当前位置:文档之家› 高导磁芯、功率磁芯的区别

高导磁芯、功率磁芯的区别

高导磁芯、功率磁芯的区别
高导磁芯、功率磁芯的区别

高导磁芯、功率磁芯的区别

功率磁芯和高导磁芯表象区别在于电感,高导就是磁导率高的意思,一般磁导率都有5K---10K,而功率磁芯的磁导率都在2K---3K之间.

实质上:功率磁芯注重的是功率传输过程中的功率损耗或发热现象,越好的功率磁芯如P4、的功率损耗就越严格,否则就越差,高导材料注重的是电感值,尤其是电感在高频下的稳定性.第二,功率材料和高导材料还有一个很重要的区别:居里温度,一般P4的居里温度为240度,而高导的居里温度为130度左右.

通常情况下,材料磁导率越低,适用的频率范围越宽;材料磁导率越高,适用的频率范围越窄。

磁导率是磁阻的倒数,磁阻大了,磁导率就小了。

磁阻的倒数称作磁导。在SI制中,它的单位是亨利(H)。磁阻(magnetic reluctance)是指含有永磁体的磁路中的一个参量。源于磁路中存在漏磁。利用永磁体来产生一工作磁场时,需要有永磁体、高导磁软磁体和适当大小的空隙三部分,总称为磁路。永磁体提供磁通,经过软磁体连接后在空隙处产生磁场。磁路中的总磁通量是守恒的,但在空隙处的磁通密度相对降低,因有部分磁通在非空隙处流失,称之为漏磁,导致磁路中的磁阻。

磁导率μ等于磁介质中磁感应强度B的微分与磁场强度H的微分之比,即μ=dB / dH

通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与真空磁导率μ0之比,即μr=μ/μ0

相对磁导率μr与磁化率χ的关系是:μr=1+χ

磁导率μ,相对磁导率μr和磁化率χ都是描述磁介质磁性的物理量。

对于顺磁质μr>1;对于抗磁质μr<1,但两者的μr都与1相差无几。在大多数情况下,导体的相对磁导率等于1.在铁磁质中,B与H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。

例如,如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000。

拓扑磁芯功率速查表

几种常用铁氧磁心在正激变换器托扑的最大输出功率速查表 各频率下的最大输出功率 磁心型号Ae,cm2 Ab,cm2 AeAb,cm420kHz 24kHz 48kHz 72kHz 96kHz 150kHz 200kHz 250kHz 300kHz 体积Cm3 EE Cores,Ferroxcube-Philips 814E250 0.202 0.171 0.035 1.1 1.3 2.7 4.0 5.3 8.3 11.1 13.8 16.6 0.57 813E187 0.225 0.329 0.074 2.4 2.8 5.7 8.5 11.4 17.8 23.7 29.6 35.5 0.89 813E343 0.412 0.359 0.148 4.7 5.7 11.4 17.0 22.7 35.5 47.3 59.2 71.0 1.64 812E250 0.395 0.581 0.229 7.3 8.8 17.6 26.4 35.3 55.1 73.4 91.8 110.2 1.93 782E272 0.577 0.968 0.559 17.9 21.4 42.9 64.3 85.8 134.0 178.7 223.4 268.1 3.79 E375 0.810 1.149 0.931 29.8 35.7 71.5 107.2 143.0 223.4 297.8 372.3 446.7 5.64 E21 1.490 1.213 1.807 57.8 69.4 138.8 208.2 227.6 433.8 578.4 722.9 867.5 11.5 783E608 1.810 1.781 3.224 103.2 123.8 247.6 371.4 495.1 773.7 1031.6 1289.4 1547.3 17.80 783E776 2.330 1.810 4.217 135.0 161.9 323.9 458.8 647.8 1012.2 1349.5 1686.9 2024.3 22.9 E625 2.340 1.370 3.206 102.6 123.1 246.2 369.3 492.4 769.4 1025.9 1282.3 1538.8 20.80 E55 3.530 2.800 9.884 316.3 379.5 759.1 1138.6 1518.2 2372.2 3162.9 3953.6 4744.3 43.50 E75 3.380 2.160 7.301 233.6 280.4 560.7 841.1 1121.4 1752.2 2336.3 2920.3 3504.4 36.00 EC Cores, ,Ferroxcube-Philips Ec35 0.843 0.968 0.816 26.1 31.3 62.9 94.0 125.3 195.8 261.1 326.4 391.7 6.53 Ec41 1.210 1.350 1.643 52.3 62.7 125.5 188.2 250.9 392.0 522.7 653.4 784.1 10.80 Ec52 1.800 2.130 3.834 122.7 147.2 294.5 441.7 588.9 920.2 1226.9 1533.6 1840.3 18.80 Ec70 2.790 4.770 13.208 425.9 511.0 1022.1 1533.1 2044.2 3194.0 4258.7 5323.3 6388.0 40.10 ETD Cores,Ferroxcube-philips ETD29 0.760 0.903 0.686 22.0 26.4 52.7 79.1 105.4 164.7 219.6 274.5 329.4 5.50 ETD34 0.971 1.220 1.185 37.9 45.5 91.0 136.5 182.0 284.3 379.1 473.8 568.6 7.64 ETD39 1.250 1.740 2.175 69.6 83.5 167.0 250.6 334.1 522.0 696..0 870.0 1044.0 11.50 ETD44 1.740 2.130 3.706 118.6 142.3 284.6 427.0 569.3 889.5 1186.0 1482.5 1779.0 18.00 ETD49 2.110 2.710 5.718 183.0 219.6 439.2 658.7 878.3 1372.3 1829.8 2287.2 2744.7 24.20 Pot Cores,Ferroxcube-philips 704 0.070 0.022 0.002 0.0 0.1 0.1 0.2 0.2 0.4 0.5 0.6 0.7 0.07 905 0.101 0.034 0.003 0.1 0.1 0.3 0.4 0.5 0.8 1.1 1.4 1.6 0.13

