中主跨跨长368米,主梁宽20米,主梁高1415米,总长864米;桥塔是一个钢筋混凝土框架,塔高113米,每塔有10对索与主梁相连,构成扇形索面,桥梁简图如图1所示。 212计算模型及主要假定 21211桁梁单元 钢桁梁斜拉桥是一个相当复杂的结构,为了减少自由度,主桁采用桁段有限元计算,在不失对桥梁结构主要因素研究的前提下,本文采用以下主要假定: 第14卷第1期 计算力学学报V o l .14N o.11997年2月CH I N ESE JOU RNAL O F COM PU TA T I ONAL M ECHAN I CS February 1997 Ξ河南省自然科学基金资助。 本文于1995年9月5日收到,1996年7月8日收到修改稿。

桥梁动力分析

模拟环境对塔玛悬索桥动力特性的影响 摘要 为了达到结构健康监测的目的,结构在环境因素的影响下,去理解、模拟和补充环境变化对结构动力特性的影响是极其重要的。本文中,已经研究了从英国塔玛悬索桥中测得的加速度值,这些加速度值是用数据激励随机子空间系统识别方法处理的,并且用温度和风载对结构自振频率的影响进行了环境变量的模拟。本文应用了两种方法:1)基于有效识别环境效应所致的线性变化规律的主因子分析法(PCA) ;2)元模型法,这是一种通过多项式函数的组合变化来确定系统输入输出关系的纯数学方法。研究发现在所有环境因素中温度是影响桥梁自振频率最关键的因素。 引言 环境因素对土木结构自振频率的影响是导致结构健康监测技术只能应用于实验室而不能在实际工程结构中得到应用的主要原因。在实验室发展起来的损伤检测技术往往无法在具有实验室相同条件的现场发挥作用;作为衡量破坏敏感性的特征参数也通常对工作环境引起的结构动力反应变化很敏感,而这种情况在实验室是不会出现的。这一方面的研究在过去的几年中得到了很大的关注,处理这个问题的方法在Sohn的关于工作环境对结构健康监测的影响一文中有很好的阐述。 本文研究了环境因素对塔玛悬索桥自振频率的影响,尤其是温度和风速的影响。以前主要集中在温度变化对桥梁模态频率相关性的研究上,事实上,温度被认为是环境因素中对模态特性影响最主要的因素。进一步的研究已经转移到了风载对大跨度桥梁的影响。尤其是发现了日本的白鸟(Hakucho)悬索桥的自振频率随着风速的增加而降低,在此过程中没有考虑温度的影响。在文献[6]中对大跨悬索桥的重型车辆荷载的影响进行了研究,发现车辆荷载对大跨度桥梁的自振频率影响很小或者没有。 在本项研究中诸如交通荷载和湿度等环境因素被忽略,认为本论文所讨论的桥梁不会受到交通荷载的影响,由于桥址的原因,也认为湿度不作为考虑的因素。这篇文章的目的主要是确定促使所观察到的引起桥面日常自由振动的主要因素。 塔玛悬索桥 塔玛大桥(如图1)是一座跨度为643m的大跨度悬索桥,它跨越塔玛河,将康沃尔郡(Wornwall)的索尔塔什(Saltash)市与德文郡(Devon)的普利茅斯(Plymouth)连接在一起。自1961年建成后它成为两个地区的一个至关重要的交通纽带。这座桥具有对称几何形状的常规设计,主跨为335m,两个边跨为114m。钢筋混凝土主塔高达73m,采用沉井基础并直达岩面。主缆直径为350mm,每根主缆由31根钢丝捻成,并设置间距为9.1m的垂直钢索。加劲桁架为5.5米厚,由焊接的空腹箱梁组成。在2001年,按照欧盟指示对这座桥进行了加强和扩宽。尤其是采用了18根直径为100mm的预应力钢索对原来的悬索体系进行了补强,原来复合型的主桥面板被一个三车道的正交各向异性钢板代替,在桁架的每侧加上了单车道悬臂梁。 现在对塔玛悬索桥布置了几种监测系统。2007年菲尔德大学(the University of Sheffield)的振动工程科开始监测桥面板和缆索的动力响应。这个监测系统包括8个缆索

