当前位置:文档之家› 函数的零点问题

函数的零点问题

函数的零点问题
函数的零点问题

函数零点问题

处理函数零点问题时,我们不但要掌握零点存在性定理,还要充分运用等价转化、函数与方程、数形结合等思想方法,才能有效地找到解题的突破口.

近几年的数学高考中频频出现零点问题,其形式逐渐多样化,但却与函数、导数知识密不可分.用导数解决函数的零点问题是近几年高考命题的热点题型,此类题一般属于压轴题,难度较大.

[典例] (理)(2015·全国卷Ⅰ)已知函数f (x )=x 3+ax +14

,g (x )=-ln x .

(1)当a 为何值时,x 轴为曲线y =f (x )的切线;

(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.

[思路演示]

解:(1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0,

即?????

x 30+ax 0+14=0,

3x 20+a =0,

解得???

x 0=12

a =-3

4.

因此,当a =-3

4

时,x 轴为曲线y =f (x )的切线.

(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)上无零点.

当x =1时,若a ≥-54,则f (1)=a +5

4≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零

点;若a <-5

4

,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x =1不是h (x )的零点.

当x ∈(0,1)时,g (x )=-ln x >0,所以只需考虑f (x )在(0,1)上的零点个数.

①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调.而f (0)=1

4,f (1)

=a +5

4

,所以当a ≤-3时,f (x )在(0,1)上有一个零点;当a ≥0时,f (x )在(0,1)上没有零点.

②若-3

???0,

-a 3上单调递减,在???

?

-a 3,1上单调递增,故在(0,1)上,当x =

-a

3时,f (x )取得最小值,最小值为f ???

? -a 3=2a

3 -a 3+14

. 若f ???

?

-a 3>0,即-34<a <0,则f (x )在(0,1)上无零点. 若f ?

??

?

-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点.

上有两个零点;当-3

4

时,f (x )在(0,1)上有一个零点.

综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-5

4

-3

4时,h (x )有三个零点.

[解题师说]

对于已知参数的取值范围,讨论零点个数的情况,借助导数解决的办法有两个:

[典例] (文)设函数f (x )=ln x +m

x

,m ∈R.

(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x

3零点的个数.

[方法演示]

解:(1)由题设,当m =e 时,f (x )=ln x +e

x ,则f ′(x )=x -e x 2,

∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +e

e

=2,∴f (x )的极小值为2.

(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-1

3x 3+x (x >0).

设φ(x )=-1

3x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1).

当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;

当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.

∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=2

3

. 又φ(0)=0,结合y =φ(x ) 的图象(如图),

可知,①当m >2

3时,函数g (x )无零点;

②当m =2

3时,函数g (x )有且只有一个零点;

③当0<m <2

3时,函数g (x )有两个零点;

④当m ≤0时,函数g (x )有且只有一个零点.

综上所述,当m >23时,函数g (x )无零点;当m =2

3或m ≤0时,函数g (x )有且只有一个零点;当

0<m <2

3时,函数g (x )有两个零点.

[解题师说]

对于已知参数的取值范围,讨论零点个数的情况,借助导数解决的办法有两个:

[应用体验]

1.已知函数f (x )=-x 3+ax -1

4

,g (x )=e x -e(e 为自然对数的底数).

(1)若曲线y =f (x )在(0,f (0))处的切线与曲线y =g (x )在(0,g (0))处的切线互相垂直,求实数a 的值;

(2)设函数h (x )=?

????

f (x ),f (x )≥

g (x ),

g (x ),f (x )<g (x ),试讨论函数h (x )零点的个数.

解:(1)f ′(x )=-3x 2+a ,g ′(x )=e x ,所以f ′(0)=a ,g ′(0)=1,由题意,知a =-1. (2)易知函数g (x )=e x -e 在R 上单调递增,仅在x =1处有一个零点,且x <1时,g (x )<0, 又f ′(x )=-3x 2+a ,

①当a ≤0时,f ′(x )≤0,f (x )在R 上单调递减,且过点????0,-14,f (-1)=3

4-a >0,即f (x )在x ≤0时必有一个零点,此时y =h (x )有两个零点;

②当a >0时,令f ′(x )=-3x 2+a =0,得两根为x 1=-

a

3

<0,x 2= a

3

>0,

而f ?

???

a 3=-?

???- a 33+a ??

