当前位置:文档之家› 2.3.1 等差数列的前n项和(一)

2.3.1 等差数列的前n项和(一)

2.3.1 等差数列的前n项和(一)
2.3.1 等差数列的前n项和(一)

沈丘三高高二数学导学案(12)

编写人:周 方 审稿人:高二数学组

2.3 等差数列的前n 项和(一)

【学习目标】

1. 掌握等差数列前n 项和公式及其获取思路;

2. 会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题.

【自主学习】

问题1 如何计算1+2+…+100? 如何求1+2+…+n ?

一、数列{}n a 的前n 项的和:

一般地,称 为数列{}n a 的前n 项的和,用n S 表示,即n S = 问题2 请利用问题1的解法推导等差数列的前n 项和.

二、 等差数列前n 项和公式及其变形

公式1:__________________n S =.要求n S 必须具备三个条件:n a a n ,,1 公式2:_____________________.n S = 要求n S 必须已知三个条件:d a n ,,1

【自主检测】

根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S .

⑴ 12a =,1d =-, 8;n = ⑵184188a a n =-=-=,,.

【典型例题】

例1、2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的统治》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?

例2 已知一个等差数列{}n a 前10项的和是310,前20项的和是1220. 由这些条件能确定这个等差数列的前n 项和的公式吗?

【目标检测】

1. 在等差数列{}n a 中,10120S =,那么110a a +=( ).

A. 12

B. 24

C. 36

D. 48

2.已知12310135(21)19

n n ++++=++++- ,则项数n = . 3. 在等差数列中,公差d =12

,100145S =,则13599...a a a a ++++= . 4.根据下列各题中的条件,求相应的等差数列{}n a 的项数n .

⑴ 3d =,11n a =, 14n S =; ⑵1030a =,2050a =,242n S =.

5. 一个凸多边形内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 为( )

A. 12

B. 16

C. 9

D. 16或9

6.* 在小于100的正整数中共有多少个数被3除余2? 这些数的和是多少?

【知识拓展】

若数列{}n a 的前n 项的和2n S An Bn =+(A 0≠,A 、B 是与n 无关的常数),则数列{}n a 是等差数列.

【总结提升】

1. 等差数列前n 项和公式的两种形式;

2.已知等差数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个.

《等差数列及其前n项和》(解析版)

§6.2 等差数列及其前n 项和 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × ) (2)等差数列{a n }的单调性是由公差d 决定的.( √ ) (3)等差数列的前n 项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ ) (5)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ ) (6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ ) 题组二 教材改编 2.[P46A 组T2]设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .34 答案 B 解析 由已知可得??? ?? a 1+5d =2,5a 1+10d =30, 解得??? a 1 =26 3, d =-4 3, ∴S 8=8a 1+8×7 2 d =32. 3.[P39T5]在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 答案 180

解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 题组三 易错自纠 4.一个等差数列的首项为1 25,从第10项起开始比1大,则这个等差数列的公差d 的取值范 围是( ) A .d >875 B .d <325 C.8751,a 9≤1, 即??? 1 25+9d >1, 1 25+8d ≤1, 所以8750,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8 解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大. 6.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面. 答案 20 解析 设物体经过t 秒降落到地面. 物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列. 所以4.90t +1 2t (t -1)×9.80=1 960, 即4.90t 2=1 960,解得t =20.

等差数列的前n项和

等差数列的前n项和 1.理解并掌握等差数列的前n项和公式及其推导过程,体会等差数列的前n项和公式与二次函数的关系.(重点) 2.熟练掌握等差数列的五个基本量a1,d,n,a n,S n之间的联系,能够由其中的任意三个求出其余的两个.(重点) [基础·初探] 教材整理等差数列的前n项和 1.等差数列的前n项和公式 已知量首项、末项与项数首项、公差与项数 求和公式S n=n a1+a n 2S n=na1+ n n-1 2d 2.等差数列前n项和公式的函数特点 S n=na1+n n-1 2d= d 2n2+? ? ? ? ? a1- d 2n. d≠0时,S n是关于n的二次函数,且无常数项. 判断(正确的打“√”,错误的打“×”) (1)公差为零的数列不能应用等差数列的前n项和公式.() (2)数列{n2}可以用等差数列的前n项和公式求其前n项和S n.() (3)若数列{a n}的前n项和为S n=an2+bn,则{a n}是等差数列.() 【解析】(1)任何等差数列都能应用等差数列的前n项和公式. (2)数列{n2}不是等差数列,故不能用等差数列的前n项和公式. (3)当公差不为0时,等差数列的前n项和是关于n的二次函数(常数项为0).【答案】(1)×(2)×(3)√

