当前位置:文档之家› 电弧接地过电压的危害与防治措施

电弧接地过电压的危害与防治措施

电弧接地过电压的危害与防治措施
电弧接地过电压的危害与防治措施

单相弧光接地过电压引起的重大事故分析

单相弧光接地过电压引起的重大事故分析 【摘要】随着经济的高速发展,电力系统越来越庞大,电网中的各种过电压发生机率越来越高,每一次的过电压都是对电气设备的安全运行造成直接的、严重的考验,而且每发生一次过电压就会对电气设备的绝缘造成一次冲击破坏,并且这种过电压破坏具有明显的累积效应,当累积一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断。仅供参考,不足之处,请提出宝贵意见。 【关键词】弧光接地;过电压 随着电力系统的随着经济的高速发展,电力系统越来越庞大,尤其是电网中电缆越来越多,电网中的各种过电压发生机率越来越高,而弧光接地过电压不属于常见的,没引起重视,每一次的过电压都是对电气设备的安全运行造成直接的、严重的考验,而且每发生一次过电压就会对电气设备的绝缘造成一次冲击破坏,并且这种过电压破坏具有明显的累积效应,当累积一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断。2011年11月,XX热电厂主控室事故信号报警,并网运行的#2、#3发电机组跳闸,厂内10KV高压系统母联开关跳闸。值班人员检查两个发电机组均为差动保护动作,厂内10KV高压系统母联开关为过流动作。 (1)配电室现场检查:1)一电缆出线柜内过电压保护器爆炸,产生较大冲力。2)一厂变压器三相高压熔断器全部熔断,过电压保护器烧毁。3)一高压风机重启时,接地报警。 (2)绝缘摇测检查:1)#2机组A:0B:0C:6GΩ。 2)#3机组A:0B:0C:2.5GΩ。3)高压电机:0(兆欧表检查)用2500V 摇表检查绝缘为200MΩ。 (3)发电机定子检查:#2、#3发电机定子绕组多处绝缘受损。 故障前运行方式:35KV架空线#2线运行,#2主变压器运行,35KV架空线#1线备用,35KV母联开关备用,10KV母线母联开关全部运行。故障时无设备操作,电网无重大波动。 故障分析:由于电厂为早期投产,没有录波设备及后台机检测,根据故障现象及厂家、专家分析,认为造成这次故障的根本原因是高压电机的弧光接地,产生过电压,致使过电压保护器爆炸弧光短路。 单相弧光接地过电压的形成机理。 单相弧光接地过电压形成机理的理论分析方法很多,对于电网中性点不接地

第9章习题.doc

第9章 操作过电压与绝缘配合 9-1试用集中参数等值电路来分析切空载线路过电压。 9-2空载线路合闸过电压产生的原因和影响因素是什么? 9-3某220kV 线路全长500km ,电源阻抗S X =115Ω,线路参数为0L =1.0mH/km ,0C 0C =0.015μF/km,设电源的电势为E=1.0p.u.,求线路空载时首末端的电压。 9-4切除空载线路过电压与切除空载变压器时产生过电压的原因有何不同?断路器灭弧性能对这两种断路器有何影响? 9-5为何阀式避雷器只能限制切空载变压器过电压而不能用来限制其它操作过电压? 9-6断路器中电弧的重燃对这种过电压有什么影响? 9-7试分析在电弧接地引起的过电压中,若电弧不是在工频电流过零时熄灭,而是在高频振荡电流过零时熄灭,过电压发展情况如何? 9-8试述消除断续电弧接地过电压的途径。 9-9试说明绝缘配合的重要性,实际应用中是如何考虑绝缘配合的? 9-10试确定220kV 线路杆塔的空气间隙距离和每串绝缘子的片数,假定该线路在非污秽地区。

9-1试用集中参数等值电路来分析切空载线路过电压。 答:我们用单相集中参数的简化等效电路来进行分析,如图9-1所示,在S 断开之前线路电压U C (t)=e(t),设第一次熄弧(设时间为t 1)发生断路器的工频电容电流i c (t)过零时,如图所示,线路上电荷无处泄放,u c (t)保留为E m ,触头间电压u r (t )为 U r (t)=e(t)-E m =E m (coswt-1)经过半个周期以后,e(t)变为-E m ,这时两触头间的电压,即恢复电压2E m 。此时,如果触头间的介质的绝缘强度没有得到很好恢复,或绝缘恢复强度的上升速度不够快,则可能在t 2时刻发生电弧重燃,相当于一次反极性重合闸,U Cmax 将达到-3E m ,设在t =t 3时,高频(重合闸过程,回路振荡的角频率为T LC /10=ω,大于工频下的M)电容电流第一次过零时熄弧,则u c (t)将保持-3E m ,又经过T /2后,e(t)又达最大值,触头间电压u r (t)为4E m 。若此时触头再度重燃,则会导致更高幅值的振荡,U Cmax 将达+5 E m 。依此类推,每工频半周重燃一次,线路电压将达很高数值,直至触头间绝缘足够高,不再重燃为止。线路上的过电压将不断增大,一直达到很高的数值。 图9-1 切除空载线路时的等值计算电路图 9-2空载线路合闸过电压产生的原因和影响因素是什么? 答:产生的原因是合闸过程中电流无法突变,电路产生非周期分量,引起衰减性振荡,当时间达到某一值时,电压达到最大值,产生合闸过电压。 影响因素一是合闸相位,二是线路损耗,三是线路上残压的变化。 9-3某220kV 线路全长500km ,电源阻抗X S =115Ω,线路参数为L 0=1.0mH/km ,C0=0.015μF/km,设电源的电势为E=1.0p.u.,求线路空载时首末端的电压。 解:略

