当前位置:文档之家› 阻抗和导纳

阻抗和导纳

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.doczj.com/doc/6a7316406.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

PCB阻抗计算

阻抗线计算 一.传输线类型 1 最通用的传输线类型为微带线(microstrip)和带状线(stripline) 微带线(microstrip):指在PCB外层的线和只有一个参考平面的线,有非嵌入/嵌入两种如图所示:(图1) 非嵌入(我们目前常用) (图2) 嵌入(我们目前几乎没有用过) 带状线:在绝缘层的中间,有两个参考平面。如下图: (图3) 2 阻抗线 2.1差动阻抗(图4)

差动阻抗,如上所示,阻抗值一般为90,100,110,120 2.2特性阻抗(图5) 特性阻抗: 如上如所示,.阻抗值一般为50 ohm,60ohm 二.PCB叠层结构 1板层、PCB材质选择 PCB是一种层叠结构。主要是由铜箔与绝缘材料叠压而成。附图为我们常用的1+6+1结构的,8层PCB叠层结构。(图6) 首先第一层为阻焊层(俗称绿油)。它的主要作用是在PCB表面形成一层保护膜,防止导体上不该上锡的区域沾锡。同时还能起到防止导体之间因潮气、化学品等引起的短路、生产

和装配中不良操作造成的断路、防止线路与其他金属部件短路、绝缘及抵抗各种恶劣环境,保证PCB工作稳定可靠。 防焊的种类有传统环氧树脂IR烘烤型,UV硬化型, 液态感光型(LPISM-Liquid Photo Imagable Solder Mask)等型油墨, 以及干膜防焊型(Dry Film, Solder Mask),其中液态感光型为目前制程大宗,常用的有Normal LPI, Lead-free LPI,Prob 77. 防焊对阻抗的影响是使得阻抗变小2~3ohm左右 阻焊层下面为第一层铜箔。它主要起到电路连通及焊接器件的作用。硬板中使用的铜箔一般以电解铜为主(FPC中主要使用压延铜)。常用厚度为0.5OZ及1OZ.(OZ为重量单位在PCB行业中做为一种铜箔厚度的计量方式。1OZ表示将重量为1OZ的铜碾压成1平方英尺后铜箔的厚度。1OZ=0.035mm). 铜箔下面为绝缘层..我们常用的为FR4半固化片.半固化片是以无碱玻璃布为增强材料,浸以环氧树脂.通过120-170℃的温度下,将半固化片树脂中的溶剂及低分子挥发物烘除.同时,树脂也进行一定程度的反应,呈半固化状态(B阶段).在PCB制作过程中通过层压机的高温压合.半固化中的树脂完全反应,冷却后完全固化形成我们所需的绝缘层. 半固化片中所用树脂主要为热塑性树脂, 树脂有三种阶段: A阶段:在室温下能够完全流动的液态树脂,这是玻钎布浸胶时状态 B阶段:环氧树脂部分交联处于半固化状态,在加热条件下,又能恢复到液体状态 C阶段:树脂全部交联为C阶段,在加热加压下会软化,但不能再成为液态,这是多层板压制后半固化片转成的最终状态. 由于半固化片在板层压合过程中,厚度会变小,因而半固化片的原始材料厚度和压合后的厚度不一样,因而必须分清厚度是原始材料厚度还是完成厚度。另外,半固化片的厚度不是固定不变的,根据板厚、板层和板厂不同,而有所不同。上述只是一例。 同时该叠层中用了两块芯板,即core(FR-4).芯板是厂家已压合好的带有双面铜的基材,在压合过程中厚度是不变的。常见芯板见下:(表二)

特性阻抗计算公式推导过程

特性阻抗计算公式推导过程 王国海 以下内容供参考。 1.传输线模型 2 符号说明 R L G C 分布式电阻电感电导电容 3 计算过程 (1) u(△z)-u=-R*?z*i-L*△z*?i ?t i(△z)- i=-G*△z*u(△z)?c?△z??u (2) ?t (1)(2) 两边同除以△z,得到电报公式