传输与接入-计算题公式汇总

1、光纤的归一化频率参数 计算公式: a为光纤纤芯半径,λ为光纤中光波的工作波长,n1为纤芯的折射率,n2为包层的折射率。 △=(n1^2 - n2^2) /2 n1^2 2、光纤损耗 是指光波在光纤中传输一段距离后能量会衰减。a(λ)表示,单位为dB/km。 L 表示光纤长度,Pout表示光纤接出口功率,Pin为光纤接入口功率。Pout和Pin要是mW来计算。 功率(mw) = 10^ (功率(dBm)/10) 记得功率(dBm)一定要除以10,才能算出毫瓦的功率 3、数据孔径 计算公式:NA = n1为纤芯的折射率,n2为包层的折射率。 4、消光比 计算公式:EXT =10Lg(A/B) A表示传输1信号的功率 B表示传输0信号的功率。 5、功率密度 功率密度 P D为:

Pt为发射功率,Gt为发射天线增益,r为发射天线到接收位置的距离 6、自由空间传播损耗 Lp = 32.44 + 20Lg d + 20Lg f d是距离单位是km,f是频率单位是MHz 7、香农信道容量公式: C = W Lg(1+ S/N) S/N 为信道的信与噪声功率比简称信噪比,W为信道带宽,N=N0W N0为单边 噪声功率谱密度。 8、等效地球半径Re: Re 为等效地球半径,R0为实际地球半径,K为等效地球半径系数,dn/dh为折射率梯度。 温带地区K = 4/3 称为标准折射,0