10~35 kV系统弧光接地过电压的危害及解决办法示范文本

10~35 kV系统弧光接地过电压的危害及解决办 法示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

10~35 kV系统弧光接地过电压的危害及解决办法示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 事故情况简介 近几年,随着城网的迅速发展,电缆线路的比例逐年 增多,导致对地电容电流剧增。由于10~35kV系统单相 接地引发的电网事故愈来愈多,由此带来的经济损失和社 会影响也越来越大。 仅就北京供电局1998年7~10月的统计发现,由于 10kV系统单相接地而引发的事故便达4起,有的造成全站 停电,影响重要用户供电,有的造成主变压器损坏、开关 柜烧毁和避雷器爆炸等,简要情况如下:

(1)1998年7月6日,北京肖庄35kV4号母线34路B相发生单相接地,故障持续1h后,引发301开关内附CT主绝缘击穿,开关爆炸起火,1号主变差动跳闸。2号主变在自投过程中经受一次出口短路冲击,由于有载调压开关重瓦斯继电器因振动动作,2号主变也掉闸,造成全站负荷停电。 (2)1998年7月21日,北京北土城站10kV5号母线发生单相接地,在查找故障线路的操作过程中,把5号母线单相接地故障接到了3号母线上,引起211开关爆炸,并造成一台进口全密封110kV、31.5MVA主变压器因出口短路而损坏。 (3)1998年9月16日,北京古城站10kV5号母线发

2021版防止接地网和过电压事故

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2021版防止接地网和过电压事 故 Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

2021版防止接地网和过电压事故 1根据地区短路容量的变化,应校核接地装置(包括设备接地引下线)的热稳定容量,并根据系统短路容量的变化及接地装置的腐蚀程度对接地装置进行改造。 2根据热稳定条件,接地线不考虑腐蚀时,接地线最小截面应符合规程要求。 3接地装置的焊接质量,接地试验应符合规定,各种设备与主接地网的连接必须可靠,扩建接地网与原接地网间应为多点连接。 4接地装置引下线的导通检查工作应每年进行一次,根据历次测量结果进行分析比较,以决定是否需要进行开挖、处理。 5对于运行10年以上的接地网,应每3~5年开挖检查一次,发现地网腐蚀较为严重时,应及时进行处理。 6认真执行《电力设备预防性试验规程》(DL/T596-2005)中对

接地装置的试验要求,同时还应测试各种设备与接地网的连接情况,严禁设备失地运行。 7接地电阻的测量按照《接地装置工频特性参数的测量导则》(DL475-1992)进行;每4年进行1次接地装置接地电阻的测量。 8接地装置应与线路的避雷线相连,且有便于分开的连接点。当不允许避雷线直接与配电装置构架相连时,接地装置应在地下与避雷线相连,连接线埋在地中的长度不应小于15m。 9配电装置构架上的避雷针(悬挂避雷针的构架)的集中接地装置应与主接地网相连,由连接点至变压器接地点沿接地极的长度不应小于15m。 10独立避雷针(线)宜设独立的接地装置。独立避雷针不应设在人经常通行的地方,避雷针及其接地装置与道路或入口等的距离不宜小于3m,否则应采取均压措施。在非高土壤电阻率地区,其接地电阻不宜超过10Ω。当有困难时,该接地装置可与主接地网连接,但避雷针与主接地网的地下连接点至35kV及以下设备与主接地网的地下连接点之间,沿接地体的长度不得小于15m。

过电压保护

过电压及过电压保护 一什么是过电压 在电力系统中由于某种原因出现的对设备绝缘有危害,暂时性的电压升高现象。 二过电压的分类 分为:内部过电压和外部过电压 (1)系统运行中由于由于断路器的正常操作或系统发生事故时,因电磁能转换所以起的过电压,叫内部过电压。如操作过电压和谐振过电压. 工频过电压 (2)外部过电压(也叫大气过电压)它有两种形式:直击雷(雷电直接对建筑物或其他物体放电,其过电压所以起的雷电流通过这些物体流入大地,产生破坏性很大的热效应和机械效应)。感应雷就是雷电的静电感应或电磁感应所引起得过电压 内部过电压 操作过电压产生主要有3种形式(1)切除空载变压器。(在切除空载变压器时,因断路器可能在电流未过零点时分断,变压器绕组中的磁场能量转换为电能,从而产生过电压。这种过电压与变压器空载电流的大小和断路器的灭弧能力有关。)(2)分合空载长线路。(分合空载长线路时由于断路器触头间电弧多次重燃引起的过电压)(3)弧光接地(在中性点不接地系统中,当发生间歇性的弧光接地时,再发在非故障相引发的高频振荡过电压)工频过电压产生主要有3种形式(1)空载长线路的电压升高(2)三相中性点不接地系统发生单相接地时非故障相对地电压的升高(3)超高大容量线路从满载状态突然甩掉负荷时的电压升高。这种过电压对电器设备的绝缘影响不大,但是操作过电压一般是在工频过电压的基础上发展起来的。 谐振过电压产生主要有2种形式(1)当电网参数选择不当,因某一线路或母线的自振频率与电源谐波频率之一接近,就会产生谐振过电压。(2)高压真空开关的同期性差 三过电压保护 (1)外部过电压保护(也就是防雷保护) 雷电的危害 1.热效应。烧断导线,烧毁电器设备。 2.机械效应。当雷电直接击中房屋、电杆、树木,雷电电流经过木质纤维时,会产生高热,将其炸裂破坏。 3.电磁场效应。在雷电电流通过的周围,将产生很大的电磁场,使附近的导线或金属结构产生很高的感应电压,击穿电气设备一引起火灾和爆炸从而产生极其严重的破坏作用。 4.雷电的闪络放电。烧毁绝缘子造成断路器跳闸,线路停电等供电事故 防雷保护装置 避雷针.(用来保护发电厂,变电所) 作用:将雷电吸引到金属针上,安全的导入大地,从而保护附近的建筑和 设施免受雷击。 原理:在雷雨天气,建筑物上空出现带电云层时,迅雷针被感应上大量电荷,由于避雷针针头是尖的,而静电感应时,导体尖端总是聚集了最多的电荷.这样,避雷针就聚集了大部分电荷.避雷针又与这些带电云层形成了一个电