斜拉桥方案图纸汇总

斜拉桥方案图纸汇总 的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。 斜拉桥施工图纸 斜拉桥施工图纸 大桥主通航孔420斜拉桥施工图纸 大桥斜拉桥上部结构图纸 斜拉桥实例 斜拉桥的计算 斜拉桥施工组织设计 桥南汊斜拉桥施工控制设计图纸 大桥主桥斜拉桥主梁牵索挂篮施工工艺 斜拉桥主塔施工技术方案 斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。如武汉长江二桥、白沙洲长江大桥均为钢筋混凝土双塔双索面斜拉桥。现代斜拉桥可以追溯到1956年瑞典建成的斯特伦松德桥,主跨182.6米。 斜拉桥(92第1版)大桥局

斜拉桥设计--刘士林,王似舜主编 斜拉桥施工组织设计 斜拉桥建造技术 斜拉桥125m部分斜拉桥方案设计图纸 某斜拉桥工程毕业设计 预应力混凝土斜拉桥工程毕业设计 双塔双索面斜拉桥施工图集 MIDAS-斜拉桥成桥阶段和正装分析 独塔斜拉桥设计 铁路斜拉桥施工挂篮设计计算书 斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。目前世界上建成的最大跨径的斜拉桥为中华人民共和国的苏通大桥,主跨径为1088米,于2008年4月2日试通车。 小跨斜拉桥图纸 南京钢箱梁斜拉桥全套图纸

自锚式与地锚式悬索桥动力特性对比分析

文章编号:1671-2579(2010)04-0156-04 自锚式与地锚式悬索桥动力特性对比分析 王立峰,孙勇,王子强 (东北林业大学土木工程学院,黑龙江哈尔滨 150040) 摘 要:以朝阳市黄河路自锚式悬索桥主桥为研究对象,采用有限元软件M idas/Civ il 建立该桥的有限元动力计算模型。考虑重力刚度的影响,对该桥的动力特性进行计算分析,得到结构的自振频率和振型,同时建立与该桥结构参数完全相同的地锚式悬索桥模型进行对比分析,结合计算结果对自锚式、地锚式悬索桥的动力特性和刚度特点进行讨论。最后,在保证初始刚度不变的情况下,考虑不同结构参数变化对自锚式、地锚式悬索桥固有频率的影响,对结果进行分析。 关键词:自锚式悬索桥;动力特性;结构分析 收稿日期:2010-04-10 作者简介:王立峰,男,博士研究生,副教授.E-mail:co mputerw lf@126.co m 1 工程概况 朝阳市黄河路大桥位于朝阳市黄河路东段,向东跨越大凌河,与凤凰组团开发区相连。大桥全长508.32m,主桥为跨径326m 的预应力混凝土自锚式悬索桥,桥跨布置为73+180+73m ,设计荷载为城市 -A 级,人群荷载4.0kN/m 2,地震动峰值加速度为0.1g ,相当于7度,按8度设防,设计洪水频率1/100, 最高水位164.7m 。 2 有限元模型建立 利用有限元法分析桥梁结构时,有多种离散模型,常用的有空间梁单元法、板壳法、三维实体单元法及梁格法。综合考虑自锚式悬索桥的几何非线性影响,根据各构件的形式和受力特点,结构可离散为两种单元:索单元和梁单元。 3 结论 (1)第一次设计中腹板主拉应力虽然符合有关规范要求,但主拉应力较大,最大达2.44MPa,经过优化设计后,最大主拉应力已降至1.77M Pa,降低了27%。效果明显。成桥试验结果也证明了此点。(2)箱梁截面在中跨支点处顶板截面存在较大的剪力滞效应,剪力滞系数 t =1.61,在设计中应注意。(3)纵向预应力钢束尽量布置在靠近腹板的位置,可减小剪力滞效应带来的应力分布不均匀的影响。参考文献: [1] JT J 023-85 公路钢筋混凝土及预应力混凝土桥涵设 计规范[S]. [2] 长沙市规则设计院.长沙市三汊矶湘江大桥结构施工图设计图纸[Z],2004. [3] 张士铎,邓小华,王文州.箱形薄壁梁剪力滞效应[M ].北 京:人民交通出版社,1998. [4] 张士铎,王文州.桥梁工程结构中的负剪力滞效应[M ]. 北京:人民交通出版社,2004. [5] 贺拴海.桥梁结构理论与计算方法[M ].北京:人民交通 出版社,2003. [6] 王焕定,吴德伦.有限单元法及计算程序[M ].北京:中国 建筑工业出版社,2004. [7] 张德锋,茅振伟,吕志涛.预应力混凝土结构裂缝控制及 其可靠性分析[J].工业建筑,2003(4). [8] 袁承斌,张德锋,刘桂荣,等.裂缝对预应力混凝土结构耐 久性影响的试验研究[J].工业建筑,2003(3). [9] 任明飞,胡迎新,郑机.东海大桥近岛段工程预应力混凝 土顶推连续梁的设计与施工[J].桥梁建设,2005(6).[10] 李承君,周世军.顶推法施工的曲线连续梁桥截面实测 应力分析[J].铁道工程学报,2005(2). 156 中 外 公 路 第30卷 第4期2010年8月