??- a 3-1

4=-2a 3

a 3-14

<0. 现在讨论极大值的情况:f a

3

=-a 3

3

+a a 3-14=2a 3

a 3-14

, 当f a 3<0,即a <3

4时,函数y =f (x )在(0,+∞)上恒小于零,此时y =h (x )有两个零点; 当f a 3=0,即a =3

4

时,函数y =f (x )在(0,+∞)上有一个零点x 0= a 3=1

2

,此时y =h (x )有三个零点;

当f a 3>0,即a >3

4时,函数y =f (x )在(0,+∞)上有两个零点,一个零点小于a

3

,一个零点大于

a 3

, 若f (1)=a -54<0,即a <5

4时,y =h (x )有四个零点;

若f (1)=a -54=0,即a =5

4时,y =h (x )有三个零点;

若f (1)=a -54>0,即a >5

4

时,y =h (x )有两个零点.

综上所述:当a <34或a >54时,y =h (x )有两个零点;当a =34或a =54时,y =h (x )有三个零点;当

3

4

<a <5

4

时,y =h (x )有四个零点.

[典例] (1)讨论f (x )的单调性;

(2)若f (x )有两个零点,求a 的取值范围. [思路演示]

解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. (ⅱ)若a >0,则由f ′(x )=0,得x =-ln a .

当x ∈(-∞,-ln a )时,f ′(x )<0;当x ∈(-ln a ,+∞)时,f ′(x )>0. 所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. (2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.

(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1

a +ln a .

①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点;

②当a ∈(1,+∞)时,由于1-1

a

+ln a >0,即f (-ln a )>0,故f (x )没有零点;

③当a ∈(0,1)时,1-1a +ln a <0,即f (-ln a )<0. 又f (-2)=a e -4+(a -2)e -2+2>-2e -

2+2>0,

故f (x )在(-∞,-ln a )有一个零点.设正整数n 0满足n 0>ln ????

3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0. 由于ln ????3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点.

综上,a 的取值范围为(0,1).

[解题师说]

本题是已知区间上有零点,求参数的范围问题.由于含有超越函数式的函数图象较为复杂,也没有固定的形状特点,所以在研究此类问题时,可以从两个方面去思考:

(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足的条件;

(2)也可以先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解.

[应用体验]

2.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x +a (x -1)2.

(1)讨论f (x )的单调性;

(2)若f (x )有两个零点,求a 的取值范围.

解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).

①设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. ②设a <0,由f ′(x )=0得x =1或x =ln(-2a ).

若a =-e

2

,则f ′(x )=(x -1)(e x -e),所以f (x )在(-∞,+∞)上单调递增.

若a >-e

2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x ∈(ln(-2a ),

1)时,f ′(x )<0. 所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减.

若a <-e

2

,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-

2a ))时,f ′(x )<0. 所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.

(2)①设a >0,则由(1)知,f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=ab 2-3

2

b >0,所以f (x )有两个零点.

②设a =0,则f (x )=(x -2)e x ,所以f (x )只有一个零点.

③设a <0,若a ≥-e

2,则由(1)知,f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )

不存在两个零点;若a <-e

2,则由(1)知,f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调

递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点.

综上,a 的取值范围为(0,+∞).

[典例] (理)(2018·长春质检)已知函数f (x )=1

2

x 2+(1-a )x -a ln x ,a ∈R.

(1)若f (x )存在极值点1,求a 的值;

(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2. [思路演示]

解:(1)由已知得f ′(x )=x +1-a -a

x ,因为f (x )存在极值点1,所以f ′(1)=0,即2-2a =0,a

=1,经检验符合题意,所以a =1.

(2)证明:f ′(x )=x +1-a -a

x

=(x +1)????1-a x (x >0), ①当a ≤0时,f ′(x )>0恒成立,所以f (x )在(0,+∞)上为增函数,不符合题意;

②当a >0时,由f ′(x )=0,得x =a ,当x >a 时,f ′(x )>0,所以f (x )单调递增,当0

又f (x )存在两个不同的零点x 1,x 2,所以f (a )<0,即12a 2+(1-a )a -a ln a <0,整理得ln a >1-1

2a ,

作y =f (x )关于直线x =a 的对称曲线g (x )=f (2a -x ), 令h (x )=g (x )-f (x )=f (2a -x )-f (x )=2a -2x -a ln 2a -x

x

则h ′(x )=-2+2a 2(2a -x )x =-2+2a 2

-(x -a )2+a 2≥0,所以h (x )在(0,2a )上单调递增.