[小组合作型] 与S n 有关的基本量的计算 (1)已知等差数列{a n }中,a 1=32,d =-1 2,S n =-15,求n 和a n ; (2)已知等差数列{a n }中,S 5=24,求a 2+a 4; (3)数列{a n }是等差数列,a 1=1,a n =-512,S n =-1 022,求公差d ; (4)已知等差数列{a n }中,a 2+a 5=19,S 5=40,求a 10. 【精彩点拨】 运用方程的思想,根据已知条件建立方程或方程组求解,另外解题时要注意整体代换. 【尝试解答】 (1)S n =n ·32+n n -1 2·? ?? ?? -12=-15,整理得n 2-7n -60=0, 解得n =12或n =-5(舍去), 所以a 12=32+(12-1)×? ???? -12=-4. (2)设等差数列的首项为a 1,公差为d , 则S 5=5a 1+ 5×5-1 2 d =24, 即5a 1+10d =24,所以a 1+2d =24 5, 所以a 2+a 4=2(a 1+2d )=2×245=48 5. (3)因为a n =a 1+(n -1)d ,S n =na 1+ n n -1 2 d , 又a 1=1,a n =-512,S n =-1 022, 所以????? 1+n -1d =-512, ①n +1 2n n -1d =-1 022, ② 把(n -1)d =-513代入②得

第2讲等差数列及其前n项和

第2讲 等差数列及其前n 项和 一、选择题 1.(2016·武汉调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( ) A.-1 B.-2 C.-3 D.-4 解析 法一 由题意可得?????a 1+(a 1+6d )=-8,a 1+d =2, 解得a 1=5,d =-3. 法二 a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3. 答案 C 2.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( ) A.10 B.20 C.30 D.40 解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n ,解得n =5,故这个数列的项数为10. 答案 A 3.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A.a 1+a 101>0 B.a 2+a 100<0 C.a 3+a 99=0 D.a 51=51 解析 由题意,得a 1+a 2+a 3+…+a 101=a 1+a 1012×101=0.所以a 1+a 101=a 2 +a 100=a 3+a 99=0. 答案 C 4.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A.0 B.37 C.100 D.-37

解析 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2, ∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100, ∴{a n +b n }为常数列,∴a 37+b 37=100. 答案 C 5.(2017·泰安模拟)设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =( ) A.9 B.8 C.7 D.6 解析 设等差数列{a n }的首项为a 1,公差为d ,由?????a 2=-11,a 5+a 9=-2, 得?????a 1+d =-11,2a 1+12d =-2,解得?????a 1=-13,d =2. ∴a n =-15+2n . 由a n =-15+2n ≤0,解得n ≤152.又n 为正整数, ∴当S n 取最小值时,n =7.故选C. 答案 C 二、填空题 6.(2016·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 解析 设数列{a n }的公差为d ,由题设得 ???a 1+(a 1+d )2=-3,5a 1+5×42d =10, 解得?????a 1=-4,d =3, 因此a 9=a 1+8d =20. 答案 20 7.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7= ________.