斜拉桥的结构体系及特点

斜拉桥结构体系及特点 斜拉桥亦称矮塔斜拉桥, 其构造特点是在连续梁中支点处设置矮索塔,其塔高只有斜拉桥索塔高度的一半左右, 斜拉索通过矮索塔上设置的鞍座对主梁产生竖向支反力和水平压力。部分斜拉桥主梁自身刚度较大, 能够承担大部分荷载效应,斜拉索对主梁只起到一定程度的帮扶作用。斜拉桥是介于斜拉桥和连续梁桥之间的一种新桥型, 兼具斜拉桥和连续梁桥的双重结构特征。 斜拉桥是由上部结构索、塔、梁三种基本构件和下部结构墩台、基础组成的结构体系,影响部分斜拉桥结构各部分荷载效应最根本的因素是梁、塔、墩之间的结合方式,不同的结合方式产生不同的结构体系。根据部分斜拉桥结构自身的特点和梁、塔、索、墩的结合方式, 可将部分斜拉桥结构体系划分为三种型式: (1)塔梁固结体系;(2)支承体系; (3) 刚构体系, 见图1 所示。(4)半漂浮体系,见图2所示。 (1)塔梁固结体系及特点 塔梁固结、塔墩分离、梁底设支座支承在桥墩上,斜拉索为弹性支承,这是一种完全的主梁具有弹性支承的连续梁结构。这种体系必须有一个固定支座, 一般是一个塔柱处梁底支座固定,而其他支座可纵向活动。这种体系的主要优点是取消了承受很大弯矩的梁下塔柱部分,代之以一般桥墩,中央段的轴向拉力较小, 梁身受力也很均匀, 整体温度变化对这种体系影响较小, 几乎可以略去。这种体系结构整体刚度小, 当中跨满载时,由于主梁在墩顶处的转角位移导致塔柱倾斜,使塔顶产生较大的水平位移, 因而显著增大了主梁的跨中挠度。上部结构重力和活载反力需经支座传递到桥墩, 因此需设置大吨位支座。 我国的漳州战备桥、小西湖黄河大桥、离石高架桥; 日本的蟹泽桥、士狩大桥、木曾川桥、揖斐川桥、新唐柜大桥均采用这种体系。已建部分斜拉桥采用这种结构体系较多, 与连梁体系相同, 符合部分斜拉桥的概念含义。塔梁固结体系的特点:塔、墩内力最小,温变内力也小,主梁边跨负弯矩较大。 (2)支承体系及特点 塔墩固结、塔梁分离, 主梁在塔墩上设置竖向支承, 支座均为活动支座,这种体系接近主梁具有弹性支承的连续梁结构。支承体系与梁塔固结体系主梁受力性能基本相同, 塔墩底部承受较大的弯矩。 我国芜湖长江大桥采用的是支承体系, 该体系在部分斜拉桥结构中较少采用。支承体系的特点:支承体系悬臂施工中不需要额外设置临时支点,施工较方便。

斜拉桥静风稳定分析

斜拉桥静风稳定分析 摘要:随着斜拉桥跨径的不断增大,空气静力失稳现象已引起了人们的广泛重视。本文笔者通过线性方法和非线性方法对斜拉桥静风稳定性进行阐述分析,以供参考。 关键词:斜拉桥;静风稳定;线性分析;非线性分析 abstract: with increasing span cable-stayed bridges, aerostatic instability phenomenon has aroused wide interest. in this paper, the author by linear method and nonlinear method is analyzed on static wind stability of cable-stayed bridge, for reference. key words: cable-stayed bridge; static wind stability; linear analysis; nonlinear analysis 0 引言 风灾是自然灾害中发生最频繁的一种,近十几年,桥梁建设进入了大跨度时代,随着理论的发展,材料和施工方法的进步,斜拉桥、悬索桥的跨径的跨径越来越长。斜拉桥具有“塔高,跨长,索长、质轻、结构柔和阻尼弱”的特点,从而导致风荷载对桥梁安全、舒适性有着重要影响。风对桥梁主要有静力作用和动力作用,本文主要结合工程实例分析静力风荷载对混凝土主梁的斜拉桥的影响。 静风响应指结构在静力风荷载作用下的内力、变位和静力不稳定现象,主要体现为结构的刚度和静风稳定性。斜拉桥在静风荷载的作用下有可能发生横向屈曲失稳和静力扭转发散失稳。主梁在静风