?u ?z +Ri+L ?i ?t =0 (3) ?i ?z +Gu+C ?u ?t =0 (4) u(z,t)=U(z)e jωt (5) i(z,t)=I(z)e jωt (6) 由(5)(6) 计算得道下列公式 ?u(z,t)?z =dU(z)dz e jωt (7) ?u(z,t)?t =U(z) e jωt jω (8) ?i(z,t)?z =dI(z)dz e jωt (9) ?i(z,t)?t =I(z) e jωt jω (10) 将(7)(8) (9) (10) 代入公式(3) dU(z)dz e jωt +Ri+L I(z) e jωt jω=0,i 用公式(6)代入, dU(z)dz e jωt +R I(z)e jωt +L I(z) e jωt jω=0 化简得到: dU(z)dz =-(R+ jωL)I(z) (11) 同理7)(8) (9) (10)代入(4)可得 dI(z)dz =-(G+ jωC)U(z) (12) 由(11)(12) 得到 dU(z)dI(z)=(R+ jωL)I(z) (G+ jωC)U(z) (13) 交叉相乘, (G + jωC)U(z) dU(z)= (R + jωL)I(z)dI(z) 两边积分, ∫(G + jωC)U(z) dU(z)=∫(R + jωL)I(z)dI(z) 12(G + jωC)U(z)2=12(R + jωL)I(z)2 U(z)2I(z)2=(R+ jωL)(G+ jωC) 两边开根号 Z=U/I=√(R+ jωL)(G+ jωC) 假定R=0,G=0 (无损)得到特性阻抗近似公式 Z=√L C

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义

我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司)=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.

阻抗计算公式、polarsi9000(教程)

一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义。 传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线 层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8

下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数: ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有. 传输线特性阻抗的计算 首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,

变压器短路阻抗测试和计算公式

概述 变压器短路阻抗试验的目的是判定变压器绕组有无变形。 变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。 变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算: 式中u k75 --75℃下的阻抗电压,%; u kt—试验温度下的阻抗电压,%; f N --额定频率(Hz); f′--试验频率(Hz); P kt --试验温度下负载损耗(W); S N --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别施加试验电压。此时折算到三相阻抗电压和三相负载损耗可

电阻 电抗 阻抗 电导 电纳 导纳之间的关系

电阻电抗阻抗电导电纳导纳之间的关系电阻——xx定义的参数: 电压与电流之比,单位xx 电抗——交流电流通过电感或者电容压降时,电压与电流之比,虚数表示,单位欧姆阻抗——电阻与电抗的复合参数,用复数表示,实部为电阻,虚部为电抗,单位欧姆电导——电阻的倒数,单位西门子 电纳——电抗的导数,单位xx 导纳——电导与电纳复合参数,实部为电导,虚部为电纳,单位西门子 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说: 阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 阻抗是一个比电阻大的概念.阻抗包括感抗\容抗\电阻,感抗是电感(线圈)对交流电的阻碍能力,容抗是电容对交流电的阻碍能力,电阻是导体对稳恒电流的阻

阻抗电压计算

阻抗电压计算 一,电抗电压U p %的计算: 6 10···· ····6.49%x t R p p H e K D I w f U ∑= ρ 式中:f----额定频率,50赫兹; W ·I p -----低压线圈安匝数(或取高压线圈安匝数); ∑D -----漏磁通宽,按下式计算 )05.0(3 ·)05.0(3·)05.02 211++-+-=∑A R B R B D ( B 1----低压线圈平均半径; B 2----高压线圈平均半径; A-----高压线圈与低压线圈之间的绝缘距离,按设计手册规定,85KV 电压等级A 最小取27mm 。 e t -----每匝电压; H x ----高低压线圈平均有效电抗高度; λ----漏磁场总厚度 ρ λ ρλ查出洛氏系数有关,按表洛氏系数,与 1)05.0()05.0()05.0(21x R H A B B --++-+-= (X x H U H U ?- =?- == πλ ρπρλ 1,11,整理得或) 将以上各数据代入电抗压降计算公式得: U p =·············· 阻抗电压的允许误差值,按标准规定为%10±。但由于制造时,影响阻抗因素较多,故一般计算时,误差控制在3~4%以下。