等差数列及其前n项和

第五章 第二节 等差数列及其前n 项和 课下练兵场 一、选择题 1.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( ) A.1 B.5 3 C.2 D.3 解析:∵S 3= 13() 2 a a +=6,而a 3=4,∴a 1=0, ∴d = 31() 2 a a +=2. 答案:C 2.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10= ( ) A.138 B.135 C.95 D.23 解析:∵(a 3+a 5)-(a 2+a 4)=2d =6,∴d =3,a 1=-4, ∴S 10=10a 1+10(101)2 d ?-=95. 答案:C 3.设命题甲为“a ,b ,c 成等差数列”,命题乙为“a b +c b =2”,那么 ( ) A.甲是乙的充分不必要条件 B.甲是乙的必要不充分条件 C.甲是乙的充要条件 D.甲是乙的既不充分也不必要条件 解析:由a b +c b =2,可得a + c =2b ,但a 、b 、c 均为零时,a 、b 、c 成等差数列, 但a b +c b ≠2. 答案:B

4.数列{a n }中,a 2=2,a 6=0且数列{ 1 1 n a +}是等差数列,则a 4= ( ) A.12 B.13 C.14 D.16 解析:设数列{ 11n a +}的公差为d ,由4d =611a +-211a +得d =16,∴411 a +=1 2+1+ 2×16,解得a 4=1 2. 答案:A 5.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A.24 B.48 C.60 D.84 解析:由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60. 答案:C 6.在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在 11S a ,2 2S a ,…,1515S a 中最 大的是 ( ) A . 1 1S a B .88S a C .99 S a D .1515S a 解析:由于S 15= 11515() 2 a a +=15a 8>0, S 16= 11615() 2 a a +=8(a 8+a 9)<0, 所以可得a 8>0,a 9<0. 这样 11S a >0,2 2S a >0,…,88S a >0,99S a <0,1010S a <0,…,1515S a <0, 而S 1<S 2<…<S 8,a 1>a 2>…>a 8, 所以在 11S a ,2 2S a ,…,1515S a 中最大的是88S a . 答案:B 二、填空题 7.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1 a n +2 (n ∈N *),则该数列的通项a n = . 解析:由2a n +1=1a n +1a n +2,1a n +2-1a n +1=1a n +1-1 a n ,

等差数列前n项求和

2.3 等差数列的前n 项和 一、教学目标 1、理解等差数列的概念;探索并掌握等差数列的通项公式、前n 项和。 2、体会等差数列与二次函数的关系。 二、基础知识 1、数列前n 项和公式: 一般地,称n a a a a ++++...321为数列}{n a 的前n 项的和,用n S 表示,即n n a a a a S ++++= (321) 2、数列通项n a 与前n 项和n S 的关系 当2≥n 时,有n n a a a a S ++++=...321;13211...--++++=n n a a a a S ,所以n a =____________;当n=1时,11s a =。总上可得n a =____________ 3、等差数列}{n a 的前n 项和的公式=n S ________________=__________________ 4、若数列{}n a 的前n 项和公式为Bn An S n +=2(B A ,为常数),则数列{}n a 为 。 5、在等差数列}{n a 中,n S ;n S 2-n S ;n S 3-n S 2;。。。 仍成等差数列,公差为___________ 6、在等差数列}{n a 中:若项数为偶数2n 则=n S ________________;奇偶-s s =________________;=偶奇 s s ________________。 若项数为奇数2n-1则=-1n S ________________;偶奇-s s =________________;=偶奇 s s ________________。 7、若数列}{n a 与}{n b 均为等差数列,且前n 项和分别是n S 和n T ,则 =m m b a _____________。 三、典例分析 例1、已知数列{}n a 的前n 项和22+=n S n ,求此数列的通项公式。 解析:32111=+==s a ① )2(12]2)1[(2221≥-=+--+=-=-n n n n s s a n n n ② 在②中,当n=1时,1112=-?与①中的1a 不相等

等差数列及其前n项和(普通高中)

课时跟踪检测(二十九) 等差数列及其前n 项和 (一)普通高中适用作业 A 级——基础小题练熟练快 1.(2018·兰州诊断考试)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144 D .288 解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32 =72. 法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2 =72. 2.(2018·安徽两校阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( ) A .20 B .36 C .24 D .72 解析:选C 由a 2+S 3=4及a 3+S 5=12, 得????? 4a 1+4d =4,6a 1+12d =12,解得????? a 1=0, d =1, ∴a 4+S 7=8a 1+24d =24. 3.(2018·西安质检)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23 D .24 解析:选C 由3a n +1=3a n -2?a n +1-a n =-23?{a n }是等差数列,则a n =473-23 n .∵a k ·a k +1<0, ∴????473-23k ????453-23k <0,∴452

