当前位置:文档之家› ANSYS结构分析指南结构线性静力分析

ANSYS结构分析指南结构线性静力分析

ANSYS结构分析指南结构线性静力分析
ANSYS结构分析指南结构线性静力分析

ANSYS结构分析指南第二章结构线性静力分析

2.1 静力分析的定义

静力分析计算在固定不变载荷作用下结构的响应,它不考虑惯性和阻尼影响--如结构受随时间变化载荷作用的情况。可是,静力分析可以计算那些固定不变的惯性载荷对结构的影响(如重力和离心力),以及那些可以近似为等价静力作用的随时间变化载荷(如通常在许多建筑规范中所定义的等价静力风载和地震载荷)的作用。

静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。固定不变的载荷和响应是一种假定,即假定载荷和结构响应随时间的变化非常缓慢。静力分析所施加的载荷包括:

外部施加的作用力和压力

稳态的惯性力(如重力和离心力)

强迫位移

温度载荷(对于温度应变)

能流(对于核能膨胀)

关于载荷,还可参见§2.3.4。

2.2 线性静力分析与非线性静力分析

静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有类型的非线性:大变形、塑性、蠕变、应力刚化、接触(间隙)单元、超弹性单元等。本章主要讨论线性静力分析。对非线性静力分析只作简单介绍,其详细论述见《ANSYS Structural Analysis Guide》§8。

2.3 静力分析的求解步骤

2.3.1 建模

首先用户应指定作业名和分析标题,然后通过PREP7 前处理程序定义单元类型、实常数、材料特性、模型的几何元素。这些步骤是大多数分析类型共同的,并已在《ANSYS Basic Analysis Guide》§1.2 论述。有关建模的进一步论述,见《ANSYS Modeling and Meshing Guide》。

2.3.1.1 注意事项

在进行静力分析时,要注意如下内容:

1、可以采用线性或非线性结构单元。

2、材料特性可以是线性或非线性,各向同性或正交各向异性,常数或与温度相关的:

必须按某种形式定义刚度(如弹性模量EX,超弹性系数等)。

对于惯性载荷(如重力等),必须定义质量计算所需的数据,如密度DENS。

对于温度载荷,必须定义热膨胀系数ALPX。

3、对于网格密度,要注意:

应力或应变急剧变化的区域(通常是用户感兴趣的区域),需要比应力或应变近乎常数的区域较密的网格:

在考虑非线性的影响时,要用足够的网格来得到非线性效应。如塑性分析需要相当的积分点密度,因而在高塑性变形梯度区需要较密的网格。

2.3.2 设置求解控制

设置求解控制包括定义分析类型、设置一般分析选项、指定载荷步选项等。当进行结构静力分析时,可以通过“求解控制对话框”来设置这些选项。该对话框对于大多数结构静力分析都已设置有合适的缺省值,用户只需作很少的设置就可以了。我们推荐采用该对话框进行设置。

如用户不喜欢采用求解控制对话框,则可应用ANSYS 的标准求解命令集和相应的菜单(Main Menu>Solution>Unabridged Menu>option)来设置求解控制选项。关于求解控制对话框的总体情况,见《ANSYS Basic Analysis Guide》§3.11。

2.3.2.1 进入求解控制对话框

用户可通过选择(Main Menu>Solution> -Analysis Type- Sol‘n Control)进入求解控制对话框。下面诸小节简要论述该对话框中各标签的选项。关于如何设置这些选项,可在按该标签的Help 按钮进入帮助系统,得到详细介绍。

2.3.2.2 Basic标签

在求解控制对话框中共有五个标签,这些标签按从基本到高级的顺序排列。根据这种排列方式,可使求解设置较为平顺。在进入求解控制对话框时,缺省激活的是Basic标签。

Basic标签中的设置,提供了分析中所需的最少数据。一旦在Basic标签中的设置满足以后,就不需要设置其他标签中的选项,除非因为要进行高级控制而修改其他缺省设置。按OK 按钮以后,设置存储到ANSYS数据库,并关闭对话框。

用户可以在Basic标签中设置的选项如表2-1 所示。有关详细说明见该标签的Help帮助系统。

表2-1

在静力分析中需要特别注意的选项主要有:

在设置ANTYPE 和NLGEOM 时,如进行一个新的分析并忽略大变形效应(如大挠度、大转角、大应变)时,请选择“Small Displacement Static”项。如预期有大挠度(如弯曲的长细杆)或大应变(如金属成形问题),则选择“Large Displacement Static”。如想重启动一个失败的非线性分析,或者用户已进行了完整的静力分析,而想指定其他载荷,则选择“Restart Current Analysis”项。

在设置TIME 时,记住这个载荷步选项指定该载荷步结束的时间,缺省值为1。对于后续的载荷步,缺省为1加上前一个载荷步指定的时间。虽然在静力分析(除蠕变、粘塑性或其他率相关材料行为外)中,时间没有物理意义,但可以用于追踪时间步和子步,见《ANSYS Basic Analysis Guide》§2。

在设置OUTRES时,请记住:缺省时只有1,000个结果集记录到结果文件(Jobname.RST)中,如果超过这一数目(基于用户的OUTRES 设置),程序将出错停机。可以通过

/CONFIG,NRES 命令来增大这一限值,见《ANSYS Basic Analysis Guide》§20。

2.3.2.3 Transient标签

Transient 标签设置瞬态分析控制,只有在Basic 标签中选择了瞬态分析时才能激活这一标签,如果在Basic 标签中选择了静态分析,则这一标签不能设置。所以在这里暂不讨论。

2.3.2.4 Sol‘n Options标签

Sol‘n Options 标签用于设置表2-2 所列的选项。详细说明可从Help按钮进入帮助系统而得到。

表2-2

在静力分析中设置EQSLV 时,选择下列求解器之一:

程序选择求解器(ANSYS 将根据问题的领域自动选择一个求解器);

稀疏矩阵求解器(对线性和非线性、静力和完全瞬态分析,为缺省项);

PCG求解器(对于大模型/高波前,巨形结构推荐使用);

AMG的求解器(其应用与PCG求解器相同,但提供并行算法;在用于多处理器环境时,转向更快);

DDS求解器,通过网络在多处理器系统中提供并行算法;

迭代求解器(自动选择;只适用于线性静力/完全瞬态结构分析,或稳态温度分析;推荐);

波前直接求解器。

注意--AMG 和DDS 求解器,是ANSYS并行算法的一部分,需要单独购买。见《ANSYS Advanced Analysis Techniques Guide》§9。