二,电阻电压降计算。 n k r S p u 10= 式中:P k ----负载损耗(瓦), S N ----额定容量(千伏安) 负载损耗计算: 1, 圆筒式线圈负载损耗计算 r f k P k P ·= 式中:p r ----线圈电阻损耗(瓦) P r =3·I 2r 2, 饼式线圈的负载损耗。 s y b w r r k p p k k p p p 2)100 ( ++++=∑∑∑ 式中: ∑r p ----线圈电阻损耗之和(瓦),P r =3·I 2r b w K K %,---线圈导线涡流损耗及不完全换位损耗后电阻损耗百分数 K w %= 2 100RW P ·(K H A a n m f ρ·····)2 式中:P RW ------系数,在750时,铜线P RW =3.8,铝线 P RW =4; f----------频率 m 、n----垂直及平行于漏磁场方向的导线根数; a----------垂直于漏磁场方向的裸导线厚度(毫米); A---------每根导线的截面(毫米2) ρ-------洛氏系数 H k -------线圈电抗高度(毫米) K b %=P RB ·C m (K H A a n f ρ ····)

电阻_电抗_阻抗_电导_电纳_导纳之间的关系

电阻电抗阻抗电导电纳导纳之间的关系 电阻——欧姆定律定义的参数:电压与电流之比,单位欧姆 电抗——交流电流通过电感或者电容压降时,电压与电流之比,虚数表示,单位欧姆 阻抗——电阻与电抗的复合参数,用复数表示,实部为电阻,虚部为电抗,单位欧姆 电导——电阻的倒数,单位西门子 电纳——电抗的导数,单位西门子 导纳——电导与电纳复合参数,实部为电导,虚部为电纳,单位西门子在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 阻抗是一个比电阻大的概念,阻抗包括感抗、容抗、电阻;感抗是电感线圈对交流电的阻碍能力;容抗是电容对交流电的阻碍能力;电阻是导体对稳恒电流的阻碍能力。不同阻抗的材料组合起来可以控制电路的电流、相位、波形,从而实现控制。

电感阻抗的计算公式

电感阻抗的计算公式 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此:电感量(mH) = 阻抗(ohm) ÷(2*3.14159) ÷ F (工作频率) = 360 ÷(2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH

7-1 阻抗和导纳

第七章 正弦稳态电路分析 §7-1 阻抗和导纳 一.阻抗 1. 定义:在正弦稳态无源二端网络端钮处的电压相量与电流相量之比定义为该二端网络的 阻抗,记为Z , 注意:此时电压相量U 与电流相量I 的参考方向向内部关联。 u i U U Z I I ψψ∠= ∠ (复数)阻抗()Ω z j Z R X ψ=∠=+ 其中 ()U Z I = Ω —阻抗Z 的模,即阻抗的值。 Z u i ?ψψ=- —阻抗Z 的阻抗角 z cos ()R Z ?=Ω —阻抗Z 的电阻分量 z sin ()X Z ?=Ω —阻抗Z 的电抗分量 电阻元件的阻抗: 在电压和电流关联参考方向下电阻的伏安关系的相量形式为 R R U R I = 则 R R R U Z R I == 电感元件的阻抗: 在电压和电流关联参考方向下电感的伏安关系的相量形式为 U U Z I =- R X |Z | Z ? R U R I R I 与R U 共线 阻抗三角形

L L j U L I ω= 则 L L L L j j U Z L X I ω== 电容的阻抗: 在电压和电流关联参考方向下电容的伏安关系的相量形式为 C C C C C j 11 j j I C U U I I C C ωωω===- 则 C C C C 1j j U Z X C I ω=-= C 1 X C ω=- —容抗 2. 欧姆定律的相量形式 U Z I = U 1j - C U C

电阻、电感、电容的串联阻抗: 在电压和电流关联参考方向下,电阻、电感、电容的串联,得到等效阻抗eq Z R L C eq R L C 1 L C Z Z I Z I Z I U Z Z Z Z I I R j L R jX jX R jX j C Z ωω?++= = =++=++=++=+=∠ 其中:阻抗Z 的模为 ||Z = 阻抗角分别为 1/L C Z X L C arctg arctg arctg R R R X X ωω?+-===。 可见,电抗X 是角频率ω的函数。 当电抗X >0(ωL >1/ωC )时,阻抗角φZ >0,阻抗Z 呈感性; 当电抗X <0(ωL <1/ωC =时,阻抗角φZ <0,阻抗Z 呈容性; 当电抗X =0(ωL =1/ωC )时,阻抗角φ Z =0,阻抗Z 呈阻性。 3. 串联阻抗分压公式: 引入阻抗概念以后,根据上述关系,并与电阻电路的有关公式作对比,不难得知,若一端口正弦稳态电路的各元件为串联的,则其阻抗为 ∑==n k k Z Z 1 串联阻抗分压公式 eq k k Z U U Z = 二.导纳 1.定义:正弦稳态无源二端网络端钮的电流相量与电压相量之比定义为该二端网络的 C _