等差数列及其前n项和练习题

第1讲 等差数列及其前n 项和 一、填空题 1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 2.设等差数列{a n }的前n 项和为S n ,若S 412-S 3 9=1,则公差为________. 3.在等差数列{a n }中,a 1>0,S 4=S 9,则S n 取最大值时,n =________. 4.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则S 9=________. 5.设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12 +a 13=________. 6.已知数列{a n }的前n 项和为S n =2n 2+pn ,a 7=11.若a k +a k +1>12,则正整数k 的最小值为________. 7.已知数列{a n }满足递推关系式a n +1=2a n +2n -1(n ∈N * ),且? ?????????a n +λ2n 为等差数列, 则λ的值是________. 8.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 10.已知f (x )是定义在R 上不恒为零的函数,对于任意的x ,y ∈R ,都有f (x ·y )=xf (y )+yf (x )成立.数列{a n }满足a n =f (2n )(n ∈N *),且a 1=2.则数列的通项公式a n =________. 二、解答题 11.已知等差数列{a n }的前三项为a -1,4,2a ,记前n 项和为S n . (1)设S k =2 550,求a 和k 的值; (2)设b n =S n n ,求b 3+b 7+b 11+…+b 4n -1的值.

等差数列前n项和公式及性质

2.2 等差数列的前n项和 第一课时等差数列前n项和公式及性质 【选题明细表】 基础达标 1.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( B ) (A)40 (B)42 (C)43 (D)45 解析:∵a1=2,a2+a3=13, ∴3d=13-4=9,∴d=3, a4+a5+a6=S6-S3=6×2+×6×5×3-(3×2+×3×2×3)=42.故选B. 2.等差数列{a n}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为( B ) (A)28 (B)29 (C)30 (D)31

解析:∵S奇=a1+a3+…+a2n+1=(n+1)a n+1, S偶=a2+a4+…+a2n=na n+1, ∴S奇-S偶=a n+1=29.故选B. 3.(2013南阳高二阶段性考试)已知等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9等于( D ) (A)27 (B)36 (C)45 (D)54 解析:∵2a8=a5+a11=6+a11,∴a5=6, ∴S9===9a5=54.故选D. 4.(2012郑州四十七中月考)设等差数列{a n}的前n项和为S n,若 S3=9,S6=36,则a7+a8+a9等于( B ) (A)63 (B)45 (C)36 (D)27 解析:由S3,S6-S3,S9-S6成等差数列, ∴2(S6-S3)=S3+(S9-S6),∴a7+a8+a9=S9-S6=2(S6-S3)-S3=2×(36-9)-9=45.故选B. 5.(2013广州市铁一中第一学期期中测试)在各项均不为零的等差数列中,若a n+1-+a n-1=0(n≥2),则S2n-1-4n等于( A ) (A)-2 (B)0 (C)1 (D)2 解析:由已知得2a n-=0, 又a n≠0,∴a n=2, ∴S2n-1===2(2n-1), ∴S2n-1-4n=-2.故选A.

等差数列前n项和1-导学案(公开课)

§2.3等差数列的前n 项和导学案(第一课时) 知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题. 过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 情感态度与价值观:通过公式的推导过程,展现数学中的对称美. 重点:等差数列前n 项和公式及其应用. 难点:等差数列前n 项和公式的推导思路的获得. 复习回顾 1.数列{}n a 的前n 项和的概念: 一般地,称 为数列{}n a 的前n 项的和, 用n S 表示,即=n S 2.n S 与n a 的关系:(1)(2) n n a n =?=?≥? 3.等差数列}{n a 中,若m+n=p+q,(m,n,p,q 为常数)则有: ; 一般地,1n a a += = ...... 问题一:一个堆放铅笔的V 形架的最下面一层放1支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。 这个V 形架上共放着多少支铅笔? 思考: (1)问题转化求什么?能用最短时间算出来吗? (2) (3)如果换成1+2+3+…+200=?我们能否快速求和?