高电压习题

《高电压技术》复习题 第三篇波、防雷保护、过电压 1.所谓“过电压”是指(电力系统中出现的对绝缘有危险的电压升高和电位差升高)。 3.电力系统在发生雷击或进行操作时,输电线路的都可能产生以(行波)的过电压波,该波过程的本质是(能量沿着导线传播)的过程,即在导线周围逐步建立起(电场和磁场)的过程,也就是在导线周围空间(储存电磁能)的过程。 4.波阻抗Z是(电压波与电流波之间)的比例常数,它反映了波在传播过程中遵循(储存在单位长度线路周围媒质中的电场能量和磁场能量一定相等)的规律,所以Z是(一个非常重要)的参数。 5. 电压波的符号(指取决于它的极性),而与电荷的(运动方向)无关。 6. 过电压波在线路开路末端处的(电压加倍,电流变零),这种电压(加倍升高)对线路的绝缘是(很危险的)。 7.过电压波在线路末端短路(接地)处的(电流加倍,电压变零),该现象表明这时的全部能量都(转化为磁场能量储存起来)。 8.在波过程的分析中,可将入射波和波阻抗为Z的线路,用一个(用一个集中参数)的等值电路来代替,其中(电源电势等于电压入射波的两倍,该电源内阻等于线路波阻抗Z)。这就是应用广泛的(彼得逊)法则。 12.雷电放电是一种(超长气隙的火花放电)。“云—地”间的线状雷的放电经过(先导电,后放电回击)等阶段完成的。 13.雷暴日是(一年中发生雷电的田鼠,以听到雷声为准)。在一天内只要听到过雷声,无论(次数多少)均计为(一个雷暴日),雷暴小时数则是(一年中发生雷电放电的小时数,)即在一个小时内只有(一次雷电),就计作(一个雷电小时)。 14.雷电通道(即主放电通道)可达数千米长,而半径仅为数厘米,类似于(一条分布参数线路),,它具有的等值波阻抗称作(雷道波阻抗),我国规程建议(Z0≈300Ω)。 19.称(雷击于线路附近或甚至雷击于接地的线路杆塔顶部)时,在(绝缘的导线上引起的感应过电压)为感应雷击过电压。感应雷击过电压在三相导线上(同时出现),且数值(基本相等),不会出现相间(电位差和相位闪络)。 20.现代电力系统中实际采用的防雷保护装置有(避雷针、避雷线、保护间隙、各种避雷器、防雷接地、)电抗线圈、电容器、消弧线圈、自动重合闸等等。 21.避雷针较宜用于(变电所、发电厂那样相对集中)的保护对象,避雷线则宜用于(像架空输电线路那样伸展很广)的保护对象。 22.雷电绕过(避雷装置而击中被保护的物理)的现象称作绕击。 23.避雷器被(雷电过电压)击穿,在工作电压的作用下将有(一工频电流继续流过已经电离化了的击穿通道),这一电流称为(工频)续流。 25.阀式避雷器主要由(火花间隙F及与之串联的工作电阻R)两大部分组成。因此,它的最主要保护特性参数就是(火花间隙的冲击冲击放电U0(i))和流过避雷器的冲击电流在(工作电阻上)产生的压降,即(残压)。 26.避雷针的保护角(θ=45°),避雷线的保护角(θ=25°)。 29.在(雷暴日次数Zc=40情况下100km的线路)每年因雷击而引起的跳闸次数称为(雷击跳闸率),其单位为(次/100km.40雷暴日)。 30. 为限制进入变电所的雷电过电压波的波前陡度和阀式避雷器动作后的续流,应(取接近变电所 2km线路段)作为进线保护段。进线保护段内避雷线的保护角(不宜超过20°,最小应超过15°),杆塔的(接地电阻)应降低,以提高(进线保护段的耐雷水平)。 33.电力系统绝缘配合的根本任务是(正确处理过电压和绝缘这一矛盾)。以达到(任务安全,经济供电)的目的。 3.试述冲击电晕对防雷保护的有利和不利方面。

谐振接地系统中单相接地引起的过电压分析

谐振接地系统中单相接地引起的过电压分析 摘要: 单相接地故障是电力系统中主要的故障形式,由其引发的各种过电压事故很多。本文描述了单相接地的各种现象,分析了谐振接地系统中单相接地引起的弧光接地过电压和铁磁谐振过电压,特别是两种不同工作方式的消弧线圈自动调谐装置对消除铁磁谐振过电压的影响。 关键词:单相接地弧光接地过电压消弧线圈铁磁谐振 前言 配电网中性点经消弧线圈接地方式,又称为谐振接地方式,在谐振接地系统中有三种过电压对其影响最大,即雷击过电压、弧光接地过电压和铁磁谐振过电压。前两种过电压可以采用比较明确有效的措施来进行防护,如对于雷击过电压,可以采用避雷器等防雷保护措施来限制其危害性。对于弧光接地过电压,通常采用消弧线圈进行有效的抑制。但对于铁磁谐振过电压,虽然目前可采用的防治措施很多,但实际效果和评价各不相同,铁磁谐振过电压在实际运行中仍然经常引发严重的事故。长期运行经验表明,单相接地故障是电力系统中主要的故障形式,约占60%以上。当电网发生单相接地时, 容易产生间歇性弧光接地, 此时产生的弧光接地过电压和由此激发的铁磁谐振过电压将会导致弱绝缘的击穿,甚至发展为相间短路故障而引发跳闸。我厂的6kV配电网为谐振接地系统,且单相接地时有发生,因此对谐振接地系统中单相接地引起的弧光接地过电压和铁磁谐振过电压进行分析是十分必要的。 1单相接地的各种现象 运行中单相接地一般是间歇性电弧接地→稳定电弧接地→金属性接地。根据实测, 间歇性电弧接地, 持续时间可达0.2~2S, 频率可达300~3000Hz;然后呈稳定电弧接地, 持续时间可达2~10s,最后, 故障点导线被烧熔成为金属性接地, 即所谓永久性故障接地。另一种情况是暂时性的单相电弧接地如(雷击、鸟害等),当系统电容电流超过一定数值时,电弧难以自动熄灭。然而这个电流又不至于大到形成稳定电弧的程度,因此可能出现电弧时燃时灭的不稳定状态。两种间歇性的电弧导致系统中电感-电容回路的电磁振荡过程,产生遍及全系统的的弧光接地过电压。 2消弧线圈自动调谐对弧光接地过电压的抑制 间歇性电弧接地流过故障点的电流中包含两个分量,即工频分量和高频分量。在谐振接地系统中,现行所有消弧线圈设计的自动调谐都是在电网工频下完成的,不能补偿高频分量,因此消弧线圈自动调谐不能消除弧光接地过电压。