铁氧体磁芯功率与频率的关系表

表10-15正激变换器拓扑最大可能输出功率 输出功率(W) 磁芯A e(cm2) A w(cm2) A e A w(cm4) 20kHz 24kHz 48kHz 72kHz 96kHz 150kHz 200kHz 250kHz 300kHz 体积(cm3) E型磁芯 Philips 814E250 0.202 0.171 0.035 1.1 1.3 2.7 4.0 5.3 8.3 11.1 13.8 16.6 0.57 813E187 0.225 0.329 0.074 2.4 2.8 5.7 8.5 11.4 17.8 23.7 29.6 35.5 0.89 813E343 0.412 0.359 0.148 4.7 5.7 11.4 17.0 22.7 35.5 47.3 59.2 71.0 1.64 812E250 0.395 0.581 0.229 7.3 8.8 17.6 26.4 35.3 55.1 73.4 91.8 110.2 1.93 782E272 0.577 0.968 0.559 17.9 21.4 42.9 64.3 85.8 134.0 178.7 223.4 268.1 3.79 E375 0.810 1.149 0.931 29.8 35.7 71.5 107.2 143.0 223.4 297.8 372.3 446.7 5.64 E21 1.490 1.213 1.807 57.8 69.4 138.8 208.2 277.6 433.8 578.4 722.9 867.5 11.50 783E608 1.810 1.781 3.224 103.2 123.8 247.6 371.4 495.1 733.7 1031.6 1289.4 1547.3 17.80 783E776 2.330 1.810 4.217 135.0 161.9 323.9 485.8 647.8 1012.2 1349.5 1686.9 2024.3 22.90 E625 2.340 1.370 3.206 102.6 123.1 246.2 369.3 492.4 769.4 1025.9 1282.3 1538.8 20.80 E55 3.530 2.800 9.884 316.3 379.5 759.1 1138.6 1518.2 2372.2 3162.9 3953.6 4744.3 43.50 E75 3.380 2.160 7.301 233.6 280.4 560.7 841.1 1121.4 1752.2 2336.3 2920.3 3504.4 36.00 EC型磁芯 Philips EC35 0.843 0.968 0.816 26.1 31.3 62.7 94.0 125.3 195.8 261.1 326.4 391.7 6.53 EC41 1.210 1.350 1.634 52.3 62.7 125.5 188.2 250.9 392.0 522.7 653.4 784.1 10.80 EC52 1.800 2.130 3.834 122.7 147.2 294.5 441.7 588.9 920.2 1226.9 1533.6 1840.3 18.80 EC70 2.790 4.770 13.308 425.9 511.0 1022.1 1533.1 2044.2 3194.0 4258.7 5323.3 6388.0 41.10 ETD型磁芯 Philips ETD29 0.760 0.903 0.686 22.0 26.4 52.7 79.1 105.4 164.7 219.6 274.5 329.4 5.50 ETD34 0.971 1.220 1.185 37.9 45.5 91.0 136.5 182.0 284.3 379.1 473.8 568.6 7.64 ETD39 1.250 1.740 2.175 69.6 83.5 167.0 250.6 334.1 522.0 696.0 870.0 1044.0 11.50 ETD44 1.740 2.130 3.706 118.6 142.3 284.6 427.0 569.3 889.0 1186.0 1482.5 1779.0 18.00 ETD49 2.110 2.710 5.718 183.0 219.6 439.2 658.7 878.3 1372.3 1829.8 2287.2 2744.7 24.20 152

室内传播和路径损耗计算及实例(完整版)

室内传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态范围;b)电磁波的传播损耗。 动态范围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态范围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态范围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= . (λ/4πR)2 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) () 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=时(f=可得出: =-Gr-Gt++20log(R) () R的单位为米。 图2-1表示了信号频率,天线的增益为0dBi时的自由空间的损耗曲线。

光系统损耗计算概要

有线电视光网系统中光分路器的损耗计算 一、光功率单位介绍 在实际运用中,光功率单位常采用mw或分贝值dBm 在有线电视系统中,利用场强仪测得的射频电平是以dBpV为单位表示的,dB表示一个相对值,如甲的功率为18dBm,乙的功率为10dBm,则可以说甲比乙大8dB,dBm是功率绝对值的单位,不要相互搞混淆了。 二、光分路器的分光比定义及电气参数 光分路器类似于电缆传输网络中的分支器、分配器。在实际的运用中,常常用光分路器把光发射机输出的光信号分成强度不等的几路输出,光强较大的一路传输到较远的设备,光强弱的一路传输到较近的距离,以使各个光节点都能得到近似相等的光功率。光分路器对各支路光功率分配的比例称为分光比,分光比K定义为光分路器某输出端输出光功率与光分路器输出端总的输出光功率之比。