问题二:?n 321S n =+?+++=(小组讨论,总结方法) 高斯算法: 倒序相加法: 探究:能把以上问题的解法推广到求一般等差数列的前n 项和吗? 问题三:已知等差数列}{n a 中,首项为1a ,公差为d ,第n 项为n a ,如何计算前n 项和n S ? 新知:等差数列前n 项和公式: 公式一: 公式二: 问题四 :比较以上两个公式的结构特征,类比于问题一,你能给出它们的几何解释吗? 公式一: 公式二: 问题五:两个求和公式有何异同点?能够解决什么问题?

等差数列前n项和公式》教学设计

《等差数列的前n项和公式》教学设计 职业技术学校刘老师 大纲分析: 高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。 教材分析: 数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。 学生分析: 数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。 教学目标: 知识与技能目标: 掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。 过程与方法目标: 培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标: 体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 教学重点与难点: 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 教学用具:ppt 整节课分为三个阶段: 问题呈现阶段 探究发现阶段 公式应用阶段 问题呈现1: 首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道 这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100) 紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。 200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=? 据说,当其他同学忙于把100个数逐项相加时, 10岁的高斯却用下面的方法迅速算出了正确答案: (1+100)+(2+99)+……+(50+51)=101×50=5050 【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。 问题呈现2: 图案中,第1层到第21层一共有多少颗宝石?

高三数学《等差数列及其前n项和》知识点总结

高三数学《等差数列及其前n项和》知 识点总结 www.5y kj.co m 一、等差数列的有关概念 .定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为an+1-an=d. 2.等差中项:数列a,A,b成等差数列的充要条件是A =/2,其中A叫做a,b的等差中项. 二、等差数列的有关公式 .通项公式:an=a1+d. 2.前n项和公式:Sn=na1+n/2d+d=n/2. 三、等差数列的性质 .若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则am+an=ap+aq. 2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差数列,公差为kd. 3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,…仍为等差数列,公差为n2d. 4.等差数列的增减性:d>0时为递增数列,且当

a1<0时前n项和Sn有最小值.d<0时为递减数列,且当a1>0时前n项和Sn有最大值. 5.等差数列{an}的首项是a1,公差为d.若其前n项之和可以写成Sn=An2+Bn,则A=d/2,B=a1-d/2,当d≠0时它表示二次函数,数列{an}的前n项和Sn=An2+Bn是{an}成等差数列的充要条件. 四、解题方法 .与前n项和有关的三类问题 知三求二:已知a1、d、n、an、Sn中的任意三个,即可求得其余两个,这体现了方程思想. Sn=d/2*n2+n=An2+Bn⇒d=2A. 利用二次函数的图象确定Sn的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧 已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…; 若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

等差数列的前n项和公式推导及例题解析

等差数列的前n 项和·例题解析 一、等差数列前n 项和公式推导: (1) Sn=a1+a2+......an-1+an 也可写成 Sn=an+an-1+......a2+a1 两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1) =n(a1+an) 所以Sn=[n (a1+an )]/2 (公式一) (2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得 Sn=na1+ [n(n+1)d]/2(公式二) 二、对于等差数列前n 项和公式的应用 【例1】 等差数列前10项的和为140,其中,项数为 奇数的各项的和为125,求其第6项. 解 依题意,得 10a d =140a a a a a =5a 20d =125 1135791++++++101012()-????? 解得a 1=113,d=-22. ∴ 其通项公式为 a n =113+(n -1)·(-22)=-22n +135 ∴a 6=-22×6+135=3 说明 本题上边给出的解法是先求出基本元素a 1、d ,

再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而 直接去求,所列方程组化简后可得 + + 相减即得+, a 2a9d=28 a4d=25 a5d=3 6 1 1 1 ? ? ? 即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和. 解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3 若a m=b N,则有3n-1=5N-3 即=+ n N 21 3 () N- 若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以 N=1,4,7,…,40 n=1,6,11,…,66 ∴两数列相同项的和为 2+17+32+…+197=1393 【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为