斜拉桥动力特性报告

《弹塑性力学与有限元》课程作业主跨1500m斜拉桥设计 2015年1月

目录 1.有限元模型建立 ................................................................................................................. - 3 - 1.1单元介绍.................................................................................................................... - 3 - 1,2边界条件设定........................................................................................................... - 4 - 1,3有限元模型图........................................................................................................... - 4 - 2、成桥状态恒载分析结果 ................................................................................................ - 5 - 2.1荷载作用下全桥位移云图分析........................................................................... - 5 - 2.2恒载作用下结构支反力......................................................................................... - 8 - 3、桥梁动力特性计算 ....................................................................................................... - 17 - 3.1成桥状态10阶模态及频率计算....................................................................... - 17 - 3.2成桥状态等效质量计算....................................................................................... - 18 - 3.3振型图 ...................................................................................................................... - 19 -

斜拉桥的正装分析

斜拉桥正装未闭合力的说明 1. 斜拉桥正装分析和未闭合配合力功能 等,除此之外斜拉桥还需要进行施工阶段分析。 根据施工方法的不同,斜拉桥的结构体系会发生显著的变化,施工中有可能产生比成桥阶段更不利的结果,所以斜拉桥的设计要做施工阶段分析。按施工的顺序进行分析的方法叫施工阶段的正装分析(Forward Analysis)。一般通过正装分析验算各个施工阶段的产生应力,检查施工方法的可行性,最终找出最佳的施工方法。 进行正装分析比较困难的是如何输入拉索的初始张拉力,为了得到初始张拉力值通常先进行倒拆分析,然后再利用求出的初始张拉力进行正装分析。 采用这种分析方法,工程师普遍会经历的困惑是: 1) 在进行正装分析时可以看出正装和倒拆的张力不闭合。 2) 因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响。但在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。如上所述,结构体系的差异导致了初始平衡状态分析(成桥阶段分析)与正装分析的最终阶段的结果产生了差异。 产生上述张力不闭合的原因,大部分是因为工程师没有完全把握索的基本原理或没有适当的分析软件。实际上是不应该产生内力不闭合的,其理由如下: 1) 从理论上讲,在弹性范围内正装分析和倒拆分析在同一阶段的结果应该相同。 2) 如果在计算时考虑合拢段在合拢时的闭合力,就能够得出与初始平衡状态分析(成桥阶段分析)相同的结果。 从斜拉索的基本原理上看,倒拆分析就是以初始平衡状态(成桥阶段)为参考计算出索的无应力长,再根据结构体系的变化计算索的长度变化,从而得出索的各阶段张力。一个可行的施工阶段设计,其正装分析同样可以以成桥阶段的张力为基础求出索的无应力长,然后考虑各施工阶段的索长变化得出各施工阶段索的张力。目前以上述理论为基础的程序都是大位移分析为主,其原因是悬臂法施工在安装拉索时的实际长度取值是按实际位移计算的。一般来说新安装的构件会沿着之前安装的构件切线方向安装,进行大位移分析时时,因为切线安装产生的假想位移是很容易求出来的,但是小位移分析要通过考虑假想位移来计算拉索的张力是很难的。MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正

斜拉桥非线性分析综述

1斜拉桥非线性分析的研究现状 在结构分析领域,一直普遍存在着由结构几何变形、梁-柱效应和材料塑性引起的结构力-变形非线性关系。Turner等人,在1960年里发表的一篇论文里提出根据结构加载前已存在的应力建立刚度矩阵和在几何非线性分析中使用线性化方法与增量法的概念。1966年,Oden、Prazmieniecki提出了计算几何矩阵的方法。Turner、Oden 等人中公式推导中,位移函数采用了简化的表达式,其分析计算实质上限制在大位移、小应变的范围内。从70年代初期,开始研究关于大位移、大应变大结构,将固体力学的分析方法引用到结构几何非线性有限元分析中,当位移与应变较大之后,通常用到修正坐标的方法,即所谓移动坐标法。大跨径斜拉桥是高次超静定结构,即使在正常荷载作用下,往往发生较大位移,结构几何形状发生显著的变化,整个结构由于有限变形而表现出明显的几何非线性行为。归纳起来,斜拉桥的几何非线性来自三个方面:斜拉索的垂度效应;主梁、索塔中轴力与弯矩相互作用而产生的梁-柱效应;大位移产生几何形状改变而引起的非线性效应。斜拉索作为柔性构件,在自重和轴力作用下,呈悬链线形状。其轴向刚度将随垂度的变化而变化,而斜拉索的垂度又取决于索中的拉力,因此斜拉索拉力与变形之间存在明显的非线性关系。对自锚固体系斜拉桥,斜拉索索力使主梁、桥塔等构件处于弯矩和轴力的组合作用下,桥塔和主梁变形过程中,由于横向挠度会使轴