分光损耗:不同的分光比对光信号产生的损耗就叫做分光损耗,其值为-10lgK。 驸加损耗:光分路器把输入端的光信号按照预定的分光比对各个支路进行分配时,光信号通过光分路器时除分光损耗外,还有光分路器本身对光信号产生的损耗,这种损耗称为光分路器附加损耗。 插入损耗:插入损耗包括分光损耗和附加损耗两部分,即插入损耗(dB)=-10lgk+附加损耗。 同时光分路器还有频率响应、均匀性、隔离度等技术指标要求。三、光链路损耗的计算 光链路损耗包括三个部份:一是光缆对光信号强度产生的衰减;二是网络中各种接头、接点对光信号的衰减;三是网络中器件对光信号产生的衰减,例如光分路器的分光损耗和附加损耗。 光链路全程损耗可按下式计算:A=aL-10lgk+Ac+Af。式中:A为光链路全程损耗,aL为光纤对所传输光信号的衰减,α为光衰减系数,

几种常用磁性器件中磁芯的选用及设计

几种常用磁性器件中磁芯的选用及设计 开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。 (一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。变压器的设计公式如下: P=KfNBSI×10-6T=hcPc+h W P W 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;P c为铁损;P W为铜损;h c和h W为由实验确定的系数。 由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。但B值的增加受到材料的Bs值的限制。而频率f可以提高几个数量级,从而有可能使体积重量显著减小。而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感

Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。 线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。对于工作在±Bm之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。 通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器。已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20-50kHz、功率50kW以下,是变压器最佳磁芯材料。 近年来发展起来的新型逆变弧焊电源单端脉冲变压器,具有高频大功率的特点,因此要

变压器设计及磁芯相关资料

磁性器件中磁芯的选用及设计 开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。 (一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。变压器的设计公式如下: P=K*f*N*B*S*I×10-6T=hc*Pc+hW*PW 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。 由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。但B值的增加受到材料的Bs值的限制。而频率f可以提高几个数量级,从而有可能使体积重量显著减小。而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。 线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。对于工作在±Bm 之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。 通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器。已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20-50kHz、功率50kW以下,是变压器最佳磁芯材料。

磁芯选择指南

磁芯选择指南 来源:网络更新时间:2009-12-14点击数: 1

高频变压器设计时选择磁芯的两种方法 来源:网络 更新时间:2008-11-5 8:06:32 点击数: 42 在高频变压器设计时,首先遇到的问题,便是选择能够满闵杓埔蠛褪褂靡蟮拇判尽?lt;BR> 通常可以采取下面介绍的两种方法:面积乘积法和几何尺寸参数法。这两种方法的区别在于:面积乘积法是把导线的电流密度作为设计参数,几何尺寸参数法则是把绕组线圈的损耗,即铜损作为设计参数。 1 面积乘积法 这里讲的面积乘积。是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。 表示形式为WaAe ,有些讲义和书本上简写为Ap ,单位为 。 根据法拉第定律,我们有: 窗口面积利用情况有: KWα=NAw 变压器有初级、次级两个绕组。因此有: KWα=2NAw 或

0.5KWα=NAw 我们知道: Aw= 而电流有效值 I=Ip 得到以下关系式:0.5KWα= 即: 于是就有如下式:

由于:EδIp=Pi 又有:Pi= 最后得到如下公式: 这个公式适用于单端变压器,如正激式和反激式。 δ<0.5,Bm-T,K-0.3~0.4,η-0.8~0.9,J-A/。推挽式的公式则为: 半桥式的公式则为: 这里的δ>0.5,例如0.8~0.9。 单端变压器如正激式和反激式:Bm=△B=Bs-Br。 双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。 全桥式公式与推挽式相同,但δ>0.5,例如0.8~0.9。

在J=400A/,K=0.4,η=0.8,δ=0.4(单端变压器),δ=0.8(双端变压器)。公式简化如下: (单端变压器) (推挽式) (半桥式和桥式) 2 几何尺寸参数法 这个方法是把绕组线圈的损耗,即铜损作为设计参数。因此,公式正是由计算绕组线圈的铜损的公式演变而来的。 。变压器有两个绕组 这里为初级绕组电阻, 为次级绕组电阻。 由于