不妨设x 1h (a )=0,即g (x 2)=f (2a -x 2)>f (x 2)=f (x 1),

又2a -x 2∈(0,a ),x 1∈(0,a ),且f (x )在(0,a )上为减函数,所以2a -x 22a , 又ln a >1-1

2

a ,易知a >1成立,故x 1+x 2>2.

(文)已知函数f (x )=ln x +t

x

-s (s ,t ∈R).

(1)讨论f (x )的单调性及最值;

(2)当t =2时,若函数f (x )恰有两个零点x 1,x 2(04. [思路演示]

解:(1)f ′(x )=x -t

x

2(x >0),

当t ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增,f (x )无最值;

当t >0时,由f ′(x )<0,得x 0,得x >t ,f (x )在(0,t )上单调递减,在(t ,+∞)上单调递增,故f (x )在x =t 处取得极小值也是最小值,最小值为f (t )=ln t +1-s ,无最大值.

(2)证明:∵f (x )恰有两个零点x 1,x 2(0

x 2-s =0,

即s =2x 1+ln x 1=2x 2+ln x 2,∴2(x 2-x 1)x 1x 2=ln x 2x 1,设t =x 2

x 1>1,则ln t =2(t -1)tx 1,x 1=2(t -1)t ln t ,

故x 1+x 2=x 1(t +1)=2(t 2-1)t ln t

,∴x 1+x 2-4=

2???

?t 2

-1t -2ln t ln t

. 令函数h (t )=t 2-1

t

-2ln t ,

∵h ′(t )=(t -1)2

t 2>0,∴h (t )在(1,+∞)上单调递增,∵t >1,∴h (t )>h (1)=0,

又t =x 2

x 1

>1,ln t >0,故x 1+x 2>4成立.

[解题师说]

已知函数存在零点,需要证明零点满足某项性质时,实际上是需要对函数零点在数值上进行精确求解或估计,需要对零点进行更高要求的研究,为此,不妨结合已知条件和未知要求,构造新的函数,再次通过导数的相关知识对函数进行更进一步的分析研究,其中,需要灵活运用函数思想、化归思想等,同时也需要我们有较强的抽象概括能力、综合分析问题和解决问题的能力.

[应用体验]

3.已知函数f (x )=ln x -1

2

ax 2+x ,a ∈R.

(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)令g (x )=f (x )-(ax -1),求函数g (x )的极值;

(3)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,证明:x 1+x 2≥

5-1

2

. 解:(1)当a =0时,f (x )=ln x +x ,则f (1)=1,又f ′(x )=1

x +1,∴切线斜率为f ′(1)=2,

故切线方程为y -1=2(x -1),即2x -y -1=0.

(2)g (x )=f (x )-(ax -1)=ln x -1

2ax 2+(1-a )x +1,

则g ′(x )=1

x -ax +(1-a )=-ax 2+(1-a )x +1x

(x >0),

当a ≤0时,∵x >0,∴g ′(x )>0. ∴g (x )在(0,+∞)上是增函数,函数g (x )无极值点. 当a >0时,g ′(x )=-ax 2

+(1-a )x +1x =-a ????x -1

a (x +1)x ,令g ′(x )=0,得x =1

a

.

∴当x ∈????0,1a 时,g ′(x )>0;当x ∈????1

a ,+∞时,g ′(x )<0. ∴g (x )在????0,1a 上是增函数,在???

?1

a ,+∞上是减函数. ∴x =1a 时,g (x )有极大值g ????1a =ln 1a -a 2×1a 2+(1-a )·1a +1=1

2a

-ln a . 综上,当a ≤0时,函数g (x )无极值;当a >0时,函数g (x )有极大值1

2a -ln a ,无极小值.

(3)证明:当a =-2时,f (x )=ln x +x 2+x ,x >0. f (x 1)+f (x 2)+x 1x 2=0,

即ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2

+(x 1+x 2)=x 1x 2-ln(x 1x 2),

令t =x 1x 2(t >0),φ(t )=t -ln t ,则φ′(t )=1-1t =t -1t ,

由φ′(t )>0,得t >1;由φ′(t )<0,得0

所以φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增. ∴φ(t )≥φ(1)=1,∴(x 1+x 2)2+(x 1+x 2)≥1,∵x 1>0,x 2>0,∴x 1+x 2≥5-1

2

.

1.已知函数f (x )=x 2

a

+bx -ln x .

(1)若a =b =1,求f (x )的极值;

(2)若b =-1,函数f (x )有且只有一个零点,求实数a 的取值范围.