力产生附加弯矩,而弯矩又影响轴向刚度的大小,从而影响结构变形,由此产生所谓的梁-柱效应,使整个斜拉桥表现出非线性行为。大跨度斜拉桥的另一特点是由于柔性较大而产生较大的位移,此有限位移会使斜拉桥的几何形状产生较大的变化,从而使结构分析不能仅按未变形的初始几何形状进行,而应当随着位移的变化逐步修正结构的几何形状。此时,结构的几何刚度矩阵是几何变形的函数。因此平衡方程{F}=[K]{δ}=不再是线性关系,线弹性分析中的叠加原理也不再完全适用。斜拉索垂度效应产生的非线性效应随着索自重即水平投影长度增加而增加,随索中拉力减小而减小。1956年H.J.Ernst提出用直杆模拟斜拉索,用等效弹性模量来考虑斜拉索垂度的非线性效应,这就是今天斜拉桥分析中广泛采用的Ernst公式。 我国学者对斜拉桥的几何非线性也进行了广泛对理论分析与试验研究。1982年周上君用等效弹性模量考虑斜拉索垂度,考虑结构大位移效应,用小挠度全量平衡方程进行迭代计算。但他用小挠度平衡方程计算斜拉桥大位移效应,未考虑主梁与桥塔大梁-柱效应。1990年陈德伟引入稳定函数考虑梁单元的梁-柱效应,用Ernst 公式考虑拉索的垂度效应,用拖动坐标系考虑大位移影响,求解斜拉桥的几何非线性问题。程国庆、潘家英等总结了斜拉桥几何非线性研究等现状,对各种斜拉桥几何非线性分析方法作了评述,指出:(1)等效弹性模量法用直杆单元模拟整根斜拉索,给斜拉桥的分析带来了很大的方便,但是当斜拉索两端节点位移相当大时,等效弹性模量法具有一定的近似性;(2)处理梁-柱效应可采用几何刚度矩阵和稳定函

斜拉桥病害分析

实训报告

班级:土木一班 姓名:黎津 学号:10700112 序号:10 日期:2013/6/23 实训论文一浅谈斜拉桥病害分析 土木一班黎津学号:10700112 【摘要】本文主要介绍了斜拉桥的斜拉系统、塔索、主梁的病害成因,以重庆嘉陵江千厮门大桥来加以论述。 千厮门嘉陵江大桥南穿渝中区洪崖洞旁沧白路,跨嘉陵江,北接江北区江北 城大街南路。主桥为单塔单索面钢桁梁斜拉桥,跨径布置为88m+312m(主跨) +240m+80m=720m。 本桥正桥采用88+312+240+80m四跨单塔单索面连续钢桁斜拉桥,钢梁全长720m (两端至支座中心线),桁宽15m,主桥全宽24~36.990m,渝中区侧边跨由于 上层公路线形与下层轨道线形不平行,桁梁设置为变高度。主桁采用变高 度的三角形桁式,全桥采用等节段布置,节段长度16米。主梁为双层桥面,下 层宽13m,为双线城市轨道交通,上层全宽24?36.990m,为双向4车道及两侧人行道。 主桁主要杆件均为焊接箱形截面。其中下弦杆截面宽1200m m,高1600mm,板厚24~60mm;上弦杆截面宽1200mm,高1200mm,板厚24~44mm;腹杆截面宽 1200mm,高1200mm,板厚20~44mm(过渡墩处竖杆厚100mm)。除部分腹杆按插入式两面拼接设计外,其余杆件均按照四面拼接设计,单个构件最大长度16.5m,最大安装吊重约66吨。主桁节点均采用整体节点。节点板最大厚度70mm(塔支座处), 最大规格为5570x 3200mm(B26节点)。 上层桥面采用正交异性钢桥面板,有索区及桥塔根部处无索区桥面板厚 24mm,其余无索区桥面板厚16mm,采用16x 150mm板肋加劲,板肋标准间距

相关主题
文本预览
相关文档 最新文档