2.3.2.5 Nonlinear标签

Nonlinear 标签用于设置表2-3 所列的选项。详细内容可通过Help按钮进入帮助系统。

表2-3

2.3.2.6 Advanced NL标签

Advanced NL 标签用于设置表2-4 所列的选项。详细内容见该标签中的Help帮助系统。

表2-4

2.3.3 设置其他求解选项

本节讨论求解的其他选项的设置。由于很少用到这些选项,并且一般都采用其缺省设置,因此这些选项没有出现在求解控制对话框中。

本节中许多选项是非线性选项,将在《ANSYS Structural Analysis Guide》§8进一步讨论。

2.3.3.1 应力刚度效应

一些单元,如18X 族单元,不论SSTIF 如何,都包括了应力刚度效应。为了确定一个单元是否包括应力刚度,请见《ANSYS Element Reference Manual》说明。

在缺省时,如果NLGEOM 为ON 的话,应力刚度效应为ON。在下面的这些特殊情况下,用户可能会关闭应力刚度效应:

应力刚度仅与非线性分析相关。如果进行线性分析[NLGEOM,OFF],则可以关闭应力刚度。

在分析之前,用户知道结构不会因屈曲(分叉或跳跃屈曲)而破坏。

通常,包括应力刚度效应时,可以加速非线性分析收敛。请记住上面所述的各点,用户可能对一些看起来收敛困难的特殊问题,选择关闭应力刚度效应,如局部破坏。

命令:SSTIF

GUI:Main Menu>Solution>Unabridged Menu>Analysis Options

2.3.3.2 Newton-Raphson选项

这一选项只能用于非线性分析中,它说明在求解时如何修正切线刚度矩阵。用户可以选下列选项之一:

程序选择;

完全;

修正;

初始刚度;

完全并且非对称矩阵。

命令:NROPT

GUI:Main Menu>Solution>Unabridged Menu>Analysis Options

2.3.3.3 预应力效应计算

通过这一选项在同一模型中执行预应力分析,如预应力模态的分析。缺省值为OFF。

注意--应力刚度效应和预应力效应计算都控制应力刚度矩阵的生成,因此在一个分析中不能同时采用。如二者都指定,则最后选项将覆盖前者。

命令:PSTRESS

GUI:Main Menu>Solution>Unabridged Menu>Analysis Options

2.3.3.4 质量矩阵公式

通过该选项在结构中施加惯性载荷(如重力或旋转载荷)。可以指定下列选项之一:

缺省(与单元类型有关);

集中质量近似。

注意--对于静力分析,用户所用的质量矩阵并不明显影响求解精度(假设网格密度足够)。然而,如果想在同一模型上作预应力动力分析,选择质量矩阵公式就很重要;参见动力分析的有关章节。

命令:LUMPM

GUI:Main Menu>Solution>Unabridged Menu>Analysis Options

2.3.3.5 参考温度

这个载荷步选项适用于温度应变计算。可用[MP,REFT]命令来设置材料相关的参考温度。

命令:TREF

GUI:Main Menu>Solution>-Load Step Opts-Other>Reference Temp

2.3.3.6 模态数

这个载荷步选项用于轴对称简谐单元。

命令:MODE

GUI:Main Menu>Solution>-Load Step Opts-Other>For Harmonic Ele

2.3.3.7 蠕变准则

这个非线性载荷步选项为自动时间步指定蠕变准则。

命令:CRPLIM

GUI:Main Menu>Solution>Unabridged Menu>-Load Step Opts-Nonlinear

>Creep Criterion

2.3.3.8 输出选项

这个载荷步选项用于指定在输出文件(Jobname.out)中包括任意结果数据。

命令:OUTPR

GUI:Main Menu>Solution>Unabridged Menu>-Load Step Opts-Output

Ctrls>Solu Printout

[警告]--应用多个OUTPR 命令时,有时可能会有一些冲突,见《ANSYS Basic Analysis Guide》§2.7.4。

2.3.3.9 外插

应用这个载荷步选项,可以通过把单元积分点结果拷贝到节点上,而不是通过外插(存在材料非线性时,这是缺省设置)。

命令:ERESX

GUI:Main Menu>Solution>Unabridged Menu>-Load Step Opts-Output Ctrls>Integration Pt

2.3.4 施加载荷

设置了求解选项以后,就可以对模型施加载荷了。

2.3.4.1 载荷类型

下面列出的所有载荷类型,都可应用于静力分析中。

2.3.4.1.1 位移(UX,UY,UZ,ROTX,ROTY,ROTZ)

这些自由度约束常施加到模型边界上,用以定义刚性支承点。它们也可以用于指定对称边界条件以及已知运动的点。由标号指定的方向是按照节点座标系定义的。

2.3.4.1.2 力(FX,FY,FZ) 和力矩(MX,MY,MZ)

这些集中力通常在模型的外边界上指定。其方向是按节点座标系定义的。

2.3.4.1.3 压力(PRES)

这是表面载荷,通常作用于模型的外部。正压力为指向单元面(起到压缩的效果)。

2.3.4.1.4 温度(TEMP)

温度用于研究热膨胀或热收缩(即温度应力)。如果要计算热应变的话,必须定义热膨胀系数。用户可以从热分析[LDREAD]中读入温度,或者直接指定温度(通过BF 族命令)。

2.3.4.1.5 流(FLUE)

用于研究膨胀(由于中子流或其他原因而引起的材料膨胀)或蠕变的效应。只在输入膨胀或蠕变方程时才能使用。

2.3.4.1.6 重力、旋转等

整个结构的惯性载荷。如果要计算惯性效应,必须定义密度(或某种形式的质量)。

2.3.4.2 在模型上施加载荷

除了与模型无关的惯性载荷以外,用户可以在模型的几何实体(关键点、线、面)或在有限元模型(节点和单元)上定义载荷。用户还可以通过TABLE 类型的数组参数(见§2.3.4.2.1)施加边界条件或作为函数的边界条件(见§2.6.15)。

表2-5 汇总了静力分析可以使用的载荷。在一个分析中,可以施加、删除、操作或列表载荷。

表2-5

2.3.4.2.1 应用TABLE类数组参数施加载荷

用户可以通过TABLE 类数组参数施加载荷。对于应用表格边界条件,参见《ANSYS Basic Analysis Guide》§2.6.14。

在结构分析中,有效的初变量有时间(TIME)、温度(TEMP)和位置(X,Y,Z)。定义随时间(TIME)变化的一维表时,时间必须为升序排列。

用户可以通过命令或交互式定义表格数组参数。具体操作参见《ANSYS APDL Programmer‘s Guide》。

2.3.4.3 计算惯性解除

用户可以通过静力分析来执行惯性解除计算,即计算与施加载荷反向平衡的加速度。用户可以把惯性解除想象成一个等价自由体分析。要在SOLVE 命令之前应用这一命令作为惯性载荷命令的一部分。

模型应当满足下面的要求:

模型不应当包括轴对称单元、子结构、或非线性。不推荐使用混合2D和3D单元的模型。

对于梁单元(BEAM23、BEAM24、BEAM44和BEAM54)以及分层单元(SHELL91、SHELL99、SOLID46和SOLID191),忽略偏置和楔形效应。也忽略层状单元的不对称分层效应。把楔形变截面单元分解成数个单元将得出更精确的结果。