等差数列前n项和性质

精心整理 2.3.2等差数列的前n 项和的性质【学习目标】 1.熟练掌握等差数列前n 项和公式,等差数列前n 项和的性质以及其与二次函数的关系; 2. 在学习等差数列前n 项和性质的同时感受数形结合的基本思想,会由等差数列前n 项和公式求其通项公式. 【自学园地】 1. 等差数列的前n 项和的性质: 已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m ,n ,p ,q ,k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k . (2)a m (3)(4(5(6){pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 2.{}n a 为等差数列?其前n 项和2n S An Bn =+. 3.若数列{}n a 为等差数列{ }n S n ?成等差. 4.等差数列的单调性的应用: (1)当10,0a d ><时,n S 有最大值,n 是不等式100 n n a a +≥??

(2)当10,0a d <>时,n S 有最大值,n 是不等式1 00n n a a +≤??>?的正整数解时取得. (II )当数列中有某项值为0时,n 应有两解.110m m m S S a ++=?=. 5.知三求二问题:等差数列数列前n 项和公式中各含有4个元素:1,,,n n S n a a 与1,,,n S n a d ,已知其中3个量,即可求出另外1个;综合通项公式及前n 项和公式,已知其中3个量即可求出另外2个量. 【典例精析】 1.(1(2(3(4,则项数n (5d . (62.3.4(1(2)问12,,S 中哪个值最大?5中,a 1=-60,6.7.已知正项数列{}n a 的前n 项和为n S ,且(1)n a n n = +,求n S 8.已知正项数列{}n a 的前n 项和为n S ,且1(2) n a n n = +,求n S 【巩固练习】 1.一个有11项的的等差数列,奇数项之和是30,则它的中间项是() A.8 B.7 C.6 D.5 2.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612 S S =()

等差数列的前n项和(1)

等差数列的前n 项和(1) 学习目标1.理解数列前n 项和的概念;2.会推导等差数列前n 项和的公式; 3.会应用等差数列前n 项和公式解题。 学习重点和难点 1.重点:等差数列通项公式的推导及应用; 2.难点:等差数列公式的推导。 学习过程:一.自学、思考 (一)问题导引 等差数列前n 项和n S =1a +2a +…+1-n a +n a . n S =n a +1-n a +…+2a +1a . 由倒序相加法可得 2n S = 即n S = 如果带入等差数列的通项公式d n a a n )1(1-+=,n S 也可以用首项1a 与公差d 表示,即 n S =_ __还可以写成n S =__ _ (二)知识的应用 例1.已知等差数列{}n a 中184,18a a =-=-,求8S ; 练习:根据下列条件,求相应的等差数列{}n a 的有关未知数: (1)120a =,54n a =,999n S =,求d 及n ;(2)1 3 d =,37n =,629n S =,求1a 及n a ; (3)156a =,1 6 d =-,5n S =-,求n 及n a ;(4)2d =,15n =,10n a =-,求1a 及n S . 例2.已知一个等差数列的前10项的和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n 项和的公式吗? 练习1.已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 练习2.公差不为零的等差数列{}n a 的前n 项和为n S .若734 a a ?=2a , 832S =,求10S . 练习3.等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.

求等差数列前n项和的最值问题的两种常用解法

求等差数列前n 项和的最值问题的两种常用解法 【必备方法】 1.函数法:利用等差数列前n 项和的函数表达式bn an S n +=2, 通过配方或借助图象求二次函数最值的方法求解,一定注意n 是正整数。 2.邻项变号法: ①0,01<>d a 时,满足???≤≥+0 01n n a a 的项数m 使得n S 取得最大值为m S ; ②当0,01>a a ,故n=7 时,n S 最大. 方法二:由113S S =可得d a d a 55113311+=+,把131=a 代入得2-=d ,故n n n n n S n 14)1(132+-=--=,根据二次函数性质,当n=7时,n S 最大. 方法三:根据131=a ,113S S =,知这个数列的公差不等于零.由于113S S =说明这个数列的和先是单调递增的然后又单调递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性, 当113S S =时,只有72 113=+= n 时,n S 取得最大值. 答案:C 练习: 1.已知在等差数列}{n a 中,311=a ,n S 是它的前n 项的和,2210S S =. (1)求n S ;