电力系统过电压及接地装置

课程设计 设计题目:电力系统过电压与接地装置 班级:电气化铁道技术1132 姓名:刘浩 学号:201108023211 指导教师:赵永君 二〇一三年六月十九日 摘要 本课程设计中和运用高电压技术、电力系统过电压、接地技术等知识,采用理论与实践相结合的方法,研究电力系统各种过电压防护措施研究接地装置的测量方法和降阻方式,设计电力系统的接地装置等。 关键词:内部过电压雷电过电压接地保护 前言 电力系统在特定条件下所出现的超过工作电压的异常电压升高,属于电力系统中的一种电磁扰动现象。电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。研究各种过电压的起因,预测其幅值,

并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。 为了保护电力系统、用电设备和人员的安全,往往采用接地的方式来保证设备和人员的安全。本课程设计根据《高电压技术》简单的对电力系统的过电压与接地装置进行研究。 电力系统过电压与接地装置 一、电力系统过电压 在电力系统中,由于雷电、电磁能量的转换会使系统电压产生瞬间升高,其值可能大大超过电气设备的最高工频运行电压。其对电力系统的危害是很大的。电力系统过电压主要分以下几种类型:雷电过电压、工频过电压、操作过电压、谐振过电压。 1内部过电压 1.1工频过电压 系统中在操作或接地故障时发生的频率等于工频(50Hz)或接近工频的高于系统最高工作电压的过电压。特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用当系统操作、接地跳闸后的数百毫秒之内,由于发电机中磁链不可能突变,发电机自动电压调节器的惯性作用,使发电机电动势保持不变,这段时间内的工频过电压称为暂时工频过电压。随着时间的增加,发电机自动电压调节器产生作用,使发电机电动势有所下降并趋于稳定,这时的工频过电压称为稳态工频过电压。

间歇电弧接地过电压形成过程及其防护

间歇电弧接地过电压形成过程及其防护 在10KV中性点不接地系统中,当发生一相对地短路故障时,常出现电弧,由于系统中存在电容和电感,此时可能引起线路某一部分的振荡,当电流振荡零点或工频零点时,电弧可能暂时熄灭,之后事故相电压升高后,电弧则可能重燃,这种现象为间歇性电弧接地。 单相电间歇弧接地是威胁电力系统安全、稳定和可靠运行的最主要和最直接因素。而中性点的接地方式,直接影响到单相弧光接地的产生和限制力度。根据我国的传统设计经验,在10KV电力系统普遍采用中性点不接地方式。 防范措施:解决过电压以及发电机的单相接地电流的问题。 (1)改变10KV系统中性点的接地方式:片区电力系统中性点目前采用的是不接地运行方式。 中性点采用消弧线圈接地,应该不失为行之有效的措施之一。消弧线圈是一个铁芯可调节的电感线圈,将它装设于热电厂发电机或即将新建的35KV变电站变压器的中性点,这样片区10KV系同一旦发生单相接地时,可形成一个与接地电流大小近似相等、方向相反的电感电流与容性接地电流相补偿,从而达到限制接地电流,避免在接地点形成弧光。同时即使是运行方式发生变化,使消弧线圈的补偿度或脱谐度发生变化,而产生弧光接地,燃弧后电容的充放电电流要经过消弧线圈流回,而不会在故障点形成多次弧光重燃,这样就有效地避免了接地点的间歇性燃弧,达到限制弧光过电压的目的。 (2)选择合适的过电压保护装置和加装消弧柜:片区10KV系统面临的过电压不仅仅是单相弧光接地过电压,对于雷电过电压、操纵过电压、谐振过电压等等仍然是存在的。因此公道的选择和设置过电压保护装置,对于现有的片区电力网来说显得异常重要。采用避雷器作为过电压吸收装置,还是目前电力系统的潮流和主要措施。目前大多热电厂都加装消弧柜,将单相弧光接地变为直接接地。 (3)加强尽缘薄弱环节的绝缘热电厂一次设备的绝缘相对较为薄弱,主要是由于粉尘污染造成部分绝缘子污闪以及高湿度的环境空气降低了有效绝缘水平。对于轻易造成污闪的电气设备,进行定期清扫除尘。通过这些措施,有效地进步了绝缘薄弱环节的绝缘水平。 (4)加强运行维护治理加强电气设备的治理,是保障其安全正常工作的重要环节。 (5)加强补偿电容器的维护治理:片区电网10#站和70#站设置有功率因素补偿电容器,这对于单相弧光接地来说,无疑是加大了系统的相间电容,因此在发弧后的振荡过程中还会有一个电荷的重新分配过程,其结果是抬高了非故障相的起始电压,从而使得过电压幅值降低,限制了过电压倍数,这对于片区的过电压防治是有益无弊。但是在相当一段时间两站的电容器缺乏维护,大量熔断器熔断。后经过同一维护后,片区过电压得到一定程度的限制。 10KV电力网络发生间歇电弧单相接地时的接地电流危险区域改变片区10KV 电力系统中性点的接地方式已十分必要。采用消弧线圈接地以及合适选择避雷器、加强运行维护治理对于保障片区电网的安全、稳定和可靠运行有相当积极的作用。