阻抗计算

关于电缆的正序阻抗和负序阻抗的计算 对于电缆当提到正序阻抗和负序阻抗时,一般是指电力电缆产品,像控制电缆和计算机电缆不提此参数。 当电力系统在对称状态下短路时,正序阻抗和负序阻抗是相等的,其计算公式是: Z1(正序阻抗)=Z2(负序阻抗)=R+jX 上述公式中:R为导体在工作温度下的交流电阻值; X为电抗值。 不同的产品和不同的产品结构(或敷设方式),其正序和负序阻抗是不同的。根据不同的产品计算如下: 导体在工作温度下的交流电阻值R的计算: R=R'(1+ Ys + Yp ) R'=R20(1+α20(t-20)) R20为导体在20度时直流电阻(Ω/m) α20电阻的温度系数:对铜α20=0.00393 对铝α20=0.00403 Yp为邻近效应系数取决与线芯与线芯之间的距离,对于0.6/1 kV及以下的电缆,Yp近似为0。 X为电抗值计算 (工频情况下) X=ωL=2πfL=314L(Ω/m)(L单位为H) L为回路的电感 三芯电缆时:电感计算公式如下: L=2×10×ln(a÷0.39D)(mH/km) a是电缆线芯与线芯的中心距离(mm),D为电缆导体的直径(mm)。 举例:YJV22 0.6/1 kV 3*50 在对称状态下短路时,正序阻抗和负序阻抗为: R'=R20(1+α20(t-20)) =0.000387(1+0.00393(90-20) (90是电缆的工作温度) =0.000493(Ω/m) R=R'(1+ Ys + Yp )

=0.000493(1+0.0136+0) (导体Ys 在截面70到300范围中取0.02) =0.0005(Ω/m) L=2×ln(a÷0.39D) =2×ln(10÷0.39×8) (a取导体直径加二倍的绝缘厚度,D为导体直径) =2×1.16 =2.32(mH/km)) X=314L =314×2.32×10 =0.00007(Ω/m) 那么: Z1(正序阻抗)=Z2(负序阻抗)=R+jX=0.0005+0.00007j(Ω/m) 其他型号和规格可以参照上述计算。 如有问题请电话联系 吴长顺 2005/04/02

阻抗和导纳

阻抗和导纳 阻抗:在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。单位是欧,常用Z表示。 电阻:交流电中,阻抗是一个复数,实部称为电阻,用R表示;虚部称为电抗,用X表示。在直流电中,物体对电流阻碍的作用叫做电阻。Z=R+jX。 电抗:电容和电感在电路中对交流电引起的阻碍作用总称为电抗。X=XL-XC。 感抗:电感在电路中对交流电所起的阻碍作用称为感抗。 感抗(XL)一般是因为电路中存在电感电路(如线圈),由此产生的变化的电磁场,会产生相应的阻碍电流流动的电动力。电流变化越大,即电路频率越大,感抗越大;当频率变为0,即成为直流点时,感抗也变为0。感抗会引起电流与电压之间的相位差。 电感说明:当交流电通过电感线圈的电路时,电路中产生自感电动势,阻碍电流的改变,形成了感抗。自感系数越大则自感电动势也越大,感抗也就越大。如果交流电频率大则电流的变化率也大,那么自感电动势也必然大,所以感抗也随交流电的频率增大而增大。交流电中的感抗和交流电的频率、电感线圈的自感系数成正比。在实际应用中,电感是起着“阻交、通直”的作用,因而在交流电路中常应用感抗的特性来旁通低频及直流电,阻止高频交流电。 感抗可由下面公式计算而来: XL=ωL=2πfL XL就是感抗,单位为欧姆Ω ω是角频率,单位为弧度/每秒rad/s f是频率,单位为赫兹Hz L是线圈电感,单位为亨利H 容抗:电容在电路中对交流电所起的阻碍作用称为容抗。 容抗(XC)的概念反映了交流电可以通过电容这一特性,交流电频率越高,容抗越小,即电容的阻碍作用越小。容抗同样会引起电流与电容两端电压的相位差。 电容说明:在纯电容电路中,接通电源时,电源的电压使导线中自由电荷向某一方向作定向运动,由于电容器两极板上在此过程中电荷积累而产生电势差,因而反抗电荷的继续运动,这样就形成容抗。对于带同样电量的电容器来说,电容越大,两板的电势差越小,所以容抗和电容成反比。交流电频率越高,充、放电进行得越快,容抗就越小。所、以容抗和频