解:(1)a =b =1时,f (x )=x 2+x -ln x (x >0),则f ′(x )=2x +1-1x =(x +1)(2x -1)

x .

当0<x <12时,f ′(x )<0,f (x )单调递减;当x >1

2时,f ′(x )>0,f (x )单调递增,

所以f (x )的极小值为f ????12=3

4+ln 2,无极大值.

(2)若f (x )有且只有一个零点,即方程x 2a -x -ln x =0在(0,+∞)上有且只有一个实数根,即1a =

1x

ln x x 2. 令h (x )=1x +ln x x 2,则h ′(x )=1-x -2ln x x 3

. 再令φ(x )=1-x -2ln x ,则φ′(x )=-1-2

x

<0,又φ(1)=0,因而当x ∈(0,1)时,φ(x )>φ(1)=0;当x ∈(1,+∞)时,φ(x )<φ(1)=0. 所以当x ∈(0,1)时,h ′(x )>0,h (x )单调递增;当x ∈(1,+∞)时,h ′(x )<0,h (x )单调递减,故h (x )≤h (1)=1,

又当x →+∞时,h (x )→0且h (x )>0,而当x →0时,h (x )→-∞, 所以1a <0或1

a =1,即a <0或a =1时函数f (x )有且只有一个零点.

故实数a 的取值范围为(-∞,0)∪{1}. 2.设函数f (x )=x 3+ax 2+bx +c .

(1)求曲线y =f (x )在点(0,f (0))处的切线方程;

(2)设a =b =4,若函数f (x )有三个不同零点,求实数c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要不充分条件.

解:(1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b , 所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .

(2)当a =b =4时,f (x )=x 3+4x 2+4x +c ,所以f ′(x )=3x 2+8x +4.

令f ′(x )=0,得x =-2或x =-2

3

. 于是,当x 变化时,f ′(x )与f (x )变化情况如下表:

所以,当c >0且c -32

27<0时,存在x 1∈(-4,-2),x 2∈???-2,-23,x 3∈??-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈????0,32

27时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点,故实数c 的取值范围为???

?0,32

27. (3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0恒成立,此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.

当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增.当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增.所以f (x )不可能有三个不同零点.

综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.

当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.

因此a -3b >0是f (x )有三个不同零点的必要不充分条件. 3.(理)设函数f (x )=1-m -x

e x

.

(1)求函数f (x )在[0,2]上的单调区间;

(2)当m =0,k ∈R 时,求函数g (x )=f (x )-kx 2在R 上零点个数. 解:(1)f ′(x )=x +m -2

e x

,令f ′(x )=0,得x =2-m .

当2-m ≤0,即m ≥2时,f ′(x )≥0,f (x )在[0,2]上单调递增.

当0<m <2时,由f ′(x )<0,得0<x <2-m ;由f ′(x )>0,得2-m <x <2,所以f (x )在[0,2-m ]上单调递减,在[2-m,2]上单调递增.

当m ≤0时,f ′(x )≤0,f (x )在[0,2]上单调递减.

综上,当m ≥2时,f (x )的单调递增区间为[0,2];当0

(2)当m =0时,由g (x )=f (x )-kx 2=0,得1-x e x =kx 2,即k =1-x x 2e x (x ≠0).令h (x )=1-x

x 2e x ,

则h ′(x )=x 2-2

x 3e x . 由h ′(x )>0,得-2<x <0或x >2;由h ′(x )<0,得x <-2或0<x <2,

∴h (x )在(-∞,-2),(0,2)上单调递减,在(-2,0),(2,+∞)上单调递增. 在x <0时,当x =-2时,h (x )取得极小值h (-2)=1+2

2

e 2

当x →-∞时,h (x )→+∞;x →0时,h (x )→+∞. 在x >0时,当x =2时,h (x )取得极小值h (2)=1-2

2e 2

<0, 当x →0时,h (x )→+∞,x →+∞时,h (x )→0.

画出函数h (x )的大致图象如图所示,当k <1-22e 2时,g (x )没有零点,当k =1-22e 2或0≤k <1+2

2e

2

时,g (x )有1个零点,当1-22e

2<k <0或k =1+22e 2

时,g (x )有2个零点,当k >1+2

2

e

2

时,

g (x )有3个零点.

(文)已知函数f (x )=x 3+x 2+ax +b .