过电压试题

1题型:简答题 题目:什么叫做操作过电压? 答案:电力系统是由电源、电阻、电感、电容等元件组成的复杂系统,当开关操作,或事故状态引起系统拓扑结构发生改变时,各储能元件的能量重新分配并发生振荡,在设备上将会产生数倍于电源电压的过渡过程的过电压,称为操作过电压。 2题型:简答题 题目:简述电力系统中操作过电压的种类。 答案:(1)空载线路合闸过电压:包括正常空载线路合闸过电压和重合闸过电压; (2)切除空载线路过电压; (3)切除空载变压器过电压; (4)电弧接地过电压。 3题型:单项选择题 题目:以下属于操作过电压的是______。 A、工频电压升高 B、电弧接地过电压 C、变电所侵入波过电压 D、铁磁谐振过电压 答案:B 4题型:简答题 题目:在不同电压等级中起主导作用的操作过电压类型? 答案:(一)6~10kV,35~60kV:电弧接地过电压; (二)110~220kV:切空载变压器,切除空载线路过电压; (三)330~500kV:合空载线路过电压。 5题型:填空题 题目:要想避免切空线过电压,最根本的措施是__________。 答案:改进断路器的灭弧性能。 6题型:简答题 题目:试说明电力系统中影响切空载线路过电压的因素有哪些? 答案:(一)断路器的灭弧性能; (二)线路泄漏损耗; (三)中性点运行方式; (四)系统参数。 7题型:简答题 题目:试说明电力系统中限制切空载线路过电压的措施有哪些? 答案:(一)提高断路器的灭弧性能,减少或避免电弧重燃; (二)在断路器中加装并联分闸电阻; (三)装设避雷器。 8题型:单项选择题 题目:以下几种方法中在抑制切空载线路过电压时相对最为有效的是()。

单相弧光接地过电压的分析和防范

单相弧光接地过电压的分析和防范 发表时间:2016-07-25T11:33:54.453Z 来源:《电力技术》2016年第4期作者:邱晓博[导读] 随着电力系统的逐渐增容和发展,电网中的各种过电压发生机率越来越高. 西电宝鸡电气有限公司 721103 摘要:随着电力系统的逐渐增容和发展,电网中的各种过电压发生机率越来越高,每一次的过电压都对电气设备的安全运行造成直接的、严重的威胁,而且每发生一次过电压就会对电气设备的绝缘造成一次破坏,并且这种过电压破坏具有明显的累积效应,当达到一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断或是受损。关键词:单相弧光接地、过电压、中心点、消弧线圈 1. 单相弧光接地过电压的形成机理 对于电网中性点不接地系统,发生单相弧光接地时过电压的最大值将达到:UMAX=1.5Um+(1.5Um-0.7Um)=2.3Um 单相弧光接地的过电压瞬时幅值最大可以达到20.4KV。如果弧光接地在接地点造成弧光间隙性反复燃烧,那么产生的过电压倍数将远远大于2.3倍。在系统发生单相接地时,都产生了较高的过电压,才会引起避雷器放电。强烈的过电压使相间空气绝缘被击穿,形成相间弧光短路,至于避雷器的爆炸,主要是由于避雷器的选型错误和产品质量欠佳,再加上弧光短路产生的高能热量加剧了避雷器的爆炸。如此高的过电压一旦产生就将会在电力网络绝缘薄弱环节形成闪络放电,严重时将破坏绝缘,造成相间短路或者损害电气设备。 2 单相弧光接地产生的原因 从上述分析可见,单相弧光接地是威胁电力系统安全、稳定和可靠运行的最主要和最直接因素。而中性点的接地方式,直接影响到单相弧光接地的产生和限制力度。根据我国的传统设计经验,在6KV-35KV电力系统普遍采用中性点不接地方式,这是因为在早期的电力网中,电力电缆采用量不大,系统的单相接地电容电流并不大。而随着各电力系统的飞速发展和增容,原电力系统主接线发生了很大的变化,电力电缆的采用量急剧增加。过电压造成的事故在整个电气事故中所占的比例也越来越大,供电系统亦属于这种情况。根据《电力设备过电压保护设计技术规程》和电力部、国家的有关标准和要求,对于3~35KV电力系统,当单相接地电流小于30A时,如要求发电机能带单相接地故障运行,则当与发电机有电气连接的3~35KV电网的接地电流小于5A时,其中性点可采用不接地运行方式。 3. 单相接地电流的分类 在中性点不接地系统中发生单相接地时,单相接地电流IC等于正常时相对地电容电流ICi的3倍,即IC=3∑ICi。单相接地电流主要有如下3种:①单相接地时架空线的电容电流IC1:②单相接地时电力电缆电容电流IC2:③单相接地时发电机电容电流IC3 4. 防范措施 针对电力系统发生单相接地后的现状,要解决过电压以及发电机的单相接地电流的问题,应从以下几方面着手,以提电力系统在出现单相接地时的稳定性和安全性。 4.1 改变系统中性点的接地方式 电力系统中性点目前采用的是不接地运行方式,这种方式有诸多优越性,根据《电气事故处理规程》的规定,在出现单相金属性接地时,可以运行1~2h,在出现单相弧光接地时可以运行15min,这对于电力用户来说其可靠性相对较好。但是实际上一旦产生弧光接地,过电压以及大的接地电流对电气设备的损坏是迅速的,根本就没有15min的时间留给值班人员进行分析、判断和处理。中性点采用消弧线圈接地,是有效的措施之一。 4.2 消弧线圈防治措施 消弧线圈是一个铁芯可调节的电感线圈,将它装设于热电厂发电机或即将新建的变电站变压器的中性点,这样系统一旦发生单相接地(不针对弧光接地高频分量)时,可形成一个与接地电流大小近似相等、方向相反的电感电流与容性接地电流相补偿,从而达到限制接地电流,避免在接地点形成弧光。 4.3 消弧、消谐及过电压保护装置 消弧消谐选线及过电压保护装置,主要应用于6~35kV中性点非有效接地电网,不仅能对该类电网中的各类过电压(弧光接地过电压、谐振过电压、操作过电压)加以限制,而且能够准确选出系统的接地线路,有效地提高了该类电网的运行安全性及供电可靠性。 4.4 二次消谐装置 采用微机二次消谐技术,当系统发生谐振时,微机消谐装置在PT的开口三角绕组瞬间接入大功率的消谐电阻,利用消谐电阻破坏系统的谐振参数,消耗谐振功率,从而消除系统的谐振综上所述,目前中性点不接地的运行方式已不能满足安全、可靠运行的需要。同时发生单相弧光接地过电压所产生的过电压对电网的所带来的危害已日益加剧。因此加强电力系统中性点不接地系统方式的保护已十分必要。采用避雷器,消弧、消谐及过电压保护装置等保护装置来加强电力系统的安全运行,加强运行维护管理对于保障电网的安全、稳定和可靠运行有相当积极的作用故障。参考文献[1]李佳斯王国维,浅析10KV配网小电阻接地过电压产生原因及其防治措施[J]中国水利水电技术应用。2011(8);187-188 作者简介:邱晓博男34岁在西电宝鸡电气有限公司从事6-35KV高压开关柜二次设计工作多年,对二次电气设计、事故原因分析等有深刻见解。