必须提供质量计算所需的数据,如密度。

提供所需的最少位移约束,即保证不发生刚体运动即可。对于2D单元需要三个约束(根据单元类型,可能更少),对于3D单元只需要6个约束(根据单元类型,可能更少)。附加的约束,如对称边界条件也是允许的,但必须对所有约束检查0反力,以确保在惯性解除分析中不出现过约束。

应当指定对于惯性解除计算合适的载荷。

命令:IRLE,1

GUI:Main Menu>Solution>-Load Step Opts-Other>Inertia Relief

2.3.4.3.1 惯性解除的输出

通过IRLIST 命令来打印惯性解除计算的输出。该输出包括平衡施加载荷所需要的平移和转动加速度,而且可用于其他程序来进行运动学研究。质量和惯性矩列表汇总是精确解(求解时产生),而不是近似解。约束反力将为0,因为所计算的惯性力与外力平衡。

惯性解除输出存储于数据库,而不是结果文件(Jobname.RST),在用户执行IRLIST 命令时,ANSYS 从数据库中提取相关信息,输出数据库中最新保存求解[SOLVE 或PSOLVE]的惯性解除。

命令:IRLIST

GUI:无

2.3.4.3.2 部分惯性解除计算

用户还可以通过部分求解方法[PSLOVE]作部分惯性解除计算,如下面的例子所示:

/PREP7

...

MP,DENS,... ! Generate model, define density

...

FINISH

/SOLU

D,... ! Specify only minimum no. of constraints

F,... ! Other loads

SF,...

OUTPR,ALL,ALL ! Activates printout of all items

IRLF,1 ! Can also be set to -1 for precise mass and

! load summary only, no inertia relief

PSOLVE,ELFORM ! Calculates element matrices

PSOLVE,ELPREP ! Modifies element matrices and calculates

! inertia relief terms

IRLIST ! Lists the mass summary and total load summary tables

FINISH

有关OUTPR,IRLF,IRLIST,PSOLVE 等命令的详细介绍见《ANSYS Commands Reference》。

2.3.4.3.3 通过宏来执行惯性解除计算

如用户经常要执行惯性解除计算,可以写一个包含上述命令的宏。参见《ANSYS APDL Programmer‘s Guide》。

2.3.5 求解

现在可以进行求解。

1、把数据库保存为一个文件作为备份。在以后需要时,可重新进入ANSYS 并用RESUME命令恢复模型。

命令:SAVE

GUI:Utility Menu>File>Save as

2、开始计算

命令:SOLVE

GUI:Main Menu>Solution>-Solve-Current LS

3、如果分析中包括其他载荷条件(即多个载荷步),则应重新施加载荷,指定载荷步选项,保存并求解每一个载荷步。在《ANSYS Basic Analysis Guide》中,还论述了多载荷步的其他操作方法。

4. 退出求解

命令:FINISH

GUI:关闭求解菜单。

2.3.6 检查分析结果

静力分析结果保存于结构分析结果文件(Jobname.RST)中,包括以下内容:

1、基本解

节点位移(UX, UY, UZ, ROTX, ROTY, ROTZ)。

2、导出解

节点和单元应力;

节点和单元应变;

单元力;

节点反力;

等等。

2.3.6.1 后处理

可以用一般后处理器POST1 和时程后处理器POST26,来进行后处理,查看结果。

POST1 用于对整个模型在某一子步(时间点)上的结果进行检查,下面会解释一些POST1 的操作。

POST26 用于非线性静力分析中跟踪整个载荷作用历程上的特定结果,参见《ANSYS Basic Analysis Guide》§8。对于POST26 的完整说明,参见《ANSYS Basic Analysis Guide》§4。

2.3.6.2 注意事项

为了用POST1 和POST26 检查结果,在数据库中必须包括与求解时相同的模型;

结果文件Jobname.RST 必须存在。

2.3.6.3 检查结果数据

1、从数据库文件中读入数据

命令:RESUME

GUI:Utility Menu>File>Resume from

2、读入适当的结果集。用载荷步、子步或时间来区分结果数据库集。如果用户所指定的时间值不存在相应的结果,则ANSYS 将根据全部数据通过线性插值得到该时间点上的结果。

命令:SET

GUI:Main Menu>General Postproc>-Read Results-By Load Step

3. 执行必要的POST1 操作。下面将讨论典型的静力分析中POST1 的操作方法。

2.3.6.4 典型的后处理操作

1、显示变形图

应用PLDISP命令(Main Menu>General Postproc> Plot Results> Deformed Shape)来显示变形图。PLDISP 命令的KUND 参数给用户可以在原始图上迭加变形图。

2、列出反力和反力矩

通过PRESOL命令(Main Menu>General Postproc>List Results> Reaction Solu)列出约束节点的反力和力矩。为了显示反力,执行/PBC,RFOR,,1,然后显示所需的节点或单元(NPLOT 或EPLOT 命令)。如要显示反力矩,则用RMOM代替RFOR。

3、列出节点力和力矩

执行PRESOL,F(或M) 命令(Main Menu>General Postproc>List Results> Element Solution)列出节点力和力矩。

也可以列出所选择的节点集的所有节点的力和力矩。首先选择节点集,然后列出作用于这些节点上的所有力。

命令:FSUM

GUI:Main Menu>General Postproc>Nodal Calcs>Total Force Sum

用户也可以在每个已选择的节点上检查所有力和力矩。对于处于平衡状态的实体,除载荷作用点和存在反力的节点以外的所有节点上,其总载荷为0:

命令:NFORCE

GUI:Main Menu>General Postproc>Nodal Calcs>Sum @ Each Node

FORCE命令(Main Menu>General Postproc>Options for Outp)指明检查哪个力分量:全部(缺省);

静力分量;

阻尼分量;

惯性力分量。

对于处于平衡状态的实体,除载荷作用点或存在反力载荷的节点外,其他所有节点的总载荷为0(应用所有FORCE 分量)。

4、线单元结果

对于线单元(如梁、杆、管),通过ETABLE(Main Menu>General Postproc> Element Table>Define Table)来取得导出数据(如应力、应变等)。结果数据用一个标号和一个序列号的组合,或用元件名来区别。参见《ANSYS Basic Analysis Guide》POST1中的ETABLE 命令的说明。

5、误差评估

在实体和壳单元的线性静力分析中,通过PRERR 命令(Main Menu>General Postproc>List Results>Percent Error)列出网格离散误差的评估值。这个命令按结构能量模(SEPC)计算和列出误差百分比,代表一个特定的网格离散的相对误差。