电缆的功率损耗和安装损耗

5.电缆定额损耗为多少,电力电缆损耗率1%,控制电缆损耗率1.5%,见安装定额。 1.一般尽量使用多芯电缆,因为损耗小。如果电流很大,宁使用双根多芯电缆,也不使用单芯电缆,假如一定使用单芯电缆,还要注意单芯电缆敷设时要使三芯电缆成三叶形排放。 2.电缆电路功率损耗计算,电缆选择 摆出公式: 电流等于电压与电阻之:I=U/R 功率等于电压与电流的积:P=U*I=U*U/R db为化简大数字的计算,采用对数的方式将其进行缩小计算:db=10log p

电缆电阻等于电阻率与电缆长度的积再比上电缆的截面积电阻率的计算公式为:ρ=RS/L。 ρ为电阻率——常用单位Ω·m S为横截面积——常用单位㎡ R为电阻值——常用单位Ω L为导线的长度——常用单位m 电缆选择的计算程序 (1)例:允许损耗为XdB, X=10log p 计算所损耗的功率P (2)P=U*U/R 根据额定功率与额定电压计算负载的等效电阻 (3)计算整个电路的电流 I=(P额—P负)/R负 (4)根据电流与损耗功率决定电缆的电阻 P=I*I*R (5)根据电阻率与线路长度决定电缆的截面积 ρ=RS/L 电阻率请询问电缆生产厂家

几种金属导体在20℃时的电阻率材料电阻率(Ω m) (1)银 1.65 ×10-8 (2)铜 1.75 ×10-8 (3)铝 2.83 ×10-8 (4)钨 5.48 ×10-8 (5)铁9.78 ×10-8 (6)铂 2.22 ×10-7 (7)锰铜 4.4 ×10-7 (8)汞9.6 ×10-7 (9)康铜 5.0 ×10-7 (10)镍铬合金 1.0 ×10-6 (11)铁铬铝合金1.4 ×10-6 (12) 铝镍铁合金1.6 ×10-6 (13)石墨(8~13)×10-6

罐型磁芯

罐型磁芯 骨架和绕组几乎全部被磁芯包裹起来,致使它对EMI的屏蔽效果非常好;罐型磁芯尺寸均符合IEC标准,在制造的时候互换性非常好;可提供简单型骨架(无插针的)和P CB板安装骨架(有插针);由于罐型形状的设计,致使与其它类型同等尺寸的磁芯相比费用更高;由于它的形状不利于散热,因此不适于应用于大功率变压器电感器。 RM型磁芯 与罐型相比,切掉了罐型的两个对称的侧面,这重设计更有利于散热和大尺寸的引线引出;与罐形相比,节约了大约40%的安装的空间;骨架有无针型的和插针型的;可以采用一对夹子进行安装;RM型磁芯可以作成扁平形状(适合现在的平面变压器或者是直接把磁芯装配到已经设计好绕组的印制板电路上);虽然屏蔽效果不如罐型的好,但是仍然不错。 E型磁芯 与罐型磁芯相比,E型磁芯的费用要低的多,再加上绕制和组装都比较简单,这种磁芯形状现在应用最广,但是它的缺点是不能提供自我屏蔽;E型磁芯可以进行不同方向的安装,也可以几付叠加应用更大的功率;这种磁芯可以作成扁平形状(是现在平面变压器很流行的磁芯形状);也可以提供无针和插针型骨架;由于其散热非常好、可以叠加使用,一般大功率电感器和变压器都使用这种形状的磁芯。 EC、ETD和EER型磁芯 这些类型的磁心结构介于E型和罐型之间。和E型磁芯一样,他们能提供足够的空间供大截面的引线引出(适合现在开关电源低压大电流的趋势);这些形状的磁心散热也非常好;有于中心柱为圆柱形,与相同截面的长方体相比,单匝的绕组的长度缩短了11%,这样致使铜损也降低了11%,同时使的磁心能提供一个更高的输出功率;同时中心柱为圆柱形,与长方体中心柱相比,也避免了由于长方体棱角在绕制时破坏绕组线材绝缘的隐患。 PQ型磁心

功率器件损耗计算(附件)