防雷和接地技术

雷击过电压损坏设备可分为两种情况,一种是受雷电直击,另一种受感应雷影响所致。据统计电子设备受雷电直击而损坏的机率很小,而绝大多数损坏为感应雷造成,雷电行波通过传输信息的电路线传至电子设备使其某些电子元件受损。 还有一种情况值得重视的是电子设备附近的大地或其他设备的接地体,因受直击雷引起的电位升高,会使电子设备造成反击,使之对地绝缘击穿。根据传统经验电子设备的地线与电源设备的地线分开设置是减少这种雷电侵入途径的有效措施之一。所以凡联结有输人或输出线路的电子设备应考虑以上三条侵入途径。 不论那种途径侵入的雷击过电压加在电子设备上冲击引起两种过电压,一种是:使平衡电路某点出现超过允许的对地过电压,称为纵向过电压,地电位上升引起的反击也属于从地系统侵入的纵向过电压;另一种是平衡电路线间或不平衡电路线对地出现的过电压称为横向过电压。使用对称传输线的设备,横向过电压是因线路两线间存在不同的纵向过电压;或因纵向防护元件放电性能的分散性(如动作时间有快慢的差别)是造成横向过电压的原因,如果在平衡线路上的两个纵向防护元件,其中一路故障或失效这就造成了横向过电压的极限情况。对不平衡电路如对连接同轴电缆的电子设备其纵向过电压即横向过电压。雷电冲击过电压可导致绝缘击穿,也可产生过电流。进行纵向雷击试验的目的,在于检验设备在纵向过电压下元器件对地的绝缘。横向雷击试验则是检验两线间出现冲击过电压时设备耐受冲击的能力。 在电子设备中,易受雷击过电压损坏的元部件,大多数是靠近设备的入口端,如纵向过电压会击穿线路和设备间起匹配作用的变压器匝间、层间、或线对地绝缘等。横向过电压可随信息同时传至设备内部,损坏设备内的阻容元件及固体元件。设备中元器件受损的程度,取决于元器件绝缘水平,即耐受冲击的强度,对具有自复能力的绝缘,击穿只是暂时的,一旦过压消失,即可恢复。有些非自复性的绝缘介质,冲击时只有小电流流过,一次冲击不会立即中断设备,但经过多次冲击,随着多次冲击的累积可能会使元件逐渐受损最终导致毁坏,这就是为什么在试验时要试验冲击次数,极性和间隔的原因所在。 电子元件受雷击损坏的情况,概括起来不外下列三种:(1)受过电压损坏的,如电容器、变压器及电子元件的反向耐压。 (2)受过电压冲击能量损坏的,如二极管PN结正向损坏,冲击危险程度在于流过元器件的过电流大小和持续时间,即能量大小。(3)易受冲击功率损坏的,对元件的危害决定于冲击电压峰值和由此而产生的过电流。 防雷元件性能 防雷元件的冲击特性与试验方法的关系甚为密切,它是规定防雷元件技术参数标准的基础之一。但试验方法又与雷电波形有联系。因为电子设备大都在一定的频率范围内工作,不同频率范围的通路,对冲击波有着不同的响应。因此,对雷电冲击波形进行频谱分析,无论对电子设备的防雷设计和试验都是有意义的。 防雷元件种类繁多,概括起来可分间隙式的(如放电间隙、阀型避雷器、放电管等)和非间隙式的(如压繁电阻、齐纳二极管),再推广一下像扼流线圈、电阻、电容……也可归人这一类,从动作时间来说有快慢的区别。 使用在电涌保护器(sPD)中几类元件的有关参数,虽然有厂家产品说明,但在选用时有的参数还须注意了解。例如放电管的伏秒特性:表征放电管点火电压与时间的关系。它反映了各种不同上升速度的电压波作用在放电管上其点火电压和延迟时间的关系。由伏秒特性曲线可以判断放电管的防护能力。放电管属间隙式,有空气间隙、气体放电管等。再如氧化锌压敏电阻,是一种对电压敏感的元件,是一种陶瓷非线性电阻器,有氧化锌、氧化硅。这种元件,其电压非线性系数高、容量大、残压低、漏电流小、无续流、伏安特性对称、电压范围宽、响应速度快、电压温度系数小等特点。并且有结构简单,成本低等优点,是目前广泛应用的过电压保护器件。适用于交流电压浪涌吸收和各种线圈,接点间过电压的吸收和灭弧,在电子器件过电压保护中广为应用。在选用时关注的是通流容量;按规定的电流波形,在一定的试验条件下施加的冲击电流值,压敏电阻所能承受冲击电流的能力。我国对压敏电阻的考核一般以8/20us波形,在室温条件下,间隔5分钟单方向冲击两次后,5分钟内测试压敏电阻的起始动作电压Vlma值的变化率在百分之十以内时,冲击电流的最大幅值定为通流容量。压敏电阻的残压(LJres):压敏电阻通过电流时,在其两端的电压降谓之残压。通常均以规定的波形,通过不同的电流幅值进行残压测试。目前采用8/20us电流波形,以100A、1000A、3000A、5000A及该元件的满通容量进行残压试验。另外还有半导体浪涌抑制器件:如瞬间二极管,它是一种过箝压器件,简单TKS,利用大面积硅园锥P-N结的雪崩效应实现过箝位,TRS响应速度快、漏电流小,是极佳的过电压吸收器件。齐纳二极管较为常用,其无极性,正反向具有相同的保护特性,但器件的