6、结构能量误差评估

通过PLESOL,SERR 命令(Main Menu>General Postproc>Plot Results>-Contour

Plot-Element Solu)来计算单元-单元之间的结构能量误差(SERR)。在等值线图中,SERR 较大的区域是要进行网格细化的候选区域(用户可用ADAPT 命令自动激活网格细化,参见《ANSYS Modeling and meshing Guide》)。关于误差评估的更多内容请参见《ANSYS Basic Analysis Guide》§5.3.5。

7、等值线显示

可通过PLNSOL和PLESOL 命令(Main Menu>General Postproc>Plot Results>

-Contour Plot-Nodal Solu or Element Solu)显示几乎所有结果项的等值线,如应力(SX,SY,SZ 等)、应变(EPELX,EPELY,EPELZ等)和位移(UX,UY,UZ等)。PLNSOL 和PLESOL 命令的KUND 域使用户可以在原始结构上迭加显示。

通过PLETAB和PLLS命令(Main Menu>General Postproc>Element Table>Plot Element Table 和Main Menu>General Postproc>Plot Results>-Contour Plot-Line Elem Res)来显示

单元表数据和线单元数据。

[警告]---导出数据,如应力、应变,在应用PLNSOL 命令时为节点上的平均值。这种平均的结果对于不同材料、不同厚度的壳或其他不连续体时,会得出错误的结果。为了避免这一问题,应当用选择命令(见《ANSYS Basic Analysis Guide》§7)来选择相同材料、相同厚度的壳等,然后才能应用PLNSOL 命令。另一个方法,是应用PowerGraphics及AVRES 命令(GUI:Main Menu> General Postproc>Options for Outp)以使在不同材料、不同厚度的壳上不产生平均应力。

8、矢量显示

通过PLVECT 命令(Main Menu>General Postproc>Plot Results>-Vector Plot- Predefined)来观察矢量的显示,通过PRVECT 命令(Main Menu> General Postproc>List Results>Vector Data)来观察矢量列表。

对于观察矢量如位移(DISP)、转角(ROT)、主应力(S1,S2,S3),矢量显示(不要与矢量模态混淆)是一种有效的办法。

9、表格列示

ansys非线性分析指南

ANSYS 非线性分析指南(1) 基本过程 第一章结构静力分析 1. 1 结构分析概述 结构分析的定义: 结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。 在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基 本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力, 可通过节点位移导出。 七种结构分析的类型分别是: a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。静力分析 包括线性和非线性分析。而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。 b. 模态分析- 用于计算结构的固有频率和模态。 c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。 d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入 随机振动引起的应力和应变。 f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。 g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复 杂的接触问题。 除了前面提到的七种分析类型,还有如下特殊的分析应用: ? 断裂力学 ? 复合材料 ? 疲劳分析

? p-Method 结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元 1.2 结构线性静力分析 静力分析的定义: 静力分析计算在固定不变的载荷作用下结构的响应。它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。 静力分析中的载荷: 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。固定不变的载荷和响应是一种假定,即假定载荷和结构的响应随时间的变化非常缓慢,静力分析所施加的载荷包括: ? - 外部施加的作用力和压力 ? - 稳态的惯性力如中力和离心力 ? - 位移载荷 ? - 温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形、塑性、蠕变、应力刚化、接触、间隙单元、超弹性单元等,本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。 线性静力分析的求解步骤 1 建模 2 施加载荷和边界条件求解 3 结果评价和分析

有限元ansys静力分析的一个小例子

有限元 学院:机电学院 专业: 姓名: 学号:

一、问题描述 如图所示的平面,板厚为0.01m,左端固定,右端作用50kg的均布载荷,对其进行静力分析。弹性模量为210GPa,泊松比为0.25. 二、分析步骤 1.启动ansys,进入ansys界面。 2.定义工作文件名 进入ANSYS/Multiphsics的的程序界面后,单击Utility Menu菜单下File中Change Jobname的按钮,会弹出Change Jobname对话框,输入gangban为工作文件名,点击ok。 3.定义分析标题 选择菜单File-Change Title在弹出的对话框中,输入Plane Model作为分析标题,单击ok。 4.重新显示 选择菜单Plot-Replot单击该按钮后,所命令的分析标题工作文件名出现在ANSYS 中。 5.选择分析类型 在弹出的对话框中,选择分析类型,由于此例属于结构分析,选择菜单Main Menu:Preferences,故选择Structural这一项,单击ok。 6.定义单元类型 选择菜单Main Menu-Preprocessor-Element Type-Add/Edit/Delete单击弹出对话框中的Add按钮,弹出单元库对话框,在材料的单元库中选Plane82单元。即在左侧的窗口中选取Solid单元,在右侧选择8节点的82单元。然后单击ok。 7.选择分析类型 定义完单元类型后,Element Type对话框中的Option按钮被激活,单击后弹出一个对话框,在Elenment behavior中选择Plane strs w/ thk,在Extra Element output 中,选择Nodal stress,单击close,关闭单元类型对话框。 8.定义实常数 选择菜单Main Menu-Preprocessor-Real Constants Add/Edit/Delete执行该命令后,在弹出Real Constants对话框中单击Add按钮,确认单元无误后,单击ok,弹出Real Constants Set Number 1,for Plane 82对话框,在thickness后面输入板的厚度0.01单击ok,单击close。 9.定义力学参数 选择菜单Main Menu-Preprocessor-Material Props-Material Model 在弹出的对

ANSYS结构非线性分析指南_第三章

第三章几何非线性与屈曲分析 3.1 几何非线性 3.1.1 大应变效应 一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。 相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。通过发出NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。这种效应改变单元的形状和取向,且还随单元转动表面载荷。(集中载荷和惯性载荷保持它们最初的方向。)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。在ANSYS/Linear Plus程序中大应变效应是不可用的。 图3-1 大应变和大转动 大应变过程对单元所承受的总旋度或应变没有理论限制。(某些ANSYS单元类型将受到总应变的实际限制──参看下面。)然而,应限制应变增量以保持精度。因此,总载荷应当被分成几个较小的步,这可用〔NSUBST,DELTIM,AUTOTS〕命令自动实现(通过GUI路径Main Menu>Solution>Time/Frequent)。无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。 3.1.2 应力-应变 在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,

ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析

!ANSYS命令流学习笔记10-利用APDL在WorkBench中进行非线性屈曲分析 !学习重点: !1、强化非线性屈曲知识 首先了解屈曲问题。在理想化情况下,当F < Fcr时, 结构处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 结构将返回到它的初始位置。当F > Fcr时, 结构处于不稳定平衡状态, 任何扰动力将引起坍塌。当F = Fcr时,结构处于中性平衡状态,把这个力定义为临界载荷。在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。 要理解非线性屈曲分析,首先要了解特征值屈曲。特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。 !理论解,根据Euler公式。其中μ取决于固定方式。 !有限元方法, 已知在特征值屈曲问题: 求解,即可得到临界载荷 而非线性屈曲问题: 其中为结构初始刚度,为有缺陷的结构刚度,为位移矩阵,为载荷矩阵。 非线性屈曲分析时考虑结构平衡受扰动(初始缺陷、载荷扰动)的非线性静力分析,该分析时一直加载到结构极限承载状态的全过程分析,分析中可以综合考虑材料塑性、几何非线性、接触、大变形。非线性屈曲比特征值屈曲更精确,因此推荐用于设计或结构的评价。 !2、熟悉WB中非线性屈曲分析流程 (1) 前处理,施加单元载荷,进行预应力静力分析。 (2) 基于预应力静力分析,指定分析类型为特征值屈曲分析,完成特征值屈曲分析。 (3) 在APDL模块将一阶特征屈曲模态位移乘以适当系数,将此变形后的形状当做非线性分析的初始模型。