(1)当a =-1时,求函数f (x )的单调递增区间;

(2)若函数f (x )的图象与直线y =ax 恰有两个不同的交点,求实数b 的值.

解:(1)当a =-1时,f (x )=x +x -x +b ,所以f ′(x )=3x +2x -1,

由f ′(x )>0,得x <-1或x >1

3,所以函数f (x )的单调递增区间为(-∞,-1)和????13,+∞. (2)函数f (x )的图象与直线y =ax 恰有两个不同的交点,等价于f (x )-ax =0有两个不等的实根. 令g (x )=f (x )-ax =x 3+x 2+b ,则g ′(x )=3x 2+2x .

由g ′(x )>0,得x <-23或x >0;由g ′(x )<0,得-2

3

<x <0.

所以函数g (x )在????-∞,-23和(0,+∞)上单调递增,在???

?-2

3,0上单调递减. 所以当x =-23时,函数g (x )取得极大值g ????-23=4

27+b ,当x =0,时函数g (x )取得极小值为g (0)=b . 要满足题意,则需g ????-23=4

27

+b =0或g (0)=b =0, 所以b =-4

27

或b =0.

4.(2018·广西三市第一次联考)已知函数f (x )=2a 2ln x -x 2(a >0).

(1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求函数f (x )的单调区间;

(3)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数).

解:(1)当a =1时,f (x )=2ln x -x 2,∴f ′(x )=2

x -2x ,∴f ′(1)=0,又f (1)=-1,

∴曲线y =f (x )在点(1,f (1))处的切线方程为y +1=0.

(2)∵f (x )=2a 2

ln x -x 2

,∴f ′(x )=2a 2

x -2x =2a 2-2x 2x =-2(x -a )(x +a )x

∵x >0,a >0,∴当00,当x >a 时,f ′(x )<0. ∴f (x )在(0,a )上是增函数,在(a ,+∞)上是减函数.

(3)由(2)得f (x )max =f (a )=a 2(2ln a -1).讨论函数f (x )的零点情况如下: ①当a 2(2ln a -1)<0,即0

②当a 2(2ln a -1)=0,即a =e 时,函数f (x )在(0,+∞)内有唯一零点a ,而1

③当a 2(2ln a -1)>0,即a >e 时,由于f (1)=-1<0,f (a )=a 2(2ln a -1)>0,f (e 2)=2a 2ln e 2-e 4=4a 2-e 4=(2a -e 2)(2a +e 2),

当2a -e 2

<0,即e

,f (e 2)<0,由函数的单调性可知,函数f (x )在(1,a )

上有唯一零点x 1,在(a ,e 2)上有唯一零点x 2,∴f (x )在(1,e 2)上有两个零点.

当2a -e 2

≥0,即a ≥e 2

2

>e 时,f (e 2)≥0,由函数的单调性可知,f (x )在(1,e)上有唯一的一个

综上所述,当0

e 2

2时,函数f (x )有两个零点.

函数与零点练习题

函数与零点 基础回顾: 零点、根、交点的区别 零点存在性定理:f (x )是连续函数;f (a )f (b )<0 二分法思想:零点存在性定理 一、基础知识—零点问题 1.若函数)(x f y =在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( ) A .若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ; B .若0)()(b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ; D .若0)()(

专题复习之--函数零点问题

专题复习之--函数零点问题 (一)零点所在区间问题(存在性,根的分布) 1.函数()lg 3f x x x =+-的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 变式:函数b x a x f x -+=)(的零点))(1,(0Z n n n x ∈+∈,其中常数b a ,满足 23,32==b a , 则=n ( ) A. 0 B.1 C.2- D.1- 2.已知a 是实数,函数2 ()223f x ax x a =+--,如果函数()y f x =在区间[]11-,上有零点,则a 的取值范围是____________. (二)零点个数问题(重点,常用数形结合) 3.函数()44f x x x = ++-的零点有 个. 4.讨论函数2()1f x x a =--的零点个数. 5.若存在区间[,]a b ,使函数[]()2(,)f x k x x a b =+ +∈的值域是[,]a b ,则实数k 的范围 是__________. 6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________. 7.(选作思考)函数f (x )=234 20122013123420122013x x x x x x ??+-+-+-+ ?? ? cos2x 在区间[-3,3]上的零点的个数为_________.