国家高压电工国家题库模拟题13

国家高压电工国家题库模拟题13 [ 对] [判断题] 1、为防止跨步电压伤人,防直击雷接地装置距建筑物出入口和人行道边的距离不应小于3m,距电气设备装置要求在5m以上。(1.0分) [ 错] [判断题] 2、在有可燃气体的环境中,为了防止静电火花引燃爆炸,应采用天然橡胶或者高阻抗的人造橡胶作为地板装修材料。(1.0分) [ 错] [判断题] 3、2000KW及以上大容量的高压电动机,常采用过流速断保护。(1.0分) [ 错] [判断题] 4、变压器电源侧发生故障时,变压器的瓦斯保护装置应动作。(1.0分) [ 错] [判断题] 5、感应型过流继电器需配时间继电器和中间继电器才可构成过流保护。(1.0分) [ 对] [判断题] 6、变电所开关控制、继保、检测与信号装置所使用的电源属于操作电源。(1.0分) [ 错] [判断题] 7、信号继电器动作信号在保护动作发生后会自动返回。(1.0分) [ 对] [判断题] 8、在继电保护中常采用中间继电器来增加触点的数量。(1.0分) [ 错] [判断题] 9、自动重合闸动作后,需将自动重合闸手动复位,准备下次动作。(1.0分) [ 对] [判断题] 10、当高压电容器组发生爆炸时,处理方法之一是切断电容器与电网的连接。(1.0分) [ 错] [判断题] 11、集电极最大允许耗散功率与环境温度有关,环境温度愈高,则允许的最大允许耗散功率愈大。(1.0分) [ 对] [判断题] 12、晶体管的电流分配关系是:发射极电流等于集电极电流和基极电流之和。(1.0分) [ 对] [判断题] 13、输出电路与输入电路共用了发射极,简称共发射极电路。(1.0分) [ 对] [判断题] 14、JDJ-10电压互感器,额定电压为10kV。(1.0分) [ 错] [判断题] 15、工作票是准许在电气设备上工作的书面命令,是执行保证安全技术措施的书面依据,一般有三种格式。(1.0分) [ 错] [判断题] 16、临时接地线的连接要使用专用的线夹固定,其接地端通常采用绑扎连接,各连接点必须要牢固。(1.0分) [ 错] [判断题] 17、安全色标中“黑色”表示强制执行。(1.0分) [ 错] [判断题] 18、绝缘夹钳的定期试验周期为每6个月一次。(1.0分) [ 错] [判断题] 19、有人值班的变配电所中的电力电缆线路,每班中应进行多次巡视检查。(1.0分) [ 对] [判断题] 20、检查架空线路导线接头有无过热,可通过观察导线有无变色现象。(1.0分) [ 对] [判断题] 21、电缆头的制造工艺要求高是其缺点之一。(1.0分) [ 对] [判断题] 22、绞线(LJ)常用于35kV以下的配电线路,且常作分支线使用。(1.0分) [ 对] [判断题] 23、输电线路是指架设在发电厂升压变压器与地区变电所之间的线路以及地区变电所之间用于输送电能的线路。(1.0分) [ 对] [判断题] 24、输电线路的电压等级在35kV及以上。(1.0分) [ 对] [判断题] 25、操作隔离开关时应准确迅速,一次分(或合)闸到底,中间不得停留。(1.0分) [ 对] [判断题] 26、磁电式仪表由固定的永久磁铁、可转动的线圈及转轴、游丝、指针、机械调零机构等组成。(1.0分) [ 错] [判断题] 27、摇表多采用手摇交流发电机作为电源。(1.0分) [ 对] [判断题] 28、电阻、电感、电容可以用万用表直接测量。(1.0分) [ 错] [判断题] 29、用数字万用表测量直流电压时,极性接反会损坏数字万用表。(1.0分) [ 对] [判断题] 30、接地电阻测量仪主要由手摇发电机,电流互感器,电位器以及检流计组成。(1.0分) [ 对] [判断题] 31、谐振过电压的特点是振荡频率低,但持续时间长。(1.0分) [ 错] [判断题] 32、过电压通常可分为外部过电压,内部过电压和操作过电压。(1.0分) [ 对] [判断题] 33、操作开关时,由于开关的灭弧能力不够强,触头在断开瞬间有可能发生电弧燃烧引起操作过电压。(1.0分) [ 对] [判断题] 34、在中性点不接地系统中发生单相间歇性电弧接地时,可能会产生电弧接地过