功率器件应用时所受到的热应力可能来源于两个方面:器件内部和器件外部。器件工作时所耗散的功率要通过发热形式耗散出去。若器件的散热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高,使得器件可靠性降低,无法安全正常工作。在实际应用中,为了保证某些重要功率器件,在这些器件上使用散热器来控制其的工作温升。 功率器件常用的散热方式是使用散热器。散热器设计的选用主要依靠功率器件的损耗发热量。在计算出损耗量的前提下,对散热器的各个参数进行设计。在开关电源系统中功率器件有7个IGBT和2个整流桥,其损耗量计算如下: IGBT的散热器有两组: 其中U 1、U 2、U 3 为一组,U 4、U 5、U 6、U 7 为一组。U 1、U 2、U 3 损耗: 流过电流Io=228A 工作电压Vcc=620V

工作频率fc=3kHZ 其它计算参数由CM600DU-24NFH提供的参数表查得; 通过CM600DU-24NFH自带损耗计算软件可算得一个如下图: 由计算结果可知:P1=389.51W Po=3x P 1=3 X 389.5仁1168.53WU 4、U 5、U 6、U 7 损耗: 流过电流Io=114A 工作电压Vcc=620V 工作频率fc=20kHZ 其它计算参数由CM600DU-24NFH提供的参数表查得; 通过CM600DU-24NFH自带损耗计算软件可算得一个如下图: 由计算结果可知:P1=476.82W Po=4X P 1=4X 476.82=1907.28W 整流桥D IGBT模块的损耗量, IGBT模块的损耗量,

1、D 2 损耗计算 整流桥是由四个二极管构成,主要的损耗来自二极管PN 结。二极管的损耗包括正向导通损耗、反向恢复损耗和断态损耗。肖特级二极管的反向时间很短,反向损耗可以忽略不计。 一般来说,二极管的截止损耗在总功耗中所占的比例很小,可以忽略不计。在实际应用中,只考虑其的正向导通损耗。 二极管的正向导通损耗可由下式求出: Pdiode.F=V FI Fd 式中V F ――二极管正向导通压降;IF ――二极管的正向导通电流; d——二极管工作的占空比 根据查SKKE 310参数可知: VF = 2.1 VI F=400 Ad = 0.25 由此可得单个二极管的损耗P diode.F Pdiode.F=V FI Fd=2.1V X 400A X 0.25=210W 整流桥中的四个上二极管是交替工作的,每次工作是只有两个,所以整流桥的损耗为二极管的两倍,则:

磁芯的种类及应用

磁芯的种类及应用: 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br?Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 一、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软

线路电能损耗计算方法

线路电能损耗计算方法 A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗电量计算为:ΔA=3R t×10-3(kW·h) (Al-1) I =(A) (Al-2) jf 式中ΔA——代表日损耗电量,kW·h; t——运行时间(对于代表日t=24),h; I ——均方根电流,A; jf R——线路电阻,n; I ——各正点时通过元件的负荷电流,A。 t 当负荷曲线以三相有功功率、无功功率表示时: I = =(A) (Al-3) jf 式中P t——t时刻通过元件的三相有功功率,kW; ——t时刻通过元件的三相无功功率,kvar; Q t U t——t时刻同端电压,kV。 A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流I jf与平均电流I pj(代表日负荷电流平均值)的等效关系为K(亦称负荷曲线形状系数),I jf=KI pj,则代表日线路损耗电量为: ΔA=3K2Rt×10-3(kW·h) (A2-1) 系数K2应根据负荷曲线、平均负荷率f及最小负荷率α确定。 当f >时,按直线变化的持续负荷曲线计算K2:

K2=[α+1/3(1-α)2]/ [1/2(1+α)]2 (A2-2) 当f <,且f >α时,按二阶梯持续负荷曲线计算K2: K2=[f(1+α)-α]/f2 (A2-3) 式中f——代表日平均负荷率,f=I pj/ I max,I max为最大负荷电流值,I pj为平均负荷电流值; α——代表日最小负荷率,α=I min/ I max,I min为最小负荷电流值。 A3 当只具有最大电流的资料时,可采用均方根电流与最大电流的等效关系进行能耗计算,令均方根电流平方与最大电流的平方的比值为F(亦称损失因数),F=/,则代表日的损耗电量为: ΔA=3FRt×10-3(kW·h) (A3-1) 式中F——损失因数; I ——代表日最大负荷电流,A。 max F的取值根据负荷曲线、平均负荷率f和最小负荷率α确定。 当f >时,按直线变化的持续负荷曲线计算F: F=α+1/3(1-α)2 (A3-2) 当f <,且f >α时,按二阶梯持续负荷曲线计算: F=f (1+α)-α (A3-3) 式中α——代表日最小负荷率; f——代表日平均负荷率。 A4 在计算过程中应考虑负荷电流引起的温升及环境温度对导线电阻的影响,具体按下式计算: (1+β1+β2) (Ω) (A4—1) R=R 20 β =(I pj / I20)2 (A4—2) 1