(三)复合函数与分段函数零点问题(由里及外,画图分析) 8.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的 零点,下列判断不正确... 的是( ) A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 变式一:设定义域为R 的函数1251,0()44,0 x x f x x x x -?-≥?=?++0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______. 变式三:已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B. b >-2且c <0 C. b <-2且c =0 D. b 2c=0≥-且

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题 导数压轴题之隐零点问题(共13题) 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增,

而==1, 故a≤1, 综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤() 2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

嵌套函数与函数的零点问题

嵌套函数与函数的零点问题 1二已知函数f (x )=x +1,x ?0l o g 2x ,x >0{,则y =f (f (x ))+1的零点组成的集合为 .2二?变式?已知函数f (x )=x +1,x ?0l o g 2 x ,x >0{,则y =f (f (x ))-1的零点组成的集合为 .3二函数f (x )=x +1,x ?0,x 2-2x +1,x >0. { ,若关于x 的方程f 2(x )-a f (x )=0恰有5个不同的实数解,则a 的取值范围为 .4二定义域为R 的函数f (x )= |l g x |,x >0,-x 2-2 x ,x ?0.{,关于x 的函数y =2f 2(x )-3f (x )+1的零点个数为 .5二函数f (x )是定义在R 上偶函数,且当x ?0时,f (x )=x |x -2|,若关于x 的方程f 2(x )+a f (x )+b =0恰有1 0个不同的解,则a 的取值范围是 .6二已知函数f (x )=-x 2,x ?0,x 2+2x ,x <0.{ ,则不等式f f x ()()?3的解集是 .7二已知函数f (x )=l o g 2x ,x >0,2x ,x ?0. {,则满足不等式f (f (x ))>1的x 的取值范围是 .8二已知函数f (x )=x 2-2a x +a 2-1若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是 . 9二设函数f (x )是偶函数,当x ?0时,f (x )=x (3-x ),0?x ?3,-3x +1,x >3ì?í???,若函数y =f (x )-m 有四个不同的零点,则实数m 的取值范围是 .

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

导数与函数的零点讲义(非常好,有解析)

函数的零点 【题型一】函数的零点个数 【解题技巧】用导数来判断函数的零点个数,常通过研究函数的单调性、极值后,描绘出函数的图象,再借助图象加以判断。 【例1】已知函数3 ()31,0f x x ax a =--≠ ()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x = 的图象有三个不同的交点, 求m 的取值范围。 变式:已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程 ()(0)f x m m =>在区间[8,8]-上有四个不同的根1234,,,x x x x ,则 1234_________. x x x x +++= 【答案】 -8 【解析】因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)()f x f x -=-,所以, 由)(x f 为奇函数,所以函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为)(x f 在区间[0,2]上 是增函数,所以)(x f 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0) 在区间 []8,8-上有四个不同的根1234,,,x x x x ,不妨设1234x x x x <<<,由对称性知 1212 x x +=-, 344 x x +=. 所以12341248 x x x x +++=-+=-. 6

【题型二】复合函数的零点个数 复合函数是由内层函数与外层函数复合而成的,在处理其零点个数问题时,应分清内层和外层函数与零点的关系。 【解题技巧】函数()(())h x f f x c =-的零点个数的判断方法可借助换元法解方程的思想 分两步进行。即令()f x d =,则()()h x f d c =- 第一步:先判断()f d c =的零点个数情况 第二步:再判断()f x d =的零点个数情况 【例2】已知函数3()3f x x x =- 设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数 1.(江苏省连云港市2013届高三上学期摸底考试(数学)已知函数 322()39(0)f x x ax a x a =--≠.若方程'2()12169f x nx ax a a =---在[l,2]恰好有两个 相异的实根,求实数a 的取值范围(注:1n2≈0.69): 【题型三】如何运用导数求证函数“存在、有且只有一个”零点 【解题技巧】(1)要求证一个函数存在零点,只须要用“函数零点的存在性定理”即可证明。即:

复合函数零点问题专题训练

复合函数零点问题专题训练 1.定义域和值域均为[-a,a](常数a>0)的函数y=f(x)和y=g(x)的图像如图所示,给出下列四个命题中: (1)方程f[g(x)]=0有且仅有三个解;(2)方程g[f(x)]=0有且仅有三个解;(3)方程f[f(x)]=0有且仅有九个解;(4)方程g[g(x)]=0有且仅有一个解。 那么,其中正确命题的个数是 () A .1 B.2 C.3 D.4(第1 题图) 解:选B.(1)方程f[g (x )]=0有且仅有三个解;g (x )有三个不同值,由于y=g (x )是减函数,所以有三个解,正确; (2)方程g[f (x )]=0有且仅有三个解;从图中可知,f (x )∈(0,a )可能有1,2,3个解,不正确; (3)方程f[f (x )]=0有且仅有九个解;类似(2)不正确; (4)方程g[g (x )]=0有且仅有一个解.结合图象,y=g (x )是减函数,故正确.2.已知函数1)(+=x xe x f , 若函数2)()(2 ++=x bf x f y 恰有四个不同的零点,则实数b 的取值范围是 ( ) A.) 22,(--∞ B.) 2,3(-- C.) 3,(--∞ D.(] 2 2,3--解:用求导方法得,f(x)在x =-1取得最大值1,在x=0取得最小值0,故01时,f(x)=a,有1个解,2)()(2 ++=x bf x f y 恰有四个不同的零点,则 2 t +bt+2=0有两个不等根,1个在(0,1)内,另1个根大于1,令g(t)= 2 t +bt+2,于是得, ⊿>0且g (0)>0且g(1)<0,解得b <-3,故选C .思考:已知函数1 )(+=x xe x f ,若函数2)()(2 ++=x bf x f y 恰有6个不同的零点,则 实数b 的取值范围是 ( ) 3.(2013四川,理10)设函数f (x (a ∈R ,e 为自然对数的底数),若曲线 a a x y f(x)O a a a a x y g(x) O a a

高考数学函数零点专题

专题2.函数的零点 高考解读 求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x 轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力. 知识梳理 1.函数的零点与方程的根 (1)函数的零点 对于函数f (x ),我们把使f (x )=0的实数x 叫做函数f (x )的零点. (2)函数的零点与方程根的关系 函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标. (3)零点存在性定理 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0, 这个c 也就是方程f (x )=0的根.注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.在求方程解的个数或者根据解的个数求方程中的字母参数的范围的问题时,数形结合是基本的解题方法,即把方程分拆为一个等式,使两端都转化为我们所熟悉的函数的解析式,然后构造两个函数f (x ),g (x ),即把方程写成f (x )=g (x )的形式,这时方程根的个数就是两个函数图象交点的个数,可以根据图象的变化趋势找到方程中字母参数所满足的各种关系. 高频考点突破 考点一 函数的零点判断 例1、【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .1 2 - B .13 C .12 D .1 【变式探究】(1)函数f (x )=e x +1 2 x -2的零点所在的区间是( ) A. )2 1 ,0( B.)1,2 1( C .(1,2) D .(2,3) (2)已知偶函数y =f (x ),x ∈R 满足:f (x )=x 2-3x (x ≥0),若函数g (x )=????? log 2x ,x >0,-1x ,x <0,则y =f (x )-g (x )的零点个数为( ) A .1 B .3 C .2 D .4 【方法技巧】函数零点的求法 (1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点. (2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且

专题分段函数与函数零点答案

11. 已知函数f(x)=???x ,x ≥0,x 2,x <0, 则关于x 的不等式f(x 2)>f(3-2x)的解集是__________ 11. (-∞,-3)∪(1,3) 解析:x≤32 时原不等式化为x 2>3-2x ,解得x <-3或1<x≤32;x >32时原不等式化为x 2>(3-2x)2,解得32 <x <3.综上x <-3或1<x <3.本题考查分类讨论的思想,考查解不等式的能力.本题属于中等题. 11. 已知定义在实数集R 上的偶函数f(x),当x≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________. 11. [-1,1] 解析:∵ f(x)≥x 2,而f(x)示意图如下: 令x 2=-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1]. 本考查了函数的综合运用,以及数形结合数学思想.本题属于中等题. 13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________. 13. 14 解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14 . 12. 已知函数f(x)是定义在R 上的奇函数,且当x≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是____________. 12. (4,+∞) 解析:由题意得f(x)=???-x 2-3x ,x ≤0,x 2-3x ,x>0, f(x -1)=? ??-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0, 即f(x -1)=? ??-x 2-x +2,x ≤1,x 2-5x +4,x>1, 所以不等式f(x -1)>-x +4可化为???-x 2-x +2>-x +4,x ≤1, 或???x 2-5x +4>-x +4,x>1, 解得x >4. 11. 已知f(x)=???x 2+x (x≥0),-x 2+x (x<0), 则不等式f(x 2-x +1)<12的解集是________. 11. (-1,2) 解析:由函数图象知f(x)为R 上的增函数且f (3)