ANSYS结构非线性分析指南连载四

ANSYS结构非线性分析指南连载四--第四章材料非线性分析 (二) (2014-04-27 10:47:15) 转载▼ 标签: it 4.3 超弹性分析 4.3.1 超弹理论 4.3.1.1 超弹的定义 一般工程材料(例如金属)的应力状态由一条弹塑性响应曲线来描述,而超弹性材料存在一个弹性势能函数,该函数是一个应变或变形张量的标量函数,而该标量函数对应变分量的导数就是相应的应力分量。 上式中:[S]=第二皮奥拉-克希霍夫应力张量 W=单位体积的应变能函数 [E]=拉格朗日应变张量 拉格朗日应变可以由下式表达:[E]=1/2([C]-I) 其中:[I]是单位矩阵,[C]是有柯西-格林应变张量 其中[F]是变形梯度张量,其表达式为: x:变形后的节点位置矢量 X:初始的节点位置矢量 如果使用主拉伸方向作为变形梯度张量和柯西-格林变形张量的方向,则有: 其中: J=初始位置与最后位置的体积比 材料在第i个方向的拉伸率 在ANSYS程序中,我们假定超弹材料是各向同性的,在每个方向都有完全相同的材料特性,在这种情况下,我们既可以根据应变不变量写出应变能密度函数,也可以根据主拉伸率写出应变能密度函数。 应变不变量是一种与坐标系无关的应变表示法。使用它们就意味着材料被假定是各向同性的。Mooney -Rivlin和Blatz-Ko应变能密度函数都可以用应变不变量表示,应变不变量可以柯西-格林应变张量和主拉伸率表示出来:

一个根据应量不变量写出来的应变能密度函数如下: 为材料常数,上式是两个常数的Mooney-Rivlin应变能密度函数。 超弹材料可以承受十分大的弹性变形,百分之几百的应变是很普遍的,既然是纯弹性应变,因此超弹性材料的变形是保守行为,与加载路径无关。 4.3.1.2 不可压缩缩性 大多数超弹材料,特别是橡胶和橡胶类材料,都是几乎不可压缩的,泊松比接近于0.5,不可压缩材料在静水压力下不产生变形,几乎不可压缩材料的泊松比一般在0.48至0.5之间(不包含0.5),对这些材料,在单元公式中必须考虑不可压缩条件。在ANSYS程序中,不可压缩超弹单元修改了应变能密度函数,在单元中明确地包含了压力自由度。压力自由度使不可压缩条件得到满足,而不降低求解速度。压力自由度是一种内部自由度,被凝聚在单元内部。 4.3.1.3 超弹单元 有三种单元适合于模拟超弹性材料: 不可压缩单元有HYPE56,58,74和158,这些单元适用于模拟橡胶材料。 可压缩单元有HYPER84和86,HYPER84既可以是4节点矩形也可以是8节点矩形单元,这种单元主要用来模拟泡沫材料。 18X族单元(除LIMK和BEAM单元外,包括SHELL181, PLANE182,PLANE183,SOLID185,SOLID186,和SOLID187)。18X族单元消除了体积锁定,既适用于不可压材料,又适用于可压材料。参见《ANSYS Elements Reference》的“Mixed U-P Formulations”。 4.3.2 超弹材料选项 超弹性可用于分析橡胶类材料(elastomers),这种材料可承受大应变和大位移,但体积改变极微(不可压缩)。这种分析需用到大应变理论[ NLGEOM ,ON]。图4-13是一个例子。 图4-13 超弹性结构 在ANSYS超弹性模型中,材料响应总是假设各向同性和等温性。由于这一假设,应变能势函数按应变不变量来表示。除非明确指出,超弹性材料还假设为几乎或完全不可压缩材料。材料热膨胀也假定为各向同性的。 ANSYS在模拟不可压缩或几乎不可压缩超弹性材料时,应变能势函数有几种选项。这些选项均适用于SHELL181,PLANE182, PLANE183, SOLID185, SOLID186, SOLID187 单元。可以通过TB ,HYPER 命令的 TBOPT参数进入这些选项。

ansys学习非线性静态分析实例

ansys学习-非线性静态分析实例 问题描述 一个子弹以给定的速度射向壁面。壁面假定是刚性的和无摩擦的。将研究子弹和壁面接触后达80微秒长的现象。目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。求解使用SI单位。 用轴对称单元模拟棒。求解最好能通过单一载荷步实现。在这个载荷步中,将同时施加初始速度和约束。将圆柱体末端的节点Y方向约束住以模拟一固壁面。打开自动时间分步来允许ANSYS确定时间步长。定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。 问题详细说明 下列材料性质应用于这个问题: EX= (杨氏模量) DENS= (密度) NUXY=(泊松比) Yield Strength=(屈服强度) Tangent Modulus (剪切模量) 下列尺寸应用于这个问题: 长=-3m 直径=-3m 对于这个问题的初始速度是。 图1铜圆柱体图解 求解步骤: 步骤一:设置分析标题 1、选择菜单路径:Utility Menn>File>ChangeTitle。 2、键入文字“Coppery Cylinder Impacting a Rigid Wall”

3、单击OK。 步骤二:定义单元类型 1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。 2、单击Add。Library of Element Types(单元类型库)对话框出现。 3、在靠近左边的列表中,单击“Visio Solid”仅一次。 4、选靠近右边的列表中,单击“4node Plas 106”仅一次。 5、单击OK。Library of Element Types 对话框关闭。 6、单击Options (选项)。VISCO106 element type Options(visco106单元类型选项)对话框出现。 7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。 8、单击OK。 9、单击Element Types (单元类型)对话框中的Close。 步骤三:定义材料性质 1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。 2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。 3、对杨氏模量(EX)键入 4、对密度(DENS)键入8930。 5、对泊松比(NUXY)键入。 6、单击OK。 步骤四:定义双线性各向同性强化数据表(BISO) 1、选择菜单路径Main Menu>Preprocessor>Matersal Props>Data Tables> Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。 2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。 3、对material reference number(材料参考号)健入1。