5.2.9功率损耗计算

5.2.9功率损耗计算 (1)三相线路中有功及无功功率损耗: 有功功率损耗 321103-?=?R I P js ,kW (5-2-42) 无功功率损耗 321103-?=?X I Q js , kvar (5-2-43) 以上式中 R ——每相线路电阻,Ω, 1R R '=; X ——每相线路电抗,Ω,1X X '=; l ——线路计算长度,km ; js I ——计算相电流,A ; R '、X '——线路单位长度的交流电阻及电抗,Ω/km 。 10kV 铝芯电缆和架空铝线每千米有功功率损耗与线路负荷之间的关系,见图5-2-1、图5-2-2。上述公式中的线路电阻是按导线温度为20℃计算的,如温度为55℃或60℃时,可从图5-2-1、图5-2-2查得的有功损耗值乘以温度校正系数1.14或1.16。 图5-2-1 确定6kV 不同截面铝芯电缆和架空线每千米有功功率损耗与线路负荷的关系曲线 铜芯电缆和架空铜线的有功功率损耗,可用上述铝线损耗数据乘以系数0.61求得。 (2)电力变压器的有功及无功功率损耗: 有功功率损耗 20???? ???+?=?r js k T S S P P P , kW (5-2-44) 无功功率损耗 20???? ???+?=?r js k T S S Q Q Q , kvar (5-2-45) 以上式中 js S ——变压器计算负荷,kV A ; r S ——变压器额定容量,kV A ; 0P ?——变压器空载有功损耗,kW ; k P ?——变压器满载(短路)有功损耗,kW ; 0Q ?——变压器空载无功损耗,kvar ,100%00r S I Q =?; %0I ——变压器空载电流占额定电流的百分数; k Q ?——变压器满载(短路)无功损耗,kvar ,100%r k k S U Q = ?; %k U ——变压器阻抗电压占额定电压的百分数。

高导磁芯、功率磁芯的区别

高导磁芯、功率磁芯的区别 功率磁芯和高导磁芯表象区别在于电感,高导就是磁导率高的意思,一般磁导率都有5K---10K,而功率磁芯的磁导率都在2K---3K之间. 实质上:功率磁芯注重的是功率传输过程中的功率损耗或发热现象,越好的功率磁芯如P4、的功率损耗就越严格,否则就越差,高导材料注重的是电感值,尤其是电感在高频下的稳定性.第二,功率材料和高导材料还有一个很重要的区别:居里温度,一般P4的居里温度为240度,而高导的居里温度为130度左右. 通常情况下,材料磁导率越低,适用的频率范围越宽;材料磁导率越高,适用的频率范围越窄。 磁导率是磁阻的倒数,磁阻大了,磁导率就小了。 磁阻的倒数称作磁导。在SI制中,它的单位是亨利(H)。磁阻(magnetic reluctance)是指含有永磁体的磁路中的一个参量。源于磁路中存在漏磁。利用永磁体来产生一工作磁场时,需要有永磁体、高导磁软磁体和适当大小的空隙三部分,总称为磁路。永磁体提供磁通,经过软磁体连接后在空隙处产生磁场。磁路中的总磁通量是守恒的,但在空隙处的磁通密度相对降低,因有部分磁通在非空隙处流失,称之为漏磁,导致磁路中的磁阻。 磁导率μ等于磁介质中磁感应强度B的微分与磁场强度H的微分之比,即μ=dB / dH 通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与真空磁导率μ0之比,即μr=μ/μ0 相对磁导率μr与磁化率χ的关系是:μr=1+χ