5.4阻抗与导纳及其等效变换

5.4 阻抗与导纳及其等效变换 一、阻抗 1.阻抗的定义及表示形式 如下图(a)所示的单口无源线性两端网络N 0 ,设端口电压为sin()u u t ω?=+,对 应的相量. u U U ?=∠ ,端口电流为sin()i i t ω?= +,对应的相量. i I I ?=∠。则其端口电压相量与电流相量之比定义为该网络的阻抗Z ,即 .. ()u i U U Z Z I I ???= = ∠-=∠ 由上式可得 u i U Z I ????= ? ??=-? 说明: (1)Z 是一个复数,所以又称为复阻抗,Z 是阻抗的模,?为阻抗角,它是电压与电流的相位差。复阻抗的图形符号与电阻的图形符号相似,如上图(b)所示。复阻抗的单位为?。 (2)阻抗Z 用代数形式表示时,可写为: j Z R X =+ R :Z 的实部,称为阻抗的电阻分量,单位:?,R 一般为正值;X :Z 的虚部,称为阻抗的电抗分量,单位:?,X 的值可能为正,亦可能为负。 阻抗的代数形式与极坐标形式之间的互换公式: arctan Z X R ?=?=? ? cos sin R Z X Z ??=?? ?=?? 由阻抗Z 的代数形式可知,由于R 一般为正值,所以有π 2 ?≤ ,且R 、X 和Z 三者之

间的关系可用一个直角三角形表示,如上图(c )所示。 2.阻抗的性质 由于阻抗Z Z ?=∠而arctan X R ?=,电路结构、参数或频率不同时,阻抗角?可能会出现三种情况: (1)0?>(即0X >)时,称阻抗的性质为感性,电路为感性电路; (2)0?=(即0X =)时,称阻抗性质为电阻性,电路为阻性电路; (3)0?<(即0X <)时,称阻抗性质为容性,电路为容性电路。 3.单口无源网络的串联等效电路 由. . . . . . . R X (j )j U Z I R X I R I XI U U ==+=+=+,可知. R U 与.I 同相位,.X U 与. I 相差 π 2 。这样单口无源网络就可以用R 与j X 的串联电路模型表示,如下图(a )所示。图(b )和(c )分别是0X >和0X <时,以.I 为参考相量时的电路的相量图。由相量图可知,. R U 、. X U 和. U 构成一个直角三角形,该三角形称为电压相量三角形,它与阻抗三角形是相似形。 当单口无源网络用串联电路模型等效时,对应于不同性质的阻抗,其等效电路分别如下图(a )、(b )、(c )所示。 例5-11 有一个电感线圈,其电阻15R =?,电感25mH L =,将此线圈与5μF C =的 电容串联后,接到端电压5000u t =V 的电源上,求电路中电流i 和各元件上的电压R u 、L u 和C u ,并判断电路的性质,画出相量图。

电感阻抗计算公式

加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用 360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数 = [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷ 圈直径 (吋) 圈数 = [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684文章录入: zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量 l单位: 微亨 线圈直径 D单位: cm 线圈匝数 N单位: 匝 线圈长度 L单位: cm 频率电感电容计算公式:

l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力 I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Micrometal对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0 为真空磁导率=4π*10(-7)。(10的负七次方) μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1

变压器短路阻抗测试和计算公式

变压器短路阻抗测试和计算公式 一、概述变压器短路阻抗试验的目的是判定变压器绕组有无变形。变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算:式中uk75 --75℃下的阻抗电压,%; ukt—试验温度下的阻抗电压,%; fN --额定频率(Hz); f′--试验频率(Hz); Pkt 试验温度下负载损耗(W);-- SN --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别