关于ansys非线性分析的几点忠告

关于非线性分析的几点忠告 了解程序的运作方式和结构的表现行为 如果你以前没有使用过某一种特别的非线性特性,在将它用于大的,复杂的模型前,构造一个非常简单的 模型(也就是,仅包含少量单元),以及确保你理解了如何处理这种特性。 通过首先分析一个简化模型,以便使你对结构的特性有一个初步了解。对于非线性静态模型,一个初步的 线性静态分析可以使你知道模型的哪一个区域将首先经历非线性响应,以及在什么载荷范围这些非线性将 开始起作用。对于非线性瞬态分析,一个对梁,质量块及弹簧的初步模拟可以使你用最小的代价对结构的 动态有一个深入了解。在你着手最终的非线性瞬时动态分析前,初步非线性静态,线性瞬时动态,和/或模 态分析同样地可以有助于你理解你结构的非线性动态响应的不同的方面。 阅读和理解程序的输出信息和警告。至少,在你尝试后处理你的结果前,确保你的问题收敛。对于与路程 相关的问题,打印输出的平衡迭代记录在帮助你确定你的结果是有效还是无效方面是特别重的。 简化 尽可能简化最终模型。如果可以将3─D结构表示为2─D平面应力,平面应变或轴对称模型,那么这样做, 如果可以通过对称或反对称表面的使用缩减你的模型尺寸,那么这样做。(然而,如果你的模型非对称加 载,通常你不可以利用反对称来缩减非线性模型的大小。由于大位移,反对称变成不可用的。)如果你可 以忽略某个非线性细节而不影响你模型的关键区域的结果,那么这样做。 只要有可能就依照静态等效载荷模拟瞬时动态加载。 考虑对模型的线性部分建立子结构以降低中间载荷或时间增量及平衡迭代所需要的计算时间。 采用足够的网格密度 考虑到经受塑性变形的区域要求一个合理的积分点密度。每个低阶单元将提供和高阶单元所能提供的一样

ANSYS分析指南精华:子结构

第四章子结构 什么是子结构? 子结构就是将一组单元用矩阵凝聚为一个单元的过程。这个单一的矩阵单元称为超单元。在ANSYS分析中,超单元可以象其他单元类型一样使用。唯一的区别就是必须先进行结构生成分析以生成超单元。子结构可以在ANSYS/Mutiphysics,ANSYS/Mechanical和ANSYS/Structural中使用。 使用子结构主要是为了节省机时,并且允许在比较有限的计算机设备资源的基础上求解超大规模的问题。原因之一如a)非线性分析和带有大量重复几何结构的分析。在非线性分析中,可以将模型线性部分作成子结构,这样这部分的单元矩阵就不用在非线性迭代过程中重复计算。在有重复几何结构的模型中(如有四条腿的桌子),可以对于重复的部分生成超单元,然后将它拷贝到不同的位置,这样做可以节省大量的机时。 子结构还用于模型有大转动的情况下。对于这些模型,ANSYS假定每个结构都是围绕其质心转动的。在三维情况下,子结构有三个转动自由度和三个平动自由度。在大转动模型中,用户在使用部分之前无须对子结构施加约束,因为每个子结构都是作为一个单元进行处理,是允许刚体位移的。 另外一个原因b)一个问题就波前大小和需用磁盘空间来说相对于一个计算 1

机系统太庞大了。这样,用户可以通过子结构将问题分块进行分析,每一块对于计算机系统来说都是可以计算的。 如何使用子结构 子结构分析有以下三个步骤: ●生成部分 ●使用部分 ●扩展部分 生成部分就是将普通的有限元单元凝聚为一个超单元。凝聚是通过定义一组主自由度来实现的。主自由度用于定义超单元与模型中其他单元的边界,提取模型的动力学特性。图4-1是一个板状构件用接触单元分析的示意。由于接触单元需要迭代计算,将板状构件形成子结构将显著地节省机时。本例中,主自由度是板与接触单元相连的自由度。 图4-1 子结构使用示例 2

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

ANSYS静力分析的简单步骤

第一步,启动工作台软件,然后选择与启动DS模块弹出得界面。 第二步,导入三维模型。根据操作步骤进行。首先,单击“几何体”,选择“文件”,然后选择弹出窗口中的3D模型文件,如果当时catia文件格式不符,可以把三维图先转换为“.stp”的格式,即可导入。 第三步,选择零件材料:文件导入软件后,在这个时候,依次选择“几何”下的“零件”,并且在左下角的“Details of ‘Part’”中以调整零件材料属性,本次钟形壳的材料是刚。 第四步,划分网格:选择“Project”树中的“Mesh”,右键选择“Generate Mesh”即可在这一点上,你可以在左下角的“网格”对话框的细节调整网格的大小(体积元)。 第五步,添加类型分析:第一选择顶部工具栏上的“分析”按钮,添加需要的类型分析,因为我们需要做的是在这种情况下的静态分析。所以选择结构静力。 第六步,添加固定约束:首先选择“Project”树中的“Static Structural”按钮,右键点击支持插入固定树。这时候在左下角的“Details of ‘Fixed Support’”对话框中“Geometry”会被选中,会要求输入固定的支撑面。在这种情况下,固定支架的类型是表面支持,确定六凹面(此时也可点击“Edge”来确定“边”)。然后一直的按住“CTRL”键,连续选择其它几个弧面为支撑面,在点击“Apply”进行确认, 第七步,添加载荷:选择“Project”树中的“结构静力”,右键选择“Insert”中的“Force”,然后在选择载荷的作用面,再次点击“Apply”按钮进行确定。 第八步,添加变形:右键点击选择“Project”树中的“Solution”,随后依次选择插入,变形,Total”,添加变形。 第九步,添加等效应变:右键单击“项目”的树,“>插入应变->解决方案->添加等效,等效应变。 第十步,添加等效应力:首先右键点击“Project”树中的“Solution—>Insert —> Stress—>Equivalent”,添加等效应力。 第十一步,求解:右键点击选择“Project”树中的“Solution”,随后选择“Solve”求解