磁导率μ,相对磁导率μr和磁化率χ都是描述磁介质磁性的物理量。 对于顺磁质μr>1;对于抗磁质μr<1,但两者的μr都与1相差无几。在大多数情况下,导体的相对磁导率等于1.在铁磁质中,B与H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。 例如,如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000。

光纤传输损耗测试实验报告报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10()()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率1P、2P的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a) (b) 图1.2 典型的插入损耗法测试装置

线路损耗计算公式

线路损耗: 线路损耗,简称线损。是电能通过输电线路传输而产生的能量损耗。 正文 电能通过输电线路传输而产生的能量损耗,简称线损。电力网络中除输送电能的线路外,还有变压器等其他输变电设备,也会产生电能的损耗,这些电能损耗(包括线损在内)的总和称为网损。 线损是由电力传输中有功功率的损耗造成的,主要由以下3个部分组成。 ①由于电流流经有电阻的导线,造成的有功功率的损耗,它是线损的最主要部分式中P、Q、I分别为流经路线的有功功率、无功功率和电流;U为路线上与P、Q同一点测得的电压;R为线路的电阻,与导线的截面、导线的材料和线路的长度有关。 ②由于线路有电压,而线间和线对接之间的绝缘有漏电,造成的有功功率损耗 ΔPg=U2g 式中g是表征绝缘漏电情况的电导。 ③电晕损耗:架空输电线路带电部分的电晕放电造成的有功功率损耗。在一般正常情况下,后两部分只占极小的份量。 减少线损,节约能量,提高电力传输的效率,是电力部门设计运行工作的主要内容之一。可以从下列几个方面着手降低线损:①提高电力系统的电压水平,包括在其他条件合理的情况下尽可能采用高一

级电压送电,在运行中保证电压水平;②使线路中的潮流合理,尤其应尽可能减少线路上无功功率的流动;③选用合理的导线材料和截面。 线损计算: 线损理论计算,是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 简介: 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 方法: 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A;

电磁波传输损耗

电磁波传输损耗及远场区的场强预测 广播电视无线电波的频段较高,电磁波信号传输时以直射波为主,但是也存在反射、绕射和散射等。电磁波在空间传播时,向外传输的电磁波以球面波的形式向外发射,距离越大,球面半径就越大,单点的电磁信号就越小,空间损耗也就越大。另外,电磁波在空间传播的过程中会受到空气中的尘埃、水滴、水汽等物质的影响,造成反射和散射;电磁波在接近地表传输时,会由于地表不是绝对光滑,而是存在高低起伏、树木遮挡、建筑物遮挡、大型水面或湖面的影响,而产生反射、绕射等情况,这样,电磁波信号到达接收天线时就会由各种传播方式传播到的所有信号叠加而成。因为各个地区的地形存在很大差异,同一地区各个方向上的建筑物、树木、河流湖泊等情况也不尽相同,因此这种不是由于空间球面扩散而产生的损耗就是很难预测的;同时,由于各个区域的电磁覆盖情况都不一样,随之带来的电磁干扰情况也不一样,这就更为场强覆盖预测带来难度。 一、球面传播的电磁波的空间损耗

Pr :接收信号功率 Pt :发射信号功率 Gt :发射天线增益 Gr :接收天线增益 d :接收和发射天线之间的距离 λ:射频信号波长 有球面面积可计算得 自由空间传播路径损耗(发射天线和接收天线都为点源天线)可写为: 可以看出,传输距离越大,空间损耗越大,频率越高,传输损耗越大。 二、 实际电磁波的传播损耗 电磁波在空间传播时,都会受到空气中的粒子、地面建筑物、地面植被等其他物体的影响,而产生反射、折射、绕射、散射等。电磁波通常不会按照球面波的传输损耗到达接收天线。这样,实际电磁波的传播损耗,在自由空间传播路径损耗的基础上还要加上一些修正值。传播损耗按照性质分类可分为:经验模型、半经验模型、确定性模型。 MHZ mi MHZ Km r t fs f d f d d d P P dB L 1010222log 20log 2058.36log 20log 2045.324log 20)4(log 10log 10)(1010++=++=??????=??????-==λππλ()/24t r r t G G P P d πλ=

相关主题
文本预览
相关文档 最新文档