阻抗 导纳 电抗

电阻——欧姆定律定义的参数:电压与电流之比,单位欧姆 电抗——交流电流通过电感或者电容压降时,电压与电流之比,虚数表示,单位欧姆 阻抗——电阻与电抗的复合参数,用复数表示,实部为电阻,虚部为电抗,单位欧姆 电导——电阻的倒数,单位西门子 电纳——电抗的导数,单位西门子 导纳——电导与电纳复合参数,实部为电导,虚部为电纳,单位西门子 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 阻抗是一个比电阻大的概念.阻抗包括感抗\容抗\电阻,感抗是电感(线圈)对交流电的阻碍能力,容抗是电容对交流电的阻碍能力,电阻是导体对稳恒电流的阻碍能力,不同阻抗的材料组合起来可以控制电路的电流\相位\波形,从而实现控制。 电阻表示是纯电阻对电流的阻力,交流电在电阻(R)上的电压与电流的相位总是相同的。 电抗(X)由电感产生的感抗(Xl)和电容产生的容抗(Xc)组成,交流电在电抗上电压与电流的相位不相。在电感上,电压超前电流90度;在电容上,电压滞后电流90度。 X=ωL-(1/ωC) ω=2πf f为交流电的频率。 总的阻抗:Z=R+jX 称为复阻抗。 接触电阻,是指两个导体相接触时,在接触处产生的电阻(不用接触阻抗这个名字),用点焊、锡焊等方法可以有效地减小接触电阻。 节点阻抗、表面阻抗可能是在十分专业的领域里才会用到。 对电感,有u=L*di/dt,在交流电i=Isinwt作用下,有 u=L*d(Isinwt)/dt=LIw(coswt)=IwLsin(wt+∏/2)=Usin(wt+sita) 显然U=IwL,即感抗为U/I=wL

阻抗的有关计算公式

影响高频测试的因素 一、影响特性阻抗的主要因素 即电容与电感间的关系(公式见图) 从阻抗公式看影响特性阻抗值的只有外径(外径可以看成和导线间距α相等)、总的绞合系数(λ)、组合绝缘介质的等效相对介 电常数(εr)。而且,Z正比于α和λ,反比于εr。所以只要控制好了α、λ、εr的值,也就能控制好了Z。一般来说节距越小Z越小,稳定性也越好,ZC 的波动越小。 1导体外径:绝缘外径越小阻抗越大。 2电容:电容越小发泡度越大同时阻抗也越大; 3绝缘外观:绝缘押出不能偏心,同心度控制在90%以上;外观要光滑均匀无杂质,椭圆度在85%以上。 电线押完护套后基本上阻抗是不会再出现变化的,生产过程中的随机缺陷较小时造成的阻抗波动很小,除非在生产过程有过大的外部压力致使发泡线被压伤或压变形。当较严重的周期性不均匀缺陷时,且相邻点间的距离等于电缆传输信号波长的一半时,在此频率点及其整数倍频率点上将出现显着的尖峰(即突掉现象),这时不但阻抗不过,衰减也过不了。 二、各工序影响衰减的主要因素 a 衰减=a 金属衰减 +a 介质材料衰减 +a 阻抗不均匀时反射引起的附加衰减 1.导体: 导体外径下公差,电阻增大,影响传输效果及阻抗;所以一般都采用上公差的导体做发泡线。 高频时信号传输会出现集肤效应,信号只是在导体的表面流过,所以要求导体表面要平滑,绞合绝对不能出现跳股现象,单支导体及绞合后的圆整度要好。 导体束绞、绝缘押出及芯线对绞时张力都不能过大,以防拉细导体。 2.绝缘: 在绝缘时影响衰减的因素主要有绝缘材料、绝缘线径稳定性、发泡电容值及气泡匀密度、同心度(发泡层及结皮的同心度)、芯线的圆整度。在测试频率越高时对发泡材料的要求越高,但现在所用的DGDA3485是现在高频线用得最广泛的化学发泡料。 控制绝缘主要有以下几项: A.外径要控制在工艺要求偏差±0.02mm之内; B.发泡要均匀致密,电容要控制在工艺要求偏差±1.0PF之内; C.绝缘外结皮厚度控制在0.05mm以内; D.色母配比不能过大,越少越好,在1.5%左右;

相关主题
相关文档 最新文档