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

2020届高三数学专题练习之函数零点

2019届高三数学专题练习之函数零点 1.零点的判断与证明 例1:已知定义在()1,+∞上的函数()ln 2f x x x =--, 求证:()f x 存在唯一的零点,且零点属于()3,4. 2.零点的个数问题 例2:已知函数()f x 满足()()3f x f x =,当[)1,3x ∈,()ln f x x =,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( ) A .ln 31,3e ?? ??? B .ln 31,93e ?? ??? C .ln 31,92e ?? ??? D .ln 3ln 3,93?? ??? 3.零点的性质 例3:已知定义在R 上的函数()f x 满足:()[)[) 22 2 0,121,0x x f x x x ?+∈?=?-∈-??,且()()2f x f x +=, ()25 2 x g x x += +,则方程()()f x g x =在区间[]5,1-上的所有实根之和为( ) A .5- B .6- C .7- D .8- 4.复合函数的零点 例4:已知函数()243f x x x =-+,若方程()()2 0f x bf x c ++=????恰有七个不相同的实根, 则实数b 的取值范围是( ) A .()2,0- B .()2,1-- C .()0,1 D .()0,2 一、选择题 1.设()ln 2f x x x +-=,则函数()f x 的零点所在的区间为( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4

2.已知a 是函数()12 log 2x x f x =-的零点,若00x a <<,则()0f x 的值满足( ) A .()00f x = B .()00f x > C .()00f x < D .()0f x 的符号不确定 3.函数2 ()2f x x a x =--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3 B .()1,2 C .()0,3 D .()0,2 4.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a -----+-=+的两个零点分别位于区间( ) A .(),a b 和(),b c 内 B .(,)a -∞和(),a b 内 C .(),b c 和(),c +∞内 D .(,)a -∞和(),c +∞内 5.设函数()f x 是定义在R 上的奇函数,当0x >时,()e 3x f x x =+-,则()f x 的零点个数为( ) A .1 B .2 C .3 D .4 6.函数()22 01ln 0 x x x x x f x ?+-≤=? -+>?的零点个数为( ) A .3 B .2 C .7 D .0 7.已知函数()101 x x x f x ≤?? =?>??,则使方程()x f x m +=有解的实数m 的取值范围是( ) A .()1,2 B .(],2-∞- C .()(),12,-∞+∞ D .(][),12,-∞+∞ 8.若函数()312f x ax a +-=在区间()1,1-内存在一个零点,则a 的取值范围是( ) A .1,5?? +∞ ??? B .() 1,1,5?? -∞-+∞ ???

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

利用导数解决函数零点问题

1 利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上 面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 )(x f ' )(x f

2 (三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2--=存在唯一 的极大值点0x ,且2022)(--<

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

导数方法与技巧一(隐零点问题)

高三数学一轮复习第二十讲:导数的方法与技巧一(隐零点问题) 1.已知函数 ()()()ln ,f x x h x ax a R ==∈(1)若函数与的图像无公共点,试求实数的取值范围; ()f x ()g x a (2)是否存在实数,使得对任意的,都有函数的图像在的图像m 1,2x ??∈+∞ ??? ()m y f x x =+()x e g x x =的下方?若存在,求出最大整数的值;若不存在,请说明理由. m (参考数据:) ln 20.6931,ln 3 1.3956≈≈≈≈ 2.已知函数,其中,为自然对数的底数. ()()222 x a f x x e x =--a R ∈e (1)函数的图象能否与轴相切?若能求出实数的值;否则,说明理由. ()f x x a (2)若函数在上单调递增,求实数能取到的最大整数值. ()2y f x x =+R a

3.设函数. ()()ln ,21x f x x x g x x e x =-=?--(1)关于的方程在区间上有解,求实数的取值范围; x ()2103 f x x x m =-+[]1,3m (2)证明:当时,. 0x >()()g x f x ≥ 4.已知函数,若恒成立,求实数的取值范围. ()()()2 23,x f x e x a a R =--+∈()0,0x f x ≥≥a

5.已知函数. ()ln 1f x ax x =++(1)讨论函数零点的个数; ()f x (2)对任意的恒成立,求实数的取值范围. ()20,x x f x xe >≤a 6.已知函数. ()2 x f x e x ax =--(1)若函数在R 上单调递增,求实数的取值范围. ()f x a (2)若,证明:当时,. 1a =0x >()2 ln 2ln 2122f x ??>-- ??? (参考数据:) 2.71828,ln 20.69e ≈≈

文本预览