间歇电弧接地过电压的防护措施

间歇电弧接地过电压的防护措施 摘要:本文结合工程实例对间歇电弧接地过电压的防护措施进行了探讨,可供大家参考。 关键词:间歇电弧;接地故障;发展过程;防护措施 Abstract: combining with engineering example of over-voltage of arc of intermittent grounding protection was discussed, and the available for your reference. Keywords: intermittent arc; Ground fault; Development process; Protective measures 运行经验表明,电力系统中的故障至少有60%是单项接地故障,随着电网的发展和电压等级的提高,单相接地的电容电流也随之增加,当6~10kV电网的对地电容电流超过30A,35~60kV电网的对地电容电流超过10A时,电弧就难以自动熄灭,而以间歇电弧的形式存在,就会产生一种严重的操作过电压——间歇电弧接地过电压。这种电压的演化过程和幅值大小都与熄弧的时间有关,并存在有两种熄弧时间:一种是电弧在过渡过程中的高频振荡电流过零时熄灭,另一种是电弧等到工频电流过零时才能熄灭,当然,这种电容电流一般不会形成稳定电弧的程度,因此在故障点可能出现电弧“熄灭—重燃”的间歇现象,引起电力系统状态瞬息改变,导致电网中电感、电容回路的电磁振荡,系统中性点发生偏移,健全相和故障相都产生过电压。 1、发展过程 这种过电压的发展过程和幅值大小都与熄弧时间有关。存在两种熄弧时间: 电弧在过渡过程中的高频振荡电流过零时即可熄灭电弧的熄灭发生在工频电流过零的时刻下面假定电弧的熄灭发生在工频电流过零的时刻,来说明这种过电压的物理发展过程:作如下简化: 1)略去线间电容的影响; 2)设各相导线的对地电容均相等,即C1=C2=C3=C。就可得如图1 (a)所示

弧光接地

单相弧光接地过电压的分析和防范 1. 前言 随着电力系统的逐渐增容和发展,电网中的各种过电压发生机率越来越高,每一次的过电压都对电气设备的安全运行造成直接的、严重的威胁,而且每发生一次过电压就会对电气设备的绝缘造成一次破坏,并且这种过电压破坏具有明显的累积效应,当达到一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断或是受损。 2. 单相弧光接地过电压的形成机理 对于单相弧光接地过电压形成机理的理论分析方法很多,对于电网中性点不接地系统,电力电缆在其相间和相地间都有等效电容。经计算表明,发生单相弧光接地时过电压的最大值将达到:U max=1.5U m+(1.5U m–0.7U m)=2.3U m 单相弧光接地的过电压瞬时幅值最大可以达到20.4KV。如果弧光接地在接地点造成弧光间隙性反复燃烧,那么产生的过电压倍数将远远大于2.3倍。根据有关资料介绍,在国外有些专家对单相弧光接地进行了实测,其结果显示,过电压幅值高达正常相电压幅值的3~3.5倍。在系统发生单相接地时,都产生了较高的过电压,才会引起避雷器放电。强烈的过电压使相间空气绝缘被击穿,形成相间弧光短路,至于避雷器的爆炸,主要是由于避雷器的选型错误(原设计型号为Y3W-10/31.5)和产品质量欠佳(受潮),再加上弧光短路产生的高能热量加剧了避雷器的爆炸。由此可见如此高的过电压一旦产生就将会在电力网络绝缘薄弱环节形成闪络放电,严重时将破坏绝缘,造成相间短路或者损害电气设备。发电机接地电流已远远大于5A,才会造成发电机定子铁芯熔化,即与发电机有电气连接的电力网络的单相接地电流已大大超过了5A。 3 单相弧光接地产生的原因 从上述分析可见,单相弧光接地是威胁电力系统安全、稳定和可靠运行的最主要和最直接因素。而中性点的接地方式,直接影响到单相弧光接地的产生和限制力度。根据我国的传统设计经验,

防雷接地技术标准和规范标准[详]

通信、计算机、监测监控网络机房 设置防雷接地技术规范指导意见 第一部分:总则 第一条:本技术指导意见适用于集团公司所有通信、计算机、监测监控设备及机房。 第二条:通信、计算机、监测监控设备和机房的接地及防雷应做到确保人身和通信设备的安全以及通信设备的正常工作。 第二部分:机房及设备防雷接地的技术标准和条例 第三条:机房及设备防雷接地应执行下列技术标准和条例:YDJ26-89《通信局(站)接地设计暂行技术规范》(综合楼部分); YD 2011-93《微波站防雷与接地设计规范》; YD 5068-98《移动通信基站防雷与接地设计规范》; YD 5078-98《通信工程电源系统防雷技术规定》; YD 过 5098-2001《通信局(站)雷电过电压保护设计规范》; GA371-2001《计算机信息系统实体安全技术要求》; GB2887-2000《电子计算机场地通用规范》; GB50174-93《电子计算机房设计规范》; GBJ57-83《建筑防雷设计规范》; YD5003-94《电信专用房屋设计规范》; 《煤矿安全规程》;

《通讯机房静电防护通则》; 以上标准是为了解决综合通信大楼、交换局、数据局、模块局、接入网站、IP 网站、移动通信基站、卫星地球站、微波站、监测监控机房及设备等因雷电感应通过电源线、信号线、网络数据线、天馈线、遥控系统、监控系统引入的雷害,确保通信设备的安全和正常运行而编制的。 第四条:所有通信、计算机、监测监控网络机房安装的防雷产品应 当符合国务院气象主管机构规定的使用要求;所有通信、计算机、监测监控场(站)、机房所建防雷设施应符合相关技术标准、规范。 第五条:从事通信、计算机、监测监控网络机房防雷工程的企业,应当持有国务院气象主管机构颁发的《防雷工程专业设计资质证》和《防雷工程专业施工资质证》;工程设计、施工人员应当持有气象主管机构颁发的《防雷工程专业设计资格证》和《防雷工程专业施工资格证》。工程完工后,应将设计施工单位及个人的资质资格证复印件及竣工验收资料等存档备查。 第六条:通信、计算机、监测监控网络机房防雷工程实行设计审核和竣工验收制度。防雷工程的设计、施工单位,必须将防雷工程设计方案报送当地气象主管机构审核,经审核合格后,方可交付施工。工程竣工后,须经法定防雷检测机构检测合格并报当地气象主管机构验证备案后,方可投入使用。 第三部分:机房及设备防雷接地的安全技术要求 第七条:

相关主题
文本预览
相关文档 最新文档