等差数列及其前n项和(讲义及答案)

n n m n k k +m k +2m 等差数列及其前 n 项和(讲义) 知识点睛 一、数列的概念与简单表示方法 1. 数列的概念 按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 数列的一般形式可以写成a 1 ,a 2 ,a 3 ,…,a n ,…,简记为{a n }. 2. 数列的表示方法 (1) 列表法 (2) 图象法 (3) 公式法 ①通项公式 ②递推公式 3. 数列的性质 (1) 递增数列 (2) 递减数列 (3) 常数列 (4) 摆动数列 二、 等差数列 1. 等差数列的概念 如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示. (1) 等差中项 (2) 等差数列的通项公式: a n = a 1 + (n -1)d . 2. 等差数列的性质 (1) 通项公式的推广: a = a + (n - m )d (m ,n ∈ N * ) . (2) 若{a }是等差数列,且k + l = m + n (k ,l ,m ,n ∈ N *) , 则a k +a l = a m + a n . (3) 若{a }是等差数列,则a , a , a ,… (k ,m ∈ N *) 组成公差为 md 的等差数列. (4) 若{a n }是等差数列,则{λ a n + c }也是等差数列. 1

n n n (5) 若{a },{b }是等差数列,则{ p a + qb } (n ∈ N * ) 也是等 n n n n 差数列. 三、 等差数列的前 n 项和 1 . 我们称a 1 + a 2 + a 3 +… + a n 为数列{a n }的前 n 项和,用 S n 表示, 即 S n = a 1 + a 2 + a 3 +… + a n . 等差数列{a n }的前 n 项和公式 (1) 已知a , a ,n 时, S = n (a 1 + a n ) . 1 n n 2 (2) 已知a 1 , n ,d 时, S n 推导过程:倒序相加法 2 . 等差数列各项和的性质 = na 1 + n (n -1) d . 2 (1) S m , S 2m , S 3m 分别是{a n } 的前 m 项,前 2m 项,前 3m 项的和,则S m , S 2m - S m , S 3m - S 2m 成等差数列. (2) 两个等差数列{a n },{b n }的前 n 项和 S n , T n 之间的关系 为 a n b n = S 2n -1 . T 2n -1 (3) 数列{a }的前 n 项和S = An 2 + Bn ( A ,B ∈ R ) 是{a }为等差数列的等价条件. (4) 等差数列{a n }前 n 项和的最值: 当d > 0 时,{a n }为递增数列,且当a 1 < 0 时,前 n 项和S n 有最小值; 当d < 0 时,{a n }为递减数列,且当a 1 > 0 时,前 n 项和S n 有最 大值. 2

完整版等差数列前n项和教案

等差数列的前n项和(第一课时)教学设计 【教学目标】 一、知识与技能 1 ?掌握等差数列前n项和公式; 2?体会等差数列前n项和公式的推导过程; 3?会简单运用等差数列前n项和公式。 二、过程与方法 1?通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法; 2.通过公式的运用体会方程的思想。 三、情感态度与价值观 结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。 【教学重点】 等差数列前n项和公式的推导和应用。 【教学难点】 在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。 【重点、难点解决策略】 本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。 【教学用具】 多媒体软件,电脑 【教学过程】 一、明确数列前n项和的定义,确定本节课中心任务:

前n 和呢,于数列{a n } :ai, a 2, as, a n ,…我 称ai+且2+23+…+a n 数列{a n } 的前n 和,用Sn 表不,Sn=ai+a2+a3+…+a 如 , Si =ax S 7 =ai+a 24-a 3+ +a 7,下面我们来共同探究如何求等差数列的前 n 项 和。 二、问题牵引,探究发现 问题1:(播放媒体资料情景引入)古算术《张邱建算经》中卷有一道题:今有与人钱,初一人 与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱? 即:Sioo=l+2+3+ ? +100=? 著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同 学们思考高斯方法的特点,适合类型和方法本质。 同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为 相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办 呢? — ...... .... 探索与发现1:假如让你计算从第一人到第21人的钱数,高斯 的首尾配对法行吗? 即计算S2F1+2+3+?+21的值,在这个过程中让学生发现当 项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助 学生思考解决问题的办法,为引出倒序相加法做铺垫。 特点: 首项与末项的和: 第2项与倒数第2项的和: 第3项与倒数第3项的和: 1+ 100 = 101, 2 + 99 =101, 3+98 =101, 50+ 51 = 101, 101 X 50 = 5050。 5050 第50项与倒数第50项的和: 于是所求的和是: 1 + 2+3+ ? +100 二 101X50

等差数列前n项和最值问题

等差数列前n项和最值 问题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

等差数列前n 项和的最值问题 问题引入:已知数列{},n a 的前n 项和212 n S n n =+,求这个数列的通项公式.数列是等差数列吗如果是,它的首项与公差分别是什么 解: 当n>1时:1122n n n a s s n -=-= =- 当n=1时:2 11131122 a s ==+?= 综上:122n a n =- ,其中:13 2 a =,2d = 探究1:一般地,如果一个数列{}n a 的前n 项和为:2,n s pn qn r =++≠0,那么这个数列一定是等差数列吗如果是,它的首项和公差分别是 什么结论:当r=0时为等差,当r ≠0时不是 一、 应用二次函数图象求解最值 例1:等差数列 {}n a 中, 1490,a S S >=,则n 的取值为多少时n S 最大 分析:等差数列的前n 项和n S 是关于n 的二次函数,因此可从二次函数的图象的角度来求解。 解析:由条件1 490,a S S >=可知,d<0,且211(1)()222 n n n d d S na d n a n -=+ =+-, 其图象是开口向下的抛物线,所以在对称轴处取得最大值,且对称轴为49 6.52 n +==, 而n N * ∈,且介于6与7的中点,从而6n =或7n =时n S 最大。 1. 已知等差数列{n a }中1a =13且3S =11S ,那么n 取何值时,n S 取最大值. 解析:设公差为d ,由3S =11S 得:3×13+3×2d/2=11×13+11×10d/2 d= -2, n a =13-2(n-1), n a =15-2n, 由???≤≥+0a 0a 1n n 即? ??≤+-≥-0)1n (2150n 215得:≤n ≤,所以n=7时,n S 取最大值. 2. 已知a n 是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,求数列a n 前 5 项和取得最大值. 结合二次函数的图象,得到二次函数图象的开口向下,根据图象关于对称轴对称的特点,得到函数在对称轴处取到最大值,,注意对称轴对应的自变量应该是整数或离对称轴最近的整数.a n 是各项不为零的等差数列,其中a 1>0,公差d <0,S 10=0,根据二次函数的图象特点得到图象开口向下,且在n= =5时,数列a n 前5项和取得最大值. 二、转化为求二次函数求最值 例2、在等差数列{n a }中, 4a =-14, 公差d =3, 求数列{n a }的前n 项和n S 的最小值 分析:利用条件转化为二次函数,通过配方写成顶点式易求解。 解析:∵4a =1a +3d, ∴ -14=1a +9, 1a =-23, ∴ n S =-23n +2 )1(3-n n =23[(n -496)2- 24936], ∴ 当n= 496最小时,n S 最小,但由于n N * ∈,496 介于8与9之间, 8100S =-,999S =- 即有且8 9S S >,故当n =8 8S =-100最小. 点评:通过条件求出1a ,从而将n S 转化为关于n 的二次函数,然后配方求解,但要注意的是此处49 6 介于8与9之间,但并不能取两个整数,判断的标准是对称轴是否处于两个整数中点,否则只有一个取值。 3. 已知等差数列 {}n a 中,前n 项和215n S n n =-,则使n S 有最小值的n 是(B )

相关主题
文本预览
相关文档 最新文档