ANSYS-结构稳态(静力)分析之经典实例-命令流格式

ANSYS 结构稳态(静力)分析之经典实例-命令流格式.txt两人之间的感情就像织毛衣,建立 的时候一针一线,小心而漫长,拆除的时候只要轻轻一拉。。。。/FILNAME,Allen-wrench,1 ! Jobname to use for all subsequent files /TITLE,Static analysis of an Allen wrench /UNITS,SI ! Reminder that the SI system of units is used /SHOW ! Specify graphics driver for interactive run; for batch ! run plots are written to pm02.grph ! Define parameters for future use EXX=2.07E11 ! Young's modulus (2.07E11 Pa = 30E6 psi) W_HEX=.01 ! Width of hex across flats (.01m=.39in) *AFUN,DEG ! Units for angular parametric functions定义弧度单位 W_FLAT=W_HEX*TAN(30) ! Width of flat L_SHANK=.075 ! Length of shank (short end) (.075m=3.0in) L_HANDLE=.2 ! Length of handle (long end) (.2m=7.9 in) BENDRAD=.01 ! Bend radius of Allen wrench (.01m=.39 in) L_ELEM=.0075 ! Element length (.0075 m = .30 in) NO_D_HEX=2 ! Number of divisions on hex flat TOL=25E-6 ! Tolerance for selecting nodes (25e-6 m = .001 in) /PREP7 ET,1,SOLID45 ! 3维实体结构单元;Eight-node brick element ET,2,PLANE42 ! 2维平面结构;Four-node quadrilateral (for area mesh) MP,EX,1,EXX ! Young's modulus for material 1;杨氏模量 MP,PRXY,1,0.3 ! Poisson's ratio for material 1;泊松比 RPOLY,6,W_FLAT ! Hexagonal area创建规则的多边形 K,7 ! Keypoint at (0,0,0) K,8,,,-L_SHANK ! Keypoint at shank-handle intersection K,9,,L_HANDLE,-L_SHANK ! Keypoint at end of handle L,4,1 ! Line through middle of hex shape L,7,8 ! Line along middle of shank L,8,9 ! Line along handle LFILLT,8,9,BENDRAD ! Line along bend radius between shank and handle! 产生 一个倒角圆,并生成三个点 /VIEW,,1,1,1 ! Isometric view in window 1 /ANGLE,,90,XM ! Rotates model 90 degrees about X! 不用累积的旋转 /TRIAD,ltop /PNUM,LINE,1 ! Line numbers turned on LPLOT

Ansys使用技巧-非线性收敛准则

ansys计算非线性时会绘出收敛图,其中横坐标是cumulative iteration number 纵坐标是absolute convergence norm。他们分别是累积迭代次数和绝对收敛范数,用来判断非线性分析是否收敛。 ansys在每荷载步的迭代中计算非线性的收敛判别准则和计算残差。其中计算残差是所有单元内力的范数,只有当残差小于准则时,非线性叠代才算收敛。ansys的位移收敛是基于力的收敛的,以力为基础的收敛提供了收敛量的绝对值,而以位移为基础的收敛仅提供表现收敛的相对量度。一般不单独使用位移收敛准则,否则会产生一定偏差,有些情况会造成假收敛.(ansys非线性分析指南--基本过程Page.6) 。因此ansys官方建议用户尽量以力为基础(或力矩)的收敛误差,如果需要也可以增加以位移为基础的收敛检查。ANSYS缺省是用L2范数控制收敛。其它还有L1范数和L0范数,可用CNVTOL命令设置。在计算中L2值不断变化,若L2

Ansys第25例非线性分析综合应用实例

第25例非线性分析综合应用实例----钢板卷制成圆筒 本例介绍了综合利用ANSYS非线性分析功能模拟将钢板卷制成圆筒的方法和步骤。25.1问题描述 将钢板卷制成圆筒一般要使用卷板机。图25-1所示为对称式三辊卷板机, 该机器将钢板卷制成圆筒时分为三个步骤:首先,上辊下降使钢板发生挠曲,钢板挠曲线的最低点首先发生屈服;然后,下辊转动驱动钢板向前移动,使钢板各点发生同样的屈服形成圆筒;最后,圆筒卷制完成,上辊上升卸下筒体。 图25-1对称式三辊卷板机 用ANSYS模拟将钢板卷制成圆筒,相应地也分为三个步骤。由于第二个步骤需要模拟上、下辊转动,而ANSYS的SOLIDn单元不支持大转动,位移边界条件不能施加大的转动角度,所以上、下辊需要用壳单元建立有限元模型。上、下辊与钢板的作用需要用接触模拟,钢板卷制成圆筒材料发生屈服,产生大变形, 所以钢板卷制成圆筒包括状态非线性、材料非线性和结构非线性三种非线性。 用ANSYS模拟将钢板卷制成圆筒,计算结果可以得到圆筒直径与上辊下压量的关系,上、下辊受力大小,上、下辊的变形,下辊驱动力矩及卸载回弹等重

25.2 命令流 /CLEAR /FILNAM, EXAMPLE25 /CONFIG, NRES, 2000 /PREP7 /PNUM, VOLU, ON ET, 1, SHELL181 ET, 2, SOLID186 MP, EX, 1, 2E11 MP, DENS, 1, 7800 MP, NUXY, 1, 0.3 MP, EX, 2, 2E11 MP, DENS, 2, 7800 MP, NUXY, 2, 0.3 TB, BKIN, 2, 1 TBTEMP, 0 TBDATA,, 240E6, 0 SECTYPE, 1, SHELL SECDATA, 0.02 CYLIND, 0.38/2, 0, 0.2, 1.7, 0, 360 要数据。因为分析过程复杂,步骤较多,所以本例只采用命令流法执行命令。 !清除数据库,新建文件 ! 指定任务名为?EXAMPLE25 “ !设置最大子步数 !前处理 !进入前处理器 !打开体号 !选择单元类型,壳单元用于划分上、下辊 !实体单元用于划分钢板 !定义材料模型 1 的弹性模量 ! 定义材料模型 1 的密度 !定义材料模型 1 的泊松比 !定义材料模型 2 的弹性模量 ! 定义材料模型 2 的密度 !定义材料模型 2 的泊松比 ! 定义材料模型 2 的屈服极限、切向模量 !定义截面 !壳厚度

ANSYS非线性分析:1-非线性分析概述

第一章钢筋混凝土结构非线性分析概述 1.1 钢筋混凝土结构的特性 1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就 处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况; 2.混凝土的拉、压应力-应变关系具有较强的非线性特征; 3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对 滑移,用弹性理论分析的结果不能反映实际情况; 4.混凝土的变形与时间有关:徐变、收缩; 5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段; 6.产生裂缝以后成为各向异形体。 混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。 1

1.2 混凝土结构分析的目的和主要内容 《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。 一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变 根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。 二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和 尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。根据荷载工况,对结构进行整体或局部特殊部位分析,以保证结构安全。 三、混凝土结构分析的方法和手段: 2

ansys子结构分析实例解析

ANSYS中的超单元 从8.0版开始,ANSYS中增加了超单元功能,本文通过一些实际例子,探讨了ANSYS 中超单元的具体使用。 1 使用超单元进行静力分析 根据ANSYS帮助文件,使用超单元的过程可以划分为三个阶段(称为Pass): (1) 生成超单元模型(Generation Pass) (2) 使用超单元数据(Use Pass) (3) 扩展模型(Expansion Pass) 以下摘自htbbzzg邹老师博客,请勿乱传! 下面以一个例子加以说明: 一块板,尺寸为20×40×2,材料为钢,一端固支,另一端承受法向载荷。 首先生成原始模型se_all.db,即按照整个结构进行分析,以便后面与超单元结果进行比较: 首先生成两个矩形,尺寸各为20×2。然后定义单元类型shell63; 定义实常数1为: 2 (板厚度)。 材料性能:弹性模量E=201000;波松比μ=0.3;密度ρ=7.8e-9; 单位为mm-s-N-MPa。 采用边长1划分单元;一端设置位移约束all,另一端所有(21个)节点各承受Z向力5。计算模型如下图:

静力分析的计算结果如下:

为了后面比较的方便,分别给出两个area上的结果:

超单元部分,按照上述步骤操作如下: (1) 生成超单元 选择后半段作为超单元,前半段作为非超单元(主单元)。 按照ANSYS使用超单元的要求,超单元与非超单元部分的界面节点必须一致(重合),且最好分别的节点编号也相同,否则需要分别对各节点对建立耦合方程,操作比较麻烦。 实际上,利用ANSYS中提供的mesh200单元,对超单元和非超单元的界面实体,按照同一顺序,先于所有其它实体划分单元,很容易满足界面节点编号相同的要求。对于多级超单元的情况,则还要结合其它操作(如偏移节点号等)以满足这一要求。 对于本例,采用另一办法,即先建立整个模型,然后再划分超单元和非超单元。即:将上述模型分别存为se_1.db (超单元部分)和se_main.db (非超单元部分)两个文件,然后分别处理。 对于se_1.db模型,按照超单元方式进行处理。由于模型及边界条件已建立,只需删除前半段上的划分,结果就是超单元所需的模型。 然后直接进入创建超单元矩阵的操作,首先说明一下创建超单元矩阵的一般步骤: A进入求解模块: 命令:/Solu GUI:Main menu -> Solution B设置分析类型为“子结构或部件模态综合“

ANSYS的非线性收敛准则

ANSYS的非线性收敛准则 ansys非线性问题 ANSYS的非线性收敛准则--转自中华钢结构论坛 CNVTOL, Lab, VALUE, TOLER, NORM, MINREF ANSYS中,非线性收敛准则主要有力的收敛,位移的收敛,弯矩的收敛和转角的收敛。一般用力的控制加载时,可以使用残余力的2-范数控制收敛;而位移控制加载时,最好用位移的范数控制收敛。 When SOLCONTROL,ON, TOLER Defaults to 0.005 (0.5%) for force and moment, and 0.05 (5%) for displacement when rotational DOFs are not present. When SOLCONTROL,OFF, defaults to 0.001 (0.1%) for force and moment. 收敛精度一般可放宽至 5%,以提高收敛速度。 加快收敛的方法有一下几种: 1可以增大荷载子步数,nsubst,nsbstp,nsbmn,carry 2修改收敛准则,cnvtol,lab,value,toler,norm,minref 3 打开优化的非线性默认求解设置和某些强化的内部求解算法,solcontrol,key1,key2,key3,vtol(一般情况下,默认是打开的) 4重新划分网格,网格的单元不宜太大或太小, 一般在5~10厘米左右 5 检查模型的正确性 下面计算收敛过程图中的各个曲线的具体含义是什么? 非线性计算是一个迭代计算的过程,曲线表示两次迭代之间的误差,图中分别表示力和位移在迭代过程中的每次迭代之间的误差 关于ansys中收敛准则(cnvtol)理解 ansys中依据缺省的收敛准则,程序将对不平衡力SRSS与VALUE*TOLER的值进行比较;而VALUE的缺省值是在SRSS和MINREF中取较大值。现假如TOLER的缺省值是0.1的话,这个准则是不是可以理解成后一次的SRSS是前一次的SRSS的01倍就收敛啦? 请指点 我是这样理解的例如下面的命令流: cnvtol,f,5000,0.0005,0 cnvtol,u,10,0.001,2

ansys学习非线性静态分析实例

a n s y s学习非线性静态分 析实例 Newly compiled on November 23, 2020

ansys学习-非线性静态分析实例 问题描述 一个子弹以给定的速度射向壁面。壁面假定是刚性的和无摩擦的。将研究子弹和壁面接触后达80微秒长的现象。目的是确定子弹的整个变形,速度历程,以及最大等效Von Mises应变。求解使用SI单位。 用轴对称单元模拟棒。求解最好能通过单一载荷步实现。在这个载荷步中,将同时施加初始速度和约束。将圆柱体末端的节点Y方向约束住以模拟一固壁面。打开自动时间分步来允许ANSYS确定时间步长。定义分析结束的时间为8E-5秒,以确保有足够长的时间来扑捉整个变形过程。 问题详细说明 下列材料性质应用于这个问题: EX= (杨氏模量) DENS= (密度) NUXY=(泊松比) Yield Strength=(屈服强度) Tangent Modulus (剪切模量) 下列尺寸应用于这个问题: 长=-3m 直径=-3m 对于这个问题的初始速度是。 图1铜圆柱体图解 求解步骤: 步骤一:设置分析标题 1、选择菜单路径:Utility Menn>File>ChangeTitle。 2、键入文字“Coppery Cylinder Impacting a Rigid Wall” 3、单击OK。 步骤二:定义单元类型

1、选择菜单路径Mail Menu>Preprocessor>Element Type>All/Edit/Delete。 2、单击Add。Library of Element Types(单元类型库)对话框出现。 3、在靠近左边的列表中,单击“Visio Solid”仅一次。 4、选靠近右边的列表中,单击“4node Plas 106”仅一次。 5、单击OK。Library of Element Types 对话框关闭。 6、单击Options (选项)。VISCO106 element type Options(visco106单元类型选项)对话框出现。 7、在关于element behavior(单元特性)的卷动柜中,卷动到“Axisymmetric” 且选中它。 8、单击OK。 9、单击Element Types (单元类型)对话框中的Close。 步骤三:定义材料性质 1、选择菜单路径Main Menu>Preprocessor>Material Props>-Constant-Isotropic. Isotropic Matersal Properties (各向同性材料性质)对话框出现。 2、单击OK来指定材料号为1。另一个I sotropic Material Properties对话框出现。 3、对杨氏模量(EX)键入 4、对密度(DENS)键入8930。 5、对泊松比(NUXY)键入。 6、单击OK。 步骤四:定义双线性各向同性强化数据表(BISO) 1、选择菜单路径Main Menu>Preprocessor>Matersal Props>Data Tables> Define/Activate . Define/Activate Data Table(定义数据表)对话柜出现。 2、在关于type of data table(数据表类型)的卷动框中,卷动到“Bilin isotr BISO”且选中它。 3、对material reference number(材料参考号)健入1。 4、对number of temperatures(温度数)键入1和单击OK。 5、选择菜单路径Main Menu>Preprocessor>Material Props>Data Tables>Edit Active. Data Table BISO对话框出现。 6、对YLD Strs(屈服应力)键入。 7、对 Tang Mod(剪切模量)键入。

相关主题
文本预览
相关文